
ASIS-for-GNAT User’s Guide

The GNAT Ada Compiler
GNAT GPL Edition, Version 2015

Configuration level 221822
Date: 2014/01/12

AdaCore

Copyright c© 2000-2009, AdaCore
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being
“GNU Free Documentation License”, with the Front-Cover Texts being “ASIS-
for-GNAT User’s Guide”, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

About This Guide

About This Guide
This guide has two aims. The first one is to introduce you to the Ada Semantic
Interface Specification (ASIS) and show you how you can build various useful
tools on top of ASIS. The second is to describe the ASIS implementation for the
GNAT Ada compiler.

GNAT implements both Ada 95 and Ada 2005. As of January 2008, the
ASIS standard is specific to Ada 95 and has not yet been updated to Ada 2005.
Notwithstanding the status of the ASIS standard, ASIS-for-GNAT includes
extensions that account for the new Ada 2005 functionality. You can therefore
use ASIS-for-GNAT for Ada 2005 programs, keeping in mind that the Ada
2005-specific support may subsequently change as work on updating the ASIS
standard proceeds.

For further information on ASIS-for-GNAT and Ada 2005, please refer to the
auxilliary documents ‘asis-2005-transition.txt’ and ‘features-asis2005’
in the ASIS source directory.

What This Guide Contains
This guide contains the following chapters:
• Chapter 1 [Introduction], page 5, contains the general definition of ASIS

and gives some examples of tools which can be built on top of ASIS.
• Chapter 2 [Getting Started], page 7, contains a short guided tour through

the development and use of ASIS-for-GNAT-based tools.
• Chapter 3 [ASIS Overview], page 15, gives an overview of ASIS, allowing an

ASIS newcomer to navigate through the ASIS definition (readers already
familiar with ASIS can skip this section).

• Chapter 4 [ASIS Context], page 23, defines the ASIS Context concept in
ASIS-for-GNAT and explains how to prepare a set of Ada components to be
processed by an ASIS application.

• Chapter 6 [ASIS Application Templates], page 39, describes a set of Ada
source components provided by the ASIS-for-GNAT distribution that may
be used as a basis for developing ASIS applications.

• Chapter 7 [ASIS Tutorials], page 41, describes some examples included in
the ASIS-for-GNAT distribution.

• Chapter 8 [How to Build Efficient ASIS Applications], page 43, describes
how to deal with “tree swapping”, a potential performance issue with ASIS
applications.

• Chapter 9 [Processing an Ada Library by an ASIS-Based Tool], page 47,
shows how to use an ASIS tool on pre-compiled Ada libraries.

1

ASIS-for-GNAT User’s Guide

• Chapter 10 [Compiling Binding and Linking Applications with ASIS-for-
GNAT], page 49, explains how to compile an ASIS application with ASIS-
for-GNAT and how to create the resulting executable.

• Chapter 11 [ASIS-for-GNAT Warnings], page 51, describes the warnings
generated by the ASIS implementation.

• Chapter 12 [Exception Handling and Reporting Internal Bugs], page 53,
explains what happens if an ASIS implementation internal problem is de-
tected during the processing of an ASIS or ASIS Extensions query

• Chapter 13 [File Naming Conventions and Application Name Space],
page 55, explains which names can and cannot be used as names of ASIS
application components.

What You Should Know Before Reading This Guide
This User’s Guide assumes that you are familiar with Ada 95 language, as
described in the International Standard ANSI/ISO/IEC-8652:1995 (hereafter
referred to as the Ada Reference Manual), and that you have some basic expe-
rience in Ada programming with GNAT.

This User’s Guide also assumes that you have ASIS-for-GNAT properly in-
stalled for your GNAT compiler, and that you are familiar with the structure of
the ASIS-for-GNAT distribution (if not, see the top ASIS README file).

This guide does not require previous knowledge of or experience with ASIS
itself.

Related Information
The following sources contain useful supplemental information:
• GNAT User’s Guide, for information about the GNAT environment
• ASIS-for-GNAT Installation Guide
• The ASIS-for-GNAT Reference Manual
• The ASIS 95 definition, available as ISO/IEC International Standard

15291.
• The Web site for the ASIS Working Group: http://www.acm.org/sigada/wg/asiswg

Conventions
Following are examples of the typographical and graphic conventions used in
this guide:
• Functions, utility program names, standard names, and classes.
• ‘Option flags’
• ‘File Names’, ‘button names’, and ‘field names’.

2

http://www.acm.org/sigada/wg/asiswg

About This Guide

• Variables.
• Emphasis.
• [optional information or parameters]
• Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the
characters “$ ” (dollar sign followed by space). If your system uses this sequence
as a prompt, then the commands will appear exactly as you see them in the
manual. If your system uses some other prompt, then the command will appear
with the $ replaced by whatever prompt character you are using.

Full file names are shown with the “/” character as the directory separator;
e.g., ‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows
platform, please note that the “\” character should be used instead.

3

Chapter 1: Introduction

1 Introduction

1.1 What Is ASIS?
The Ada Semantic Interface Specification (ASIS) is an open and published
callable interface that allows a tool to access syntactic and semantic informa-
tion about an Ada program, independent of the compilation environment that
compiled the program.

Technically, ASIS comprises a hierarchy of Ada packages rooted at the pack-
age Asis. These packages define a set of Ada private types that model the
components of an Ada program (e.g., declarations, statements, expressions) and
their interrelationships. Operations for these types, called ASIS queries, give
you statically determinable information about Ada compilation units in your
environment.

You may use ASIS as a third-part Ada library to implement a number of
useful program analysis tools.

1.2 ASIS Scope − Which Kinds of Tools Can Be Built
with ASIS?

The following ASIS properties define the ASIS scope:
• ASIS is a read-only interface.
• ASIS provides only statically-determinable information about Ada pro-

grams.
• ASIS provides access to the syntactic and basic semantic properties of com-

piled Ada units. If some semantic property of a program cannot be directly
queried by means of ASIS queries, an ASIS application can compute the
needed piece of information itself from the information available through
ASIS queries.

• ASIS provides information from/about Ada units in high-level terms
that conform with the Ada Reference Manual and that are Ada/ASIS-
implementation-independent in nature.

Examples of tools that benefit from the ASIS interface include, but are not
limited to: automated code monitors, browsers, call tree tools, code reformators,
coding standards compliance tools, correctness verifiers, debuggers, dependency
tree analysis tools, design tools, document generators, metrics tools, quality
assessment tools, reverse engineering tools, re-engineering tools, style checkers,
test tools, timing estimators, and translators.

5

Chapter 2: Getting Started

2 Getting Started
This section outlines the ASIS application development and usage cycle. We
first take a sample problem and present an ASIS application that offers a
solution; then we show how to build the executable with ASIS-for-GNAT and
how to prepare an ASIS “Context” to be processed by the program; and finally
we show the output produced by our program when it is applied to itself.

2.1 The Problem
We wish to process some set of Ada compilation units as follows: for every unit,
print its full expanded Ada name, whether this unit is a spec1, a body or a
subunit, and whether this unit is a user-defined unit, an Ada predefined unit
or an implementation-specific unit (such as a part of a Run-Time Library).

2.2 An ASIS Application that Solves the Problem
with Ada.Wide_Text_IO; use Ada.Wide_Text_IO;

with Ada.Characters.Handling; use Ada.Characters.Handling;

-- ASIS-specific context clauses:

with Asis;

with Asis.Implementation;

with Asis.Ada_Environments;

with Asis.Compilation_Units;

with Asis.Exceptions;

with Asis.Errors;

procedure Example1 is

My_Context : Asis.Context;

-- ASIS Context is an abstraction of an Ada compilation environment,

-- it defines a set of ASIS Compilation Units available through

-- ASIS queries

begin

1 It may seem that an Ada unit such as

package Pack is

type T is array(Positive range <>) of Float;

procedure Proc(X : in out T);

end Pack;

is a package specification, but in fact the “specification” (as defined in the Ada Reference Manual
) comprises all but the final semicolon. The form with the final semicolon is known as a “package
declaration”. Since this official term is not familiar to most Ada users, the GNAT documentation
uses the term “spec” (for a unit) to mean that unit’s declaration − thus a package spec includes
the final semicolon.

7

ASIS-for-GNAT User’s Guide

-- first, by initializing an ASIS implementation, we make it

-- ready for work

Asis.Implementation.Initialize ("-ws");

-- The "-ws" parameter of the Initialize procedure means

-- "turn off all the ASIS warnings"

-- then we define our Context by making an association with

-- the "physical" environment:

Asis.Ada_Environments.Associate

(My_Context, "My Asis Context", "-CA");

-- "-CA" as a Context parameter means "consider all the tree

-- files in the current directory"

-- See ASIS-for-GNAT Reference Manual for the description of the

-- parameters of the Associate query, see also chapter

-- "ASIS Context" for the description of different kinds of

-- ASIS Context in case of ASIS-for-GNAT

-- by opening a Context we make it ready for processing by ASIS

-- queries

Asis.Ada_Environments.Open (My_Context);

Processing_Units: declare

Next_Unit : Asis.Compilation_Unit;

-- ASIS Compilation_Unit is the abstraction to represent Ada

-- compilation units as described in RM 95

All_Units : Asis.Compilation_Unit_List :=

-- ASIS lists are one-dimensional unconstrained arrays.

-- Therefore, when declaring an object of an ASIS list type,

-- we have to provide either a constraint or explicit

-- initialization expression:

Asis.Compilation_Units.Compilation_Units (My_Context);

-- The Compilation_Units query returns a list of all the units

-- contained in an ASIS Context

begin

Put_Line

("A Context contains the following compilation units:");

New_Line;

for I in All_Units’Range loop

Next_Unit := All_Units (I);

Put (" ");

-- to get a unit name, we just need a Unit_Full_Name

-- query. ASIS uses Wide_String as a string type,

-- that is why we are using Ada.Wide_Text_IO

Put (Asis.Compilation_Units.Unit_Full_Name (Next_Unit));

8

Chapter 2: Getting Started

-- to get more info about a unit, we ask about unit class

-- and about unit origin

case Asis.Compilation_Units.Unit_Kind (Next_Unit) is

when Asis.A_Library_Unit_Body =>

Put (" (body)");

when Asis.A_Subunit =>

Put (" (subunit)");

when others =>

Put (" (spec)");

end case;

case Asis.Compilation_Units.Unit_Origin (Next_Unit) is

when Asis.An_Application_Unit =>

Put_Line (" - user-defined unit");

when Asis.An_Implementation_Unit =>

Put_Line (" - implementation-specific unit");

when Asis.A_Predefined_Unit =>

Put_Line (" - Ada predefined unit");

when Asis.Not_An_Origin =>

Put_Line

(" - unit does not actually exist in a Context");

end case;

end loop;

end Processing_Units;

-- Cleaning up: we have to close out the Context, break its

-- association with the external environment and finalize

-- our ASIS implementation to release all the resources used:

Asis.Ada_Environments.Close (My_Context);

Asis.Ada_Environments.Dissociate (My_Context);

Asis.Implementation.Finalize;

exception

when Asis.Exceptions.ASIS_Inappropriate_Context |

Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit |

Asis.Exceptions.ASIS_Failed =>

-- we check not for all the ASIS-defined exceptions, but only

-- those of them which can actually be raised in our ASIS

-- application.

--

-- If an ASIS exception is raised, we output the ASIS error

-- status and the ASIS diagnosis string:

Put_Line ("ASIS exception is raised:");

Put_Line ("ASIS diagnosis is:");

Put_Line (Asis.Implementation.Diagnosis);

9

ASIS-for-GNAT User’s Guide

Put ("ASIS error status is: ");

Put_Line

(Asis.Errors.Error_Kinds’Wide_Image

(Asis.Implementation.Status));

end Example1;

2.3 Required Sequence of Calls
An ASIS application must use the following sequence of calls:
1. Asis.Implementation.Initialize (...);

This initializes the ASIS implementation’s internal data structures. In gen-
eral, calling an ASIS query is erroneous unless the Initialize procedure
has been invoked.

2. Asis.Ada_Environments.Associate (...);

This call is the only means to define a value of a variable of the ASIS limited
private type Context. The value represents some specific association of the
ASIS Contextwith the “external world”. The way of making this association
and the meaning of the corresponding parameters of the Associate query
are implementation-specific, but as soon as this association has been made
and a Context variable is opened, the ASIS Context designated by this
variable may be considered to be a set of ASIS Compilation_Units available
through the ASIS queries.

3. Asis.Ada_Environments.Open (...);

Opening an ASIS Context variable makes the corresponding Context ac-
cessible to all ASIS queries.
After opening the Context, an ASIS application can start obtaining ASIS
Compilation_Units from it, can further analyze Compilation_Units by
decomposing them into ASIS Elements, etc.
ASIS relies on the fact that the content of a Context remains “frozen” as
long as the Context remains open. It is erroneous to change through some
non-ASIS program any data structures used by an ASIS implementation to
define and implement this Context while the Context is open.

4. Now all the ASIS queries can be used. It is possible to access Compilation_
Units from the Context, to decompose units into syntactic Elements, to
query syntactic and semantic properties of these Elements and so on.

5. Asis.Ada_Environments.Close (...);

After closing the Context it is impossible to retrieve any information from
it. All the values of the ASIS objects of Compilation_Unit, Element and
Line types obtained when this Context was open become obsolete, and it
is erroneous to use them after the Context was closed. The content of this
Context need not be frozen while the Context remains closed. Note that a

10

Chapter 2: Getting Started

closed Context keeps its association with the “external world” and it may
be opened again with the same association. Note also that the content (that
is, the corresponding set of ASIS Compilation_Units) of the Context may
be different from what was in the Context before, because the “external
world” may have changed while the Context remained closed.

6. Asis.Ada_Environments.Dissociate (...);

This query breaks the association between the corresponding ASIS Context
and the “external world”, and the corresponding Context variable becomes
undefined.

7. Asis.Implementation.Finalize (...);

This releases all the resources used by an ASIS implementation.

An application can perform these steps in a loop. It may initialize and finalize
an ASIS implementation several times, it may associate and dissociate the same
Context several times while an ASIS implementation remains initialized, and
it may open and close the same Context several times while the Context keeps
its association with the “external world”.

An application can have several ASIS Contexts opened at a time (the upper
limit is implementation-specific), and for each open Context, an application can
process several Compilation_Units obtained from this Context at a time (the
upper limit is also implementation-specific). ASIS-for-GNAT does not impose
any special limitations on the number of ASIS Contexts and on the number of
the ASIS Compilation_Units processed at a time, as long as an ASIS application
is within the general resource limitations of the underlying system.

2.4 Building the Executable for an ASIS application
The rest of this section assumes that you have ASIS-for-GNAT properly installed
as an Ada library.

As for other components of the GNAT technology, the structure of the ASIS
distribution and the ASIS building and installation process is based on project
files. So, the same should be the case for ASIS application.

For your ASIS application you should create a project file that depends on
the main ASIS project file asis.gpr. Here is the simplest version of such a
project file:

with "asis";

project Example1 is

for Main use ("example1.adb");

end Example1;

To get the executable for the ASIS application from Section 2.2 [An ASIS Ap-
plication that Solves the Problem], page 7 (assuming that it is located in your
current directory as the Ada source file named ‘example1.adb’, and the corre-

11

ASIS-for-GNAT User’s Guide

sponding project file is also located in the current directory), invoke gprbuid as
follows:

$ gprbuild example1.gpr

For more details concerning compiling ASIS applications and building executa-
bles for them with ASIS-for-GNAT see Chapter 10 [Compiling Binding and
Linking Applications with ASIS-for-GNAT], page 49.

2.5 Preparing Data for an ASIS Application −
Generating Tree Files

The general ASIS implementation technique is to use some information gener-
ated by the underlying Ada compiler as the basis for retrieving information from
the Ada environment. As a consequence, an ASIS application can process only
legal (compilable) Ada code, and in most of the cases to make a compilation unit
“visible” for ASIS means to compile this unit (probably with some ASIS-specific
options)

ASIS-for-GNAT uses tree output files (or, in short, tree files) to capture infor-
mation about an Ada unit from an Ada environment. A tree file is generated by
GNAT, and it contains a snapshot of the compiler’s internal data structures at
the end of the successful compilation of the corresponding source file.

To create a tree file for a unit contained in some source file, you should compile
this file with the ‘-gnatct’ compiler option. If you want to apply the program
described in section Section 2.2 [An ASIS Application that Solves the Problem],
page 7 to itself, compile the source of this application with the command:

$ gcc -c -gnatct example1.adb

and as a result, GNAT will generate the tree file named ‘example1.adt’ in the
current directory.

For more information on how to generate and deal with tree files, see
Chapter 4 [ASIS Context], page 23, and Chapter 7 [ASIS Tutorials], page 41.

2.6 Running an ASIS Application
To complete our example, let’s execute our ASIS application. If you have fol-
lowed all the steps described in this chapter, your current directory should
contain the executable ‘example1’ (‘example1.exe’ on a Windows platform) and
the tree file ‘example1.adt’. If we run our application, it will process an ASIS
Context defined by one tree file ‘example1.adt’ (for more details about defining
an ASIS Context see Chapter 4 [ASIS Context], page 23, and the ASIS-for-
GNAT Reference Manual). The result will be:

A Context contains the following compilation units:

Standard (spec) - Ada predefined unit

12

Chapter 2: Getting Started

Example1 (body) - user-defined unit

Ada (spec) - Ada predefined unit

Ada.Wide_Text_IO (spec) - Ada predefined unit

Ada.IO_Exceptions (spec) - Ada predefined unit

Ada.Streams (spec) - Ada predefined unit

System (spec) - Ada predefined unit

System.File_Control_Block (spec) - implementation-specific unit

Interfaces (spec) - Ada predefined unit

Interfaces.C_Streams (spec) - implementation-specific unit

System.Parameters (spec) - implementation-specific unit

System.WCh_Con (spec) - implementation-specific unit

Ada.Characters (spec) - Ada predefined unit

Ada.Characters.Handling (spec) - Ada predefined unit

Asis (spec) - user-defined unit

A4G (spec) - user-defined unit

A4G.A_Types (spec) - user-defined unit

Ada.Characters.Latin_1 (spec) - Ada predefined unit

GNAT (spec) - implementation-specific unit

GNAT.OS_Lib (spec) - implementation-specific unit

GNAT.Strings (spec) - implementation-specific unit

Unchecked_Deallocation (spec) - Ada predefined unit

Sinfo (spec) - user-defined unit

Types (spec) - user-defined unit

Uintp (spec) - user-defined unit

Alloc (spec) - user-defined unit

Table (spec) - user-defined unit

Urealp (spec) - user-defined unit

A4G.Int_Knds (spec) - user-defined unit

Asis.Implementation (spec) - user-defined unit

Asis.Errors (spec) - user-defined unit

Asis.Ada_Environments (spec) - user-defined unit

Asis.Compilation_Units (spec) - user-defined unit

Asis.Ada_Environments.Containers (spec) - user-defined unit

Asis.Exceptions (spec) - user-defined unit

System.Unsigned_Types (spec) - implementation-specific unit

Note that the tree file contains the full syntactic and semantic information not
only about the unit compiled by the given call to gcc, but also about all the
units upon which this unit depends semantically; that is why you can see in the
output list a number of units which are not mentioned in our example.

In the current version of ASIS-for-GNAT, ASIS implementation components
are considered user-defined, rather than implementation-specific, units.

13

Chapter 3: ASIS Overview

3 ASIS Overview
This chapter contains a short overview of the ASIS definition as given in the
ISO/IEC 15291:1999 ASIS Standard. This overview is aimed at helping an
ASIS newcomer find needed information in the ASIS definition.

For more details, please refer to the ASIS definition itself. To gain some
initial experience with ASIS, try the examples in Chapter 7 [ASIS Tutorials],
page 41.

3.1 Main ASIS Abstractions
ASIS is based on three main abstractions used to describe Ada programs; these
abstractions are implemented as Ada private types:

Context An ASIS Context is a logical handle to an Ada environment, as
defined in the Ada Reference Manual, Chapter 10. An ASIS appli-
cation developer may view an ASIS Context as a way to define a set
of compilation units available through the ASIS queries.

Compilation_Unit
An ASIS Compilation_Unit is a logical handle to an Ada compi-
lation unit. It reflects practically all the properties of compilation
units defined by the Ada Reference Manual, and it also reflects some
properties of “physical objects” used by an underlying Ada imple-
mentation to model compilation units. Examples of such properties
are the time of the last update, and the name of the object con-
taining the unit’s source text. An ASIS Compilation_Unit provides
the “black-box” view of a compilation unit, considering the unit as a
whole. It may be decomposed into ASIS Elements and then analyzed
in “white-box” fashion.

Element An ASIS Element is a logical handle to a syntactic component of an
ASIS Compilation_Unit (either explicit or implicit).

Some ASIS components use additional abstractions (private types) needed for
specific pieces of functionality:

Container
An ASIS Container (defined by the Asis.Ada_
Environments.Containers package) provides a means for
structuring the content of an ASIS Context; i.e., ASIS
Compilation_Units are grouped into Containers.

Line An ASIS Line (defined by the Asis.Text package) is the abstraction
of a line of code in an Ada source text. An ASIS Line has a length,
a string image and a number.

15

ASIS-for-GNAT User’s Guide

Span An ASIS Span (defined by the Asis.Text package) defines the loca-
tion of an Element, a Compilation_Unit, or a whole compilation in
the corresponding source text.

Id An ASIS Id (defined by the Asis.Ids package) provides a way to
store some “image” of an ASIS Element outside an ASIS application.
An application may create an Id value from an Element and store
it in a file. Subsequently the same or another application may read
this Id value and convert it back into the corresponding Element
value.

3.2 ASIS Package Hierarchy
ASIS is defined as a hierarchy of Ada packages. Below is a short description of
this hierarchy.
Asis The root package of the hierarchy. It defines the main ASIS abstrac-

tions − Context, Compilation_Unit and Element − as Ada private
types. It also contains a set of enumeration types that define the
classification hierarchy for ASIS Elements (which closely reflects the
Ada syntax defined in the Ada Reference Manual) and the classifi-
cation of ASIS Compilation_Units. This package does not contain
any queries.

Asis.Implementation
Contains subprograms that control an ASIS implementation: ini-
tializing and finalizing it, retrieving and resetting diagnosis infor-
mation. Its child package Asis.Implementation.Permissions con-
tains boolean queries that reflect how ASIS implementation-specific
features are implemented.

Asis.Ada_Environments
Contains queries that deal with an ASIS Context: associating and
dissociating, opening and closing a Context.

Asis.Compilation_Units
Contains queries that work with ASIS Compilation_Units: obtain-
ing units from a Context, getting semantic dependencies between
units and “black-box” unit properties.

Asis.Compilation_Units.Relations
Contains queries that return integrated semantic dependencies
among ASIS Compilation_Units; e.g., all the units needed by a
given unit to be included in a partition.

Asis.Elements
Contains queries working on Elements and implementing general
Element properties: gateway queries from ASIS Compilation Units

16

Chapter 3: ASIS Overview

to ASIS Elements, queries defining the position of an Element in the
Element classification hierarchy, queries which define for a given
Element its enclosing Compilation_Unit and its enclosing Element.
It also contains queries for processing pragmas.

Packages working on specific Elements
This group contains the following packages: Asis.Declarations,
Asis.Definitions, Asis.Statements, Asis.Expressions and
ASIS.Clauses. Each of these packages contains queries working
on Elements of the corresponding kind − that is, representing
Ada declarations, definitions, statements, expressions and clauses
respectively.

Asis.Text
Contains queries returning information about the source represen-
tation of ASIS Compilation_Units and ASIS Elements.

Asis.Exceptions
Defines ASIS exceptions.

Asis.Errors
Defines possible ASIS error status values.

3.3 Structural and Semantic Queries
Queries working on Elements and returning Elements or Element lists are
divided into structural and semantic queries.

Each structural query (except Enclosing_Element) implements one step of
the parent-to-child decomposition of an Ada program according to the ASIS
Element classification hierarchy. Asis.Elements.Enclosing_Element query
implements the reverse child-to-parent step. (For implicit Elements obtained
as results of semantic queries, Enclosing_Element might not correspond to
what could be expected from the Ada syntax and semantics; in this case the
documentation of a semantic query also defines the effect of Enclosing_Element
applied to its result).

A semantic query for a given Element returns the Element or the list of
Elements representing some semantic property − e.g., a type declaration for an
expression as the expression’s type, a defining identifier as a definition for a
simple name, etc.

For example, if we have Element El representing an assignment statement:
X := A + B;

then we can retrieve the structural components of this assignment statement
by applying the appropriate structural queries:

El_Var := Asis.Statements.Assignment_Variable_Name (El); -- X

El_Expr := Asis.Statements.Assignment_Expression (El); -- A + B

17

ASIS-for-GNAT User’s Guide

Then we can analyze semantic properties of the variable name represented by
El_Var and of the expression represented by El_Expr by means of appropriate
semantic queries:

El_Var_Def :=

Asis.Expressions.Corresponding_Name_Definition (El_Var);

El_Expt_Type :=

Asis.Expressions.Corresponding_Expression_Type (El_Expr);

As a result, El_Var_Def will be of A_Defining_Identifier kind and will repre-
sent the defining occurrence of X, while El_Expt_Type of a kind An_Ordinary_
Type_Declaration will represent the declaration of the type of the expression
A + B.

If we apply Asis.Elements.Enclosing_Element to El_Var or to El_Expr, we
will get back to the Element representing the assignment statement.

An important difference between classifying queries working on Elements as
structural versus semantic is that all the structural queries must be within one
ASIS Compilation_Unit, but for semantic queries it is typical for the argument
of a query to be in one ASIS Compilation_Unit, while the result of this query
is in another ASIS Compilation_Unit.

3.4 ASIS Error Handling Policy
Only ASIS-defined exceptions (and the Ada predefined Storage_Error excep-
tion) propagate out from ASIS queries. ASIS exceptions are defined in the
Asis.Exceptions package.

When an ASIS exception is raised, ASIS sets the Error Status
(the possible ASIS error conditions are defined as the values of the
Asis.Errors.Error_Kinds type) and forms the Diagnosis string. An
application can query the current value of the ASIS Error Status by
the Asis.Implementation.Status query, and the current content of the
Diagnosis string by Asis.Implementation.Diagnosis query. An application
can reset the Error Status and the Diagnosis string by invoking the
Asis.Implementation.Set_Status procedure.

Caution: The ASIS way of providing error information is not tasking safe.
The Diagnosis string and Error Kind are global to an entire partition, and
are not “per task”. If ASIS exceptions are raised in more then one task of a
multi-tasking ASIS application, the result of querying the error information in
a particular task may be incorrect.

3.5 Dynamic Typing of ASIS Queries
The ASIS type Element covers all Ada syntactic constructs, and Compilation_
Unit covers all Ada compilation units. ASIS defines an Element classification
hierarchy (which reflects very closely the hierarchy of Ada syntactic categories

18

Chapter 3: ASIS Overview

defined in the Ada Reference Manual, and ASIS similarly defines a classification
scheme for ASIS Compilation_Units. For any Element you can get its position
in the Element classification hierarchy by means of classification queries defined
in the package Asis.Elements. The classification queries for Compilation_
Units are defined in the package Asis.Compilation_Units.

Many of the queries working on Elements and Compilation_Units can be
applied only to specific kinds of Elements and Compilation_Units respectively.
For example, it does not make sense to query Assignment_Variable_Name for
an Element of An_Ordinary_Type_Declaration kind. An attempt to perform
such an operation will be detected at run-time, and an exception will be raised
as explained in the next paragraph.

ASIS may be viewed as a dynamically typed interface. For any Element
structural or semantic query (that is, for a query having an Element as an
argument and returning either an Element or Element list as a result) a list
of appropriate Element kinds is explicitly defined in the query documentation
which immediately follows the declaration of the corresponding subprogram
in the code of the ASIS package. This means that the query can be applied
only to argument Elements being of the kinds from this list. If the kind of
the argument Element does not belong to this list, the corresponding call to
this query raises the Asis.Exceptions.ASIS_Inappropriate_Element excep-
tion with Asis.Errors.Value_Error error status set.

The situation for the queries working on Compilation_Units is similar. If
a query lists appropriate unit kinds in its documentation, then this query
can work only on Compilation_Units of the kinds from this list. The query
should raise Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit with
Asis.Errors.Value_Error error status set when called for any Compilation_
Unit with a kind not from the list of the appropriate unit kinds.

If a query has a list of expected Element kinds or expected Compilation_
Unit kinds in its documentation, this query does not raise any exception
when called with any argument, but it produces a meaningful result only
when called with an argument with the kind from this list. For exam-
ple, if Asis.Elements.Statement_Kind query is called for an argument of A_
Declaration kind, it just returns Not_A_Statement, but without raising any
exception.

3.6 ASIS Iterator
ASIS provides a powerful mechanism to traverse an Ada unit, the generic pro-
cedure Asis.Iterator.Traverse_Element. This procedure makes a top-down
left-to-right (or depth-first) traversal of the ASIS tree (that is, of the syntax
structure of the Ada code viewed as the hierarchy of ASIS Elements). In the
course of this traversal, it applies to each Element the formal Pre_Operation

19

ASIS-for-GNAT User’s Guide

procedure when visiting this Element for the first time, and the formal Post_
Operation procedure when leaving this Element. By providing specific proce-
dures for Pre_Operation and Post_Operation when instantiating the generic
unit, you can automatically process all ASIS Elements found in a given ASIS
tree.

For example, suppose we have an assignment statement:
X := F (Y);

When called for an Element representing this statement, a Traverse_Element
instantiation does the following (below Pre_Op and Post_Op stand for actual
procedures provided for formal Pre_Operation and Post_Operation, and num-
bers indicate the sequence of calls to Pre_Op and Post_Op during traversal):

(1 Pre_Op) X := F (Y) (10 Post_Op)

|

|

| |

(2 Pre_Op) X (3 Post_Op) |

|

(4 Pre_Op) F(Y) (9 Post_Op)

|

|

| |

(5 Pre_Op) F (6 Post_Op) (7 Pre_Op) Y (8 Post_Op)

To see in more detail how Traverse_Elementmay be used for rapid development
of a number of useful ASIS applications, try the examples in Chapter 7 [ASIS
Tutorials], page 41.

3.7 How to Navigate through the Asis Package
Hierarchy

The following hints and tips may be useful when looking for some specific
information in the ASIS source files:
• Use the short overview of the ASIS packages given in Section 3.2 [ASIS

Package Hierarchy], page 16, to limit your browsing to a smaller set of ASIS
packages (e.g., if you are interested in what can be done with Compilation_
Units then look only in Asis.Compilation_Units; if you are looking for
queries that can be used to decompose and analyze declarations, limit your
search to Asis.Declarations).

• Inside ASIS packages working with particular kinds of Elements
(Asis.Declarations, Asis.Definitions, Asis.Statements,
Asis.Expressions and ASIS.Clauses) queries are ordered accord-
ing to the order of the description of the corresponding constructions in the

20

Chapter 3: ASIS Overview

Ada Reference Manual (e.g., package Asis.Statements starts from a query
retrieving labels and ends with the query decomposing a code statement).

• The names of all the semantic queries (and only ones) start from
Corresponding_... or Implicit_...

• Use comment sentinels given in the specification of the ASIS packages. A
sentinel of the form “--|ER” (from “Element Reference”) introduces a new
Element kind, and it is followed by a group of sentinels of the form “--|CR”
(from “Child Reference”), which list queries yielding the child Elements for
the Element just introduced.

21

Chapter 4: ASIS Context

4 ASIS Context

From an ASIS application viewpoint we may view an ASIS Context as a set of
ASIS Compilation_Units accessible through ASIS queries. The common ASIS
implementation technique is to base an implementation of an ASIS Context on
some persistent data structures created by the underlying Ada compiler when
compiling Ada compilation units maintained by this compiler. An ASIS Context
can only contain compilable (that is, legal) compilation units.

4.1 ASIS Context and Tree Files
The ASIS-for-GNAT implementation is based on tree output files, or, simply, tree
files. When called with the special option ‘-gnatt’, GNAT creates and outputs a
tree file if no error was detected during the compilation. The tree file is a kind
of snapshot of the compiler internal data structures (basically, of the Abstract
Syntax Tree (AST)) at the end of the successful compilation. ASIS then inputs
tree files and recreates in its internal data structures exactly the same picture
the compiler had at the end of the corresponding successful compilation.

An important consequence of the GNAT source-based compilation model is
that the AST contains full information not only about the unit being compiled,
but also about all the units upon which this unit depends semantically. There-
fore, having read a tree file, ASIS can in general provide information about more
than one unit. By processing a tree file, a tool can provide information about
the unit for which this tree was created and about all the units upon which it
depends semantically. However, to process several units, ASIS sometimes has
to change the tree being processed (in particular, this occurs when an applica-
tion switches between units which do not semantically depend on each other, for
example, two package bodies). Therefore, in the course of an ASIS application,
ASIS may read different tree files and it may read the same tree file more then
once.

The name of a tree file is obtained from the name of the source file being
compiled by replacing its suffix with ’‘.adt’’. For example, the tree file for
‘foo.adb’ is named ‘foo.adt’.

4.2 Creating Tree Files for Use by ASIS
Neither gcc nor gnatmake will create tree files automatically when you are
working with your Ada program. It is your responsibility as a user of an ASIS
application to create a set of tree files that correctly reflect the set of the Ada
components to be processed by the ASIS application, as well as to maintain the
consistency of the trees and the related source files.

To create a tree file for a given source file, you need to compile the corre-
sponding source file with the ‘-gnatct’ option.

23

ASIS-for-GNAT User’s Guide

$ gcc -c -gnatct foo.adb

will produce ‘foo.adt’, provided that ‘foo.adb’ contains the source of a legal Ada
compilation unit. Actially, the ‘-gnatct’ is an ASIS-specific combination of two
compileation options, ‘-gnatt’ and ‘-gnatc’. The ‘-gnatt’ option generates a tree
file, and ‘-gnatc’ turns off AST expansion. ASIS needs tree files created without
AST expansion, whereas to create an object file, GNAT needs an expanded AST.
Therefore it is impossible for one compilation command to to produce both a
tree file and an object file for a given source file.

The following points are important to remember when generating and deal-
ing with tree files:
• ASIS-for-GNAT is distributed for a particular version of GNAT. All the trees

to be processed by an ASIS application should be generated by this specific
version of the compiler.

• A tree file is not created if an error has been detected during the compilation.
• In contrast with object files, a tree file may be generated for any legal Ada

compilation unit, including a library package declaration requiring a body
or a subunit.

• A set of tree files processed by an ASIS application may be inconsistent;
for example, two tree files may have been created with different versions of
the source of the same unit. This will lead to inconsistencies in the corre-
sponding ASIS Context. See Section 4.4 [Consistency Problems], page 28,
for more details.

• Do not move tree, object or source files among directories in the underlying
file system! ASIS might assume an inconsistency between tree and source
files when opening a Context, or you may get wrong results when querying
the source or object file for a given ASIS Compilation_Unit.

• When invoking gcc or gnatmake to create tree files, make sure that all file
and directory names containing relative path information start from ‘./’ or
‘../’ (‘.\’ and ‘..\’ respectively in MS Windows). That is, to create a tree
file for the source file ‘foo.adb’ located in the inner directory named ‘inner’,
you should invoke gcc (assuming an MS Windows platform) as:

$ gcc -c -gnatct .\inner\foo.adb

but not as
$ gcc -c -gnatct inner\foo.ads

Otherwise ASIS will not perform correctly.
• When reading in a tree file, ASIS checks that this tree file was created with

the ‘-gnatc’ option, and it does not accept trees created without this option.

• If called to create a tree, GNAT does not destroy an ‘ALI’ file if the ‘ALI’ file
already exists for the unit being compiled and if this ‘ALI’ file is up-to-date.

24

Chapter 4: ASIS Context

Moreover, GNAT may place some information from the existing ‘ALI’ file
into the tree file. If you would like to have both object and tree files for your
program, first create the object files, and then the tree files.

• There is only one extension for tree files, namely ‘.adt’, whereas the stan-
dard GNAT name convention for the Ada source files uses different exten-
sions for a spec (‘.ads’) and for a body (‘.adb’). This means that if you first
generate a tree for a unit’s body:

$ gcc -c -gnatct foo.adb

and then generate the tree for the corresponding spec:
$ gcc -c -gnatct foo.ads

then the tree file ‘foo.adt’ will be created twice: first for the body, and then
for the spec. The tree for the spec will override the tree for the body, and
the information about the body will be lost for ASIS. If you first create the
tree for a spec, and then for a body, the second tree will also override the
first one, but no information will be lost for ASIS, because the tree for a
body contains full information about the corresponding spec.
To avoid losing information when creating trees for a set of Ada sources,
try to use gnatmake whenever possible (see Section 8.4 [Using gnatmake to
Create Tree Files], page 45 for more details). Otherwise, first create trees
for specs and then for bodies:

$ gcc -c -gnatct *.ads

$ gcc -c -gnatct *.adb

• Reading tree files is a time-consuming operation. Try to minimize the
number of tree files to be processed by your application, and try to avoid
unnecessary tree swappings. (See Chapter 8 [How to Build Efficient ASIS
Applications], page 43, for some tips).

• It is possible to create tree files “on the fly”, as part of the processing of
the ASIS queries that obtain units from a Context. In this case there
is no need to create tree files before running an ASIS application using
the corresponding Context mode. Note that this possibility goes beyond
the ASIS Standard, and there are some limitations imposed on some ASIS
queries, but this functionality may be useful for ASIS tools that process
only one Compilation_Unit at a time. See the ASIS-for-GNAT Reference
Manual for more details.

Note that between opening and closing a Context, an ASIS application should
not change its working directory; otherwise execution of the application is erro-
neous.

4.2.1 Creating Trees for Data Decomposition Annex
Using the ASIS Data Decomposition Annex (DDA) does not require anything
special to be done by an ASIS user, with one exception. The implementation

25

ASIS-for-GNAT User’s Guide

of the ASIS DDA is based on some special annotations added by the compiler
to the trees used by ASIS. An ASIS user should be aware of the fact that trees
created for subunits do not have this special annotation. Therefore ASIS DDA
queries do not work correctly on trees created for subunits (and these queries
might not work correctly if a set of tree files making up a Context contains a
tree created for a subunit).

Thus, when working with the ASIS DDA, you should avoid creating separate
trees for subunits. Actually, this is not a limitation: to create a tree for a
subunit, you should also have the source of the parent body available. If in
this situation you create the tree for the parent body, it will contain the full
information (including DDA-specific annotation) for all the subunits that are
present. From the other side, a tree created for a single subunit has to contain
information about the parent body, so it has about the same size as the tree for
the parent body.

The best way to create trees when using ASIS DDA is to use gnatmake: it
will never create separate trees for subunits.

4.3 Different Ways to Define an ASIS Context in ASIS-
for-GNAT

The Asis.Ada_Environments.Associate query that defines a Context has the
following spec:

procedure Associate

(The_Context : in out Asis.Context;

Name : in Wide_String;

Parameters : in Wide_String := Default_Parameters);

In ASIS-for-GNAT, Name does not have any special meaning, and the properties
of the Context are set by “options” specified in the Parameters string:
• How to define a set of tree files making up the Context (‘-C’ options);
• How to deal with tree files when opening a Context and when processing

ASIS queries (‘-F’ options);
• How to process the source files during the consistency check when opening

the Context (‘-S’ options):
• The search path for tree files making up the Context (‘-T’ options);
• The search path for source files used for calling GNAT to create a tree file

“on the fly” (‘-I’ options);

The association parameters may (and in some cases must) also contain the
names of tree files or directories making up search paths for tree and/or source
files. Below is the overview of the Context association parameters in ASIS-for-
GNAT; for full details refer to the ASIS-for-GNAT Reference Manual.

26

Chapter 4: ASIS Context

4.3.1 Defining a set of tree files making up a Context

The following options are available:

‘-C1’ “One tree” Context, defining a Context comprising a single tree
file; this tree file name should be given explicitly in the Parameters
string.

‘-CN’ “N-trees” Context, defining a Context comprising a set of tree files;
the names of the tree files making up the Context should be given
explicitly in the Parameters string.

‘-CA’ “All trees” Context, defining a Context comprising all the tree files
in the tree search path given in the same Parameters string; if
this option is set together with ‘-FM’ option, ASIS can also create
new tree files “on the fly” when processing queries yielding ASIS
Compilation_Units.

The default option is ‘-CA’.
Note that for ‘-C1’, the Parameters string should contain the name of exactly

one tree file. Moreover, if during the opening of such a Context this tree file could
not be successfully read in because of any reason, the Asis_Failed exception is
raised.

4.3.2 Dealing with tree files when opening a Context and
processing ASIS queries

The following options are available:

‘-FT’ Only pre-created trees are used, no tree file can be created by ASIS.

‘-FS’ All the trees considered as making up a given Context are created
“on the fly”, whether or not the corresponding tree file already ex-
ists; once created, a tree file may then be reused while the Context
remains open. This option can be set only with ‘-CA’ option.

‘-FM’ Mixed approach: if a needed tree does not exist, the attempt to
create it “on the fly” is made. This option can only be set with ‘-CA’
option.

The default option is ‘-FT’.
Note that the ‘-FS’ and ‘-FM’ options go beyond the scope of the official ASIS

standard. They may be useful for some ASIS applications with specific re-
quirements for defining and processing an ASIS Context, but in each case the
ramifications of using such non-standard options should be carefully consid-
ered. See the ASIS-for-GNAT Reference Manual for a detailed description of
these option.

27

ASIS-for-GNAT User’s Guide

4.3.3 Processing source files during the consistency check
When ASIS reads a tree fule as a part of opening a Context, it checks, that the
tree is consistent with the source files of the Compilation_Units represented
by this tree.

The following options are available to control this check:

‘-SA’ Source files for all the Compilation_Units belonging to the Context
(except the predefined Standard package) have to be available, and
all of them are taken into account for consistency checks when open-
ing the Context.

‘-SE’ Only existing source files for all the Compilation_Units belonging
to the Context are taken into account for consistency checks when
opening the Context.

‘-SN’ None of the source files from the underlying file system are taken
into account when checking the consistency of the set of tree files
making up a Context (that is, no check is made).

The default option is ‘-SA’. See Section 4.4 [Consistency Problems], page 28,
concerning consistency issues in ASIS-for-GNAT.

4.3.4 Setting search paths
Using the ‘-I’, ‘-gnatec’ and ‘-gnatA’ options for defining an ASIS Context is
similar to using the same optionsfor gcc. The ‘-T’ option is used in the same
way, for tree files. For full details about the ‘-T’ and ‘-I’ options, refer to the
ASIS-for-GNAT Reference Manual. Note that the ‘-T’ option is used only to
locate existing tree files, and it has no effect for ‘-FS’ Contexts. On the other
hand, the ‘-I’ option is used only to construct a set of arguments when ASIS
calls GNAT to create a tree file “on the fly”; it has no effect for ‘-FT’ Contexts,
and it cannot be used to tell ASIS where it should look for source files for ASIS
Compilation_Units.

4.4 Consistency Problems
There are two different kinds of consistency problems existing for ASIS-for-
GNAT, and both of them can show up when opening an ASIS Context.

First, a tree file may have been created by another version of GNAT (see the
README file about the coordination between the GNAT and ASIS-for-GNAT
versions). This means that there is an ASIS-for-GNAT installation problem.

Second, the tree files may be inconsistent with the existing source files or
with each other.

28

Chapter 4: ASIS Context

4.4.1 Inconsistent versions of ASIS and GNAT
When ASIS-for-GNAT reads a tree file created by the version of the compiler for
which a given version of ASIS-for-GNAT is not supposed to be used, ASIS treats
the situation as an ASIS-for-GNAT installation problem and raises Program_
Error with a corresponding exception message. In this case, Program_Error is
not caught by any ASIS query, and it propagates outside ASIS.1 Note that the
real cause may be an old tree file you have forgotten to remove when reinstalling
ASIS-for-GNAT. This is also considered an installation error.

ASIS uses the tree files created by the GNAT compiler installed on your
machine, and the ASIS implementation includes some compiler components to
define and to get access to the corresponding data structures. Therefore, the
version of the GNAT compiler installed on your machine and the version of the
GNAT compiler whose sources are used as a part of the ASIS implementation
should be close enough to define the same data structures. We do not require
these versions to be exactly the same, and, by default, when ASIS reads a tree
file it only checks for significant differences. That is, it will accept tree files
from previous versions of GNAT as long as it is possible for such files to be read.
In theory, this check is not 100% safe; that is, a tree created by one version of
GNAT might not be correctly processed by ASIS built with GNAT sources taken
from another version. But in practice this situation is extremely unlikely.

An ASIS application may set a strong GNAT version check by providing
the ‘-vs’ parameter for the ASIS Initialize procedure, see ASIS-for-GNAT
Reference Manual for more details. If the strong version check is set, then
only a tree created by exactly the same version of GNAT whose sources are
used as a part of the ASIS implementation can be successfully read in, and
Program_Error will be raised otherwise.

Be careful when using a when others exception handler in your ASIS ap-
plication: do not use it just to catch non-ASIS exceptions and to ignore them
without any analysis.

4.4.2 Consistency of a set of tree and source files
When processing a set of more then one tree file making up the same Context,
ASIS may face a consistency problem. A set of tree files is inconsistent if it
contains two trees representing the same compilation unit, and these trees
were created with different versions of the source of this unit. A tree file is
inconsistent with a source of a unit represented by this tree if the source file
currently available for the unit differs from the source used to create the tree
file.

1 This is not a violation of the requirement stated in the ASIS definition that only ASIS-defined
exceptions are allowed to propagate outside ASIS queries, because in this case you do not have
ASIS-for-GNAT properly installed and therefore you do not have a valid ASIS implementation.

29

ASIS-for-GNAT User’s Guide

When opening a Context (via the Asis.Ada_Environments.Open query),
ASIS does the following checks for all the tree files making up the Context:
• If the ‘-SA’ option is set for the Context, ASIS checks that for every

Compilation_Unit represented by a tree, the source file is available and it
is the same as the source file used to create the tree (a tree file contains
references to all the source files used to create this tree file).

• If the ‘-SE’ option is set for the Context, then if for a Compilation_Unit
represented by a tree a source file is available, ASIS checks that this source
is the same as the source used to create the tree. If for a Compilation_Unit
belonging to a Context a source file is not available, ASIS checks that all
the tree files containing this unit were created with the same version of the
source of this unit.

• If the ‘-SN’ option is set for the Context, ASIS checks that all the trees were
created from the same versions of the sources involved. It does not check if
any of these sources is available or if this is the same version of the source
that has been used to create the tree files.

If any of these checks fail, the Asis_Failed exception is raised as a result
of opening a Context. If the Context has been successfully opened, you are
guaranteed that ASIS will process only consistent sets of tree and source files
until the Context is closed (provided that this set is not changed by some non-
ASIS actions).

4.5 Processing Several Contexts at a Time
If your application processes more then one open Context at a time, and if at
least one of the Contexts is defined with an ‘-FS’ or ‘-FM’ option, be aware that
all the tree files created by ASIS “on the fly” are placed in the current directory.
Therefore, to be on the safe side when processing several opened Contexts at a
time, an ASIS application should have at most one Context defined with an ‘-FS’
or ‘-FM’ option. If the application has such a Context, all the other Contexts
should not use tree files located in the current directory.

4.6 Using ASIS with a cross-compiler
If you would like to use ASIS with a cross-compiler, you should use this cross-
compiler to create the tree files to be used for the ASIS Context defined with
‘-FS’ option. If you would like to use trees created on the fly (that is, to use
a Context defined with the ‘-FS’ or ‘-FM’ option), you have to tell ASIS which
compiler should be called to perform this function. There are two ways to do
this.
• You can use the ‘--GCC’ option in the Context definition to specify explicitly

the name of the command to be called to create the trees on the fly

30

Chapter 4: ASIS Context

• You may use the prefix of the name of your ASIS tool to indicate the name
of the command to be used to call the compiler. If the name of your tool con-
tains a hyphen character “-”, for example some_specific-foo, then ASIS
will try to call the command with the name created as a concatenation of
the tool name prefix preceding the rightmost hyphen, the hyphen character
itself, and gcc. For example, for some_specific-foo, ASIS will try to call
some_specific-gcc to create the tree file.

The algorithm for defining the name of the command to be used to create
trees on the fly is as follows. If the ‘--GCC’ option is used in the Context
definition and if the name that is the parameter of this option denotes some
executable existing in the path, this executable is used. Otherwise ASIS tries
to define the name of the executable from the name of the ASIS application.
If the corresponding executable exists on the path, it is used. Otherwise the
standard gcc installation is used.

31

Chapter 5: ASIS Interpreter asistant

5 ASIS Interpreter asistant

This chapter describes asistant, an interactive interface to ASIS queries.

5.1 asistant Introduction
The asistant tool allows you to use ASIS without building your own ASIS
applications. It provides a simple command language that allows you to define
variables of ASIS types and to assign them values by calling ASIS queries.

This tool may be very useful while you are learning ASIS: it lets you try
different ASIS queries and see the results immediately. It does not crash when
there is an error in calling an ASIS query (such as passing an inappropriate
Element); instead asistant reports an error and lets you try again.

You can also use asistant as a debug and “ASIS visualization” tool in an
ASIS application project. If you have problems finding out which query should
be used in a given situation, or why a given query does not work correctly with
a given piece of Ada code, you may use asistant to reconstruct the situation
that causes the problems, and then experiment with ASIS queries.

Though primarily an interactive tool, asistant also can interpret sequences
of commands written to a file (called a “script file” below). The asistant tool
can also store in a file the log of an interactive session that can then be reused
as a script file.

The full documentation of asistant may be found in the asistant Users’
Guide (file ‘asistant.ug’ in the asistant source directory). Here is a brief
overview of asistant usage.

The executable for asistant is created in the asistant source directory as a
part of the standard procedure of installing ASIS-for-GNAT as an Ada library (or
it is placed in the ‘GNATPRO/bin’ directory when installing ASIS from the binary
distribution). Put this executable somewhere on your path1, and then type
“asistant” to call asistant in an interactive mode. As a result, the program
will output brief information about itself and then the asistant prompt “>” will
appear:

ASIStant - ASIS Tester And iNTerpreter, v1.2

(C) 1997-2002, Free Software Foundation, Inc.

Asis Version: ASIS 2.0.R

>

Now you can input asistant commands (asistant supports in its command
language the same form of comments as Ada, and names in asistant are not
case-sensitive):

1 You do not have to do this if you have installed ASIS from the binary distribution, because the
executable for asistant has been added to other GNAT executables

33

ASIS-for-GNAT User’s Guide

>Initialize ("") -- the ASIS Initialize query is called with an

-- empty string as a parameter

>set (Cont) -- the non-initialized variable Cont of the ASIS

-- Context type is created

>Associate (Cont, "", "") -- the ASIS Associate query with two empty

-- strings as parameters is called for Cont

>Open (Cont) -- the ASIS Open query is called for Cont

>set (C_U, Compilation_Unit_Body ("Test", Cont)) -- the variable C_U

-- of the ASIS Compilation_Unit type is created and initialized as

-- the result of the call to the ASIS query Compilation_Unit_Body.

-- As a result, C_U will represent a compilation unit named "Test"

-- and contained in the ASIS Context named Cont

>set (Unit, Unit_Declaration (C_U)) -- the variable Unit of the ASIS

-- Element type is created and initialized as the result of calling

-- the ASIS Unit_Declaration query

>print (Unit) -- as a result of this command, some information about

-- the current value of Unit will be printed (a user can set

-- the desired level of detail of this information):

A_PROCEDURE_BODY_DECLARATION at (1 : 1)-(9 : 9)

-- suppose now, that we do make an error - we call an ASIS query for

-- an inappropriate element:

>set (Elem, Assignment_Expression (Unit))

-- ASIS will raise an exception, asistant will output the ASIS debug

-- information:

Exception is raised by ASIS query ASSIGNMENT_EXPRESSION.

Status : VALUE_ERROR

Diagnosis :

Inappropriate Element Kind in Asis.Statements.Assignment_Expression

-- it does not change any of the existing variables and it prompts

-- a user again:

> ...

34

Chapter 5: ASIS Interpreter asistant

5.2 asistant commands
The list of asistant commands given in this section is incomplete; its purpose
is only to give a general idea of asistant’s capabilities. Standard metalanguage
is assumed (i.e., “[construct]” denotes an optional instance of “construct”).

Help [(name)]
Outputs the profile of the ASIS query “name”; when called with no
argument, generates general asistant help information.

Set (name)
Creates a (non-initialized) variable “name” of the ASIS Context type.

Set (name, expr)
Evaluates the expression “expr” (it may be any legal asistant ex-
pression; a call to some ASIS query is the most common case in
practice) and creates the variable “name” of the type and with the
value of “expr”.

Print (expr)
Evaluates the expression “expr” and outputs its value (some in-
formation may be omitted depending on the level specified by the
PrintDetail command).

Run (‘filename’)
Launches the script from a file ‘filename’, reading further com-
mands from it.

Pause Pauses the current script and turns asistant into interactive mode.

Run Resumes a previously Paused script.

Browse Switches asistant into step-by-step ASIS tree browsing.

Log (‘filename’)
Opens the file ‘filename’ for session logging.

Log Closes the current log file.

PrintDetail
Toggles whether the Print command outputs additional informa-
tion.

Quit [(exit-status)]
Quits asistant.

5.3 asistant variables
The asistant tool lets you define variables with Ada-style (simple) names.
Variables can be of any ASIS type and of conventional Integer, Boolean and

35

ASIS-for-GNAT User’s Guide

String type. All the variables are created and assigned dynamically by the Set
command; there are no predefined variables.

There is no type checking in asistant: each call to a Set command may be
considered as creating the first argument from scratch and initializing it by the
value provided by the second argument.

5.4 Browsing an ASIS tree
You perform ASIS tree browsing by invoking the asistant service function
Browse. This will disable the asistant command interpreter and activate the
Browser command interpreter. The Browser Q command switches back into
the asistant environment by enabling the asistant command interpreter and
disabling the Browser interpreter.

Browse has a single parameter of Element type, which establishes where the
ASIS tree browsing will begin. Browse returns a result of type Element, namely
the Element at which the tree browsing was stopped. Thus, if you type:

> set (e0, Browse (e1))

you will start ASIS tree browsing from e1; when you finish browsing, e0 will
represent the last Element visited during the browsing.

If you type:
> Browse (e1)

you will be able to browse the ASIS tree, but the last Element of the browsing
will be discarded.

Browser displays the ASIS Element it currently points at and expects one of
the following commands:

U Go one step up the ASIS tree (equivalent to calling the ASIS
Enclosing_Element query);

D Go one step down the ASIS tree, to the left-most component of the
current Element

N Go to the right sibling (to the next Element in the ASIS tree hierar-
chy)

P Go to the left sibling (to the previous Element in the ASIS tree
hierarchy)

\k1k2 where k1 is either D or d, and k2 is either T or t. Change the form
of displaying the current Element: D turns ON displaying the debug
image, d turns it OFF. T turns ON displaying the text image, t turns
it OFF.

<SPACE><query>
Call the <query> for the current Element.

36

Chapter 5: ASIS Interpreter asistant

Q Go back to the asistant environment; the Browser command inter-
preter is disabled and the asistant command interpreter is enabled
with the current Element returned as a result of the call to Browse.

Browser immediately interprets the keystroke and displays the new current
Element. If the message "Cannot go in this direction." appears, this means
that traversal in this direction from current node is impossible (that is, the
current node is either a terminal Element and it is not possible to go down, or
it is the leftmost or the rightmost component of some Element, and it is not
possible to go left or right, or it is the top Element in its enclosing unit structure
and it is not possible to go up).

It is possible to issue some ordinary ASIS queries from inside the Browser
(for example, semantic queries). These queries should accept one parameter of
type Element and return Element as a result.

When you press <SPACE>, you are asked to enter the query name. If the
query is legal, the current Element is replaced by the result of the call to the
given query with the current Element as a parameter.

5.5 Example
Suppose we have an ASIS Compilation_Unit Demo in the source file ‘demo.adb’:

procedure Demo is

function F (I : Integer) return Integer;

function F (I : Integer) return Integer is

begin

return (I + 1);

end F;

N : Integer;

begin

N := F (3);

end Demo;

Suppose also that the tree for this source is created in the current directory.
Below is a sequence of asistant commands which does process this unit. Ex-
planation is provided via asistant comments.

initialize ("")

-- Create and open a Context comprising all the tree files

-- in the current directory:

Set (Cont)

Associate (Cont, "", "")

Open (Cont)

37

ASIS-for-GNAT User’s Guide

-- Get a Compilation_Unit (body) named "Demo" from this Context:

Set (CU, Compilation_Unit_Body ("Demo", Cont))

-- Go into the unit structure and get to the expression

-- in the right part of the assignment statements in the unit body:

Set (Unit, Unit_Declaration (CU))

Set (Stmts, Body_Statements (Unit, False))

Set (Stmt, Stmts (1))

Set (Expr, Assignment_Expression (Stmt))

-- Output the debug image and the text image of this expression:

Print (Expr)

Print (Element_Image (Expr))

-- This expression is of A_Function_Call kind, so it’s possible to ask

-- for the declaration of the called function:

Set (Corr_Called_Fun, Corresponding_Called_Function (Expr))

-- Print the debug and the text image of the declaration of the called

-- function:

Print (Corr_Called_Fun)

Print (Element_Image (Corr_Called_Fun))

-- Close the asistant session:

Quit

38

Chapter 6: ASIS Application Templates

6 ASIS Application Templates
The subdirectory ‘templates’ of the ASIS distribution contains a set of Ada
source components that can be used as templates for developing simple ASIS
applications. The general idea is that you can easily build an ASIS application
by adding the code performing some specific ASIS analysis in well-defined places
in these templates.

Refer to the ASIS tutorial’s solutions for examples of the use of the templates.
For more information see the ‘README’ file in the ‘templates’ subdirectory.

39

Chapter 7: ASIS Tutorials

7 ASIS Tutorials
The subdirectory ‘tutorial’ of the ASIS distribution contains a simple hands-
on ASIS tutorial which may be useful in getting a quick start with ASIS. The
tutorial contains a set of simple exercises based on the asistant tool and on a set
of the ASIS Application Templates provided as a part of the ASIS distribution.
The complete solutions are provided for all the exercises, so the tutorial may
also be considered as a set of ASIS examples.

For more information see the ‘README’ file in the ‘tutorial’ subdirectory.

41

Chapter 8: How to Build Efficient ASIS Applications

8 How to Build Efficient ASIS Applications
This chapter identifies some potential performance issues with ASIS applica-
tions and offers some advice on how to address these issues.

8.1 Tree Swapping as a Performance Issue
If an ASIS Context comprises more then one tree, then ASIS may need to switch
between different trees during an ASIS application run. Switching between
trees may require ASIS to repeatedly read in the same set of trees, and this
may slow down an application considerably.

Basically, there are two causes for tree swapping:
• Processing of semantically independent units. Suppose in Context Cont we

have units P and Q that do not depend on each other, and Cont does not
contain any third unit depending on both P and Q. This means that P and
Q cannot be represented by the same tree. To obtain information about P,
ASIS needs to access the tree ‘p.adt’, and to get some information about Q,
ASIS needs ‘q.adt’. Therefore, if an application retrieves some information
from P, and then starts processing Q, ASIS has to read ‘q.adt’.

• Processing of information from dependent units. A unit Umay be present not
only in the tree created for U, but also in all the trees created for units which
semantically depend upon U. Suppose we have a library procedure Proc de-
pending on a library package Pack, and in the set of trees making up our
Context we have trees ‘pack.adt’ and ‘proc.adt’. Suppose we have some
Element representing a component of Pack, when ‘pack.adt’ was accessed
by ASIS, and suppose that because of some other actions undertaken by an
application ASIS changed the tree being accessed to ‘proc.adt’. Suppose
that now the application wants to do something with the Element represent-
ing some component of Pack and obtained from ‘pack.adt’. Even though
the unit Pack is represented by the currently accessed tree ‘proc.adt’, ASIS
has to switch back to ‘pack.adt’, because all the references into the tree
structure kept as a part of the value of this Element are valid only for
‘pack.adt’.

8.2 Queries That Can Cause Tree Swapping
In ASIS-for-GNAT, tree swapping can currently take place only when processing
queries defined in:

Asis.Elements

Asis.Declarations

Asis.Definitions

Asis.Statements

Asis.Clauses

43

ASIS-for-GNAT User’s Guide

Asis.Expressions

Asis.Text

but not for those queries in the above packages that return enumeration or
boolean results.

For any instantiation of Asis.Iterator.Traverse_Element, the traversal it-
self can cause at most one tree read to get the tree appropriate for processing the
Element to be traversed, but procedures provided as actuals for Pre_Operation
and Post_Operation may cause additional tree swappings.

8.3 How to Avoid Unnecessary Tree Swapping
To speed up your application, try to avoid unnecessary tree swapping. The
following guidelines may help:
• Try to minimize the set of tree files processed by your application. In

particular, try to avoid having separate trees created for subunits.
Minimizing the set of tree files processed by the application also cuts down
the time needed for opening a Context. Try to use gnatmake to create a
suitable set of tree files covering an Ada program for processing by an ASIS
application.

• Choose the Context definition appropriate to your application. For ex-
ample, use “one tree” Context (‘-C1’) for applications that are limited to
processing single units (such as a pretty printer or gnatstub). By process-
ing the tree file created for this unit, ASIS can get all the syntactic and
semantic information about this unit. Using the “one tree” Context defini-
tion, an application has only one tree file to read when opening a Context,
and no other tree file will be read during the application run. An “N-trees”
Context is a natural extension of “one tree” Context for applications that
know in advance which units will be processed, but opening a Context
takes longer, and ASIS may switch among different tree files during an
application run. Use “all trees” Context only for applications which are
not targeted at processing a specific unit or a specific set of units, but are
supposed to process all the available units, or when an application has to
process a large system consisting of a many units. When using an appli-
cation based on an “all trees” Context, use the approach for creating tree
files described above to minimize a set of tree files to be processed.

• In your ASIS application, try to avoid switching between processing units
or sets of units with no dependencies among them; such a switching will
cause tree swapping.

• If you are going to analyze a library unit having both a spec and a body,
start by obtaining an Element from the body of this unit. This will set the
tree created for the body as the tree accessed by ASIS, and this tree will

44

Chapter 8: How to Build Efficient ASIS Applications

allow both the spec and the body of this unit to be processed without tree
swapping.

• To see a “tree swapping profile” of your application use the ‘-dt’ debug
flag when initializing ASIS (Asis.Implementation.Initialize ("-dt")).
The information returned may give you some hints on how to avoid tree
swapping.

8.4 Using gnatmake to Create Tree Files
To create a suitable set of tree files, you may use gnatmake. GNAT creates
an ‘ALI’ file for every successful compilation, whether or not code has been
generated. Therefore, it is possible to run gnatmake with the ‘-gnatct’ option;
this will create the set of tree files for all the compilation units needed in the
resulting program. Below we will use gnatmake to create a set of tree files
for a complete Ada program (partition). You may adapt this approach to an
incomplete program or to a partition without a main subprogram, applying
gnatmake to some of its components.

Using gnatmake for creating tree files has another advantage: it will keep
tree files consistent among themselves and with the sources.

There are two different ways to use gnatmake to create a set of tree files.
First, suppose you have object, ‘ALI’ and tree files for your program in the

same directory, and ‘main_subprogram.adb’ contains the body of the main sub-
program. If you run gnatmake as

$ gnatmake -f -c -gnatct ... main_subprogram.adb

this will create the trees representing the full program for which main_
subprogram is the main procedure. The trees will be created “from scratch”;
that is, if some tree files already exist, they will be recreated. This is because
gnatmake is being called with the ‘-f’ option (which means “force recompila-
tion”). Usng gnatmake without the ‘-f’ option for creating tree files is not
reliable if your tree files are in the same directory as the object files, because
object and tree files “share” the same set of ‘ALI’ files. If the object files exist and
are consistent with the ‘ALI’ and source files, the source will not be recompiled
for creating a tree file unless the ‘-f’ option is set.

A different approach is to combine the tree files and the associated ‘ALI’
files in a separate directory, and to use this directory only for keeping the tree
files and maintaining their consistency with source files. Thus, the object files
and their associated ‘ALI’ files should be in another directory. In this case, by
invoking gnatmake through:

$ gnatmake -c -gnatct ... main_subprogram.adb

(that is, without forcing recompilation) you will still obtain a full and consistent
set of tree files representing your program, but in this case the existing tree
files will be reused.

45

ASIS-for-GNAT User’s Guide

See the next chapter for specific details related to Ada compilation units
belonging to precompiled Ada libraries.

46

Chapter 9: Processing an Ada Library by an ASIS-Based Tool

9 Processing an Ada Library by an ASIS-
Based Tool

When an Ada unit to be processed by some ASIS-based tool makes use of an
Ada library, you need to be aware of the following features of using Ada libraries
with GNAT:
• An Ada library is a collection of precompiled Ada components. The sources

of the Ada components belonging to the library are present, but if your
program uses some components from a library, these components are not
recompiled by gnatmake (except in circumstances described below). For
example, Ada.Text_IO is not recompiled when you invoke gnatmake on a
unit that withs Ada.Text_IO.

• According to the GNAT source-based compilation model, the spec of a li-
brary component is processed when an application unit depending on such
a component is compiled, but the body of the library component is not pro-
cessed. As a result, if you invoke gnatmake to create a set of tree files
covering a given program, and if this program references an entity from an
Ada library, then the set of tree files created by such a call will contain only
specs, but not bodies for library components.

• Any GNAT installation contains the GNAT Run-Time Library (RTL) as a
precompiled Ada library. In some cases, a GNAT installation may contain
some other libraries (such as Win32Ada Binding on a Windows GNAT
platform).

• In ASIS-for-GNAT, there is no standard way to define whether a given
Compilation_Unit belongs to some precompiled Ada library other
than the GNAT Run-Time Library (some heuristics may be added
to Asis.Extensions). ASIS-for-GNAT classifies (by means of the
Asis.Compilation_Units.Unit_Origin query) a unit as A_Predefined_
Unit, if it is from the Run-Time Library and if it is mentioned in the Ada
Reference Manual, Annex A, Paragraph 2 as an Ada 95 predefined unit;
a unit is classified as An_Implementation_Unit if is belongs to Run-Time
Library but is not mentioned in the paragraph just cited. Components of
Ada libraries other than the Run-Time Library are always classified as
An_Application_Unit;

• It is possible to recompile the components of the Ada libraries used by a
given program. To do this, you have to invoke gnatmake for this program
with the ‘-a’ option. If you create a set of tree files for your program
by invoking gnatmake with the ‘-a’ option, the resulting set of tree files
will contain all the units needed by this program to make up a complete
partition.

47

ASIS-for-GNAT User’s Guide

Therefore, there are two possibilities for an ASIS-based tool if processing (or
avoiding processing) of Ada libraries is important for the functionality of the
tool:
• If the tool is not to process components of Ada libraries, then a set of tree

files for this tool may be created by invoking gnatmake without the ‘-a’
option (this is the usual way of using gnatmake). When the tool encoun-
ters a Compilation_Unit which represents a spec of some library unit,
and for which Asis.Compilation_Units.Is_Body_Required returns True,
but Asis.Compilation_Units.Corresponding_Body yields a result of A_
Nonexistent_Body kind, then the tool may conclude that this library unit
belongs to some precompiled Ada library.

• If a tool needs to process all the Ada compilation units making up a program,
then a set of tree files for this program should be created by invoking
gnatmake with the ‘-a’ option.

You can use Asis.Compilation_units.Unit_Origin to filter out Run-Time Li-
brary components.

48

Chapter 10: Compiling, Binding and Linking Applications with ASIS-for-GNAT

10 Compiling, Binding and Linking
Applications with ASIS-for-GNAT

The recommended way of building ASIS applications is to define for an applica-
tion a project file that depends on the main ASIS project file asis.gpr. All you
have to do is to add a with clause

with "asis";

to the application project file. After that you can build an executable for an
application in a usual way.

49

Chapter 11: ASIS-for-GNAT Warnings

11 ASIS-for-GNAT Warnings
The ASIS definition specifies the situations when certain ASIS-defined excep-
tions should be raised, and ASIS-for-GNAT conforms to these rules.

ASIS-for-GNAT also generates warnings if it considers some situation aris-
ing during the ASIS query processing to be potentially wrong, and if the ASIS
definition does not require raising an exception. Usually this occurs with ac-
tual or potential problems in an implementation-specific part of ASIS, such
as providing implementation-specific parameters to the queries Initialize,
Finalize and Associate or opening a Context.

There are three warning modes in ASIS-for-GNAT:

default Warning messages are output to Standard_Error.

suppress Warning messages are suppressed.

treat as error
A warning is treated as an error by ASIS-for-GNAT: instead of
sending a message to Standard_Error, ASIS-for-GNAT raises Asis_
Failed and converts the warning message into the ASIS Diagnosis
string. ASIS Error Status depends on the cause of the warning.

The ASIS-for-GNAT warning mode may be set when initializing the ASIS imple-
mentation. The ‘-ws’ parameter of Asis.Implementation.Initialize query
suppresses warnings, the ‘-we’ parameter of this query sets treating all the
warnings as errors. When set, the warning mode remains the same for all
Contexts processed until ASIS-for-GNAT has completed.

51

Chapter 12: Exception Handling and Reporting Internal Bugs

12 Exception Handling and Reporting
Internal Bugs

According to the ASIS Standard, only ASIS-defined exceptions can be prop-
agated from ASIS queries. The same holds for the ASIS Extensions queries
supported by ASIS-for-GNAT.

If a non-ASIS exception is raised during the processing of an ASIS or ASIS
extension query, this symptom reflects an internal implementation problem.
Under such a circumstance, by default the ASIS query will output some di-
agnostic information to Standard_Error and then exit to the OS; that is, the
execution of the ASIS application is aborted.

In order to allow the execution of an ASIS-based program to continue
even in case of such internal ASIS implementation errors, you can
change the default behavior by supplying appropriate parameters to
Asis.Implementation.Initialize. See ASIS-for-GNAT Reference Manual for
more details.

53

Chapter 13: File Naming Conventions and Application Name Space

13 File Naming Conventions and
Application Name Space

Any ASIS application depends on the ASIS interface components; an ASIS
application programmer thus needs to be alert to (and to avoid) clashes with
the names of these components.

ASIS-for-GNAT includes the full specification of the ASIS Standard, and also
adds the following children and grandchildren of the root Asis package:
• Asis.Extensions hierarchy (the source file names start with

‘asis-extensions’) defines some useful ASIS extensions, see ASIS
Reference Manual for more details.

• Asis.Set_Get (the source files ‘asis-set_get.ad(b|s)’ respectively) con-
tains the access and update subprograms for the implementation of the
main ASIS abstractions defined in Asis.

• Asis.Text.Set_Get (the source files ‘asis-text-set_get.ad(b|s)’ respec-
tively) contains the access and update subprograms for the implementation
of the ASIS abstractions defined in Asis.Text;

All other ASIS-for-GNAT Ada implementation components belong to the hier-
archy rooted at the package A4G (which comes from “ASIS-for-GNAT”).

ASIS-for-GNAT also incorporates the following GNAT components as a part
of the ASIS implementation:

Alloc

Atree

Casing

Csets

Debug

Einfo

Elists

Fname

Gnatvsn

Hostparm

Krunch

Lib

Lib.List

Lib.Sort

Namet

Nlists

Opt

Output

Repinfo

Scans

Sinfo

Sinput

Snames

55

ASIS-for-GNAT User’s Guide

Stand

Stringt

Table

Tree_In

Tree_Io

Types

Uintp

Uname

Urealp

Widechar

Therefore, in your ASIS application you should not add children at any level of
the Asis or A4G hierarchies, and you should avoid using any name from the list
of the GNAT component names above.

All Ada source files making up the ASIS implementation for GNAT (including
the GNAT components being a part of ASIS-for-GNAT) follow the GNAT file
name conventions without any name “krunch”ing.

56

Appendix A: GNU Free Documentation License

Appendix A GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related

57

ASIS-for-GNAT User’s Guide

matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading

58

Appendix A: GNU Free Documentation License

or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified

59

ASIS-for-GNAT User’s Guide

Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of

the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

60

Appendix A: GNU Free Documentation License

M. Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in
the various original documents, forming one section entitled “History”; likewise

61

ASIS-for-GNAT User’s Guide

combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their be-
ing thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one quarter of the entire
aggregate, the Document’s Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,

62

Appendix A: GNU Free Documentation License

sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with
the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead
of saying which ones are invariant. If you have no Front-Cover Texts, write
“no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

63

Index

Index

-
‘-GCC’ option . 30
‘-gnatc’ option . 24
‘-gnatct’ option 12, 23, 45
‘-gnatt’ option . 23, 24

A
A4G package . 55
Ada predefined library (processing by an ASIS

tool) . 47
Ada_Environments.Close procedure 10
‘adt’ extension for tree files 23
All trees Context . 27
ASIS application templates 39
ASIS Example . 7, 37
ASIS Iterator . 19
ASIS overview . 15
Asis package . 5, 16, 55
ASIS package hierarchy . 16
ASIS Performance . 43
ASIS queries 5, 15, 16, 17, 23, 33
ASIS queries (dynamic typing) 18
ASIS Tutorials . 41
ASIS-for-GNAT 11, 23, 24, 26, 28, 33, 49
Asis.Ada_Environments package 16
Asis.Ada_Environments.Associate query

. 26
Asis.Ada_Environments.Associate query

(example) . 8
Asis.Ada_Environments.Close procedure

(example) . 9
Asis.Ada_Environments.Containers package

. 15
Asis.Ada_Environments.Dissociate

procedure . 11
Asis.Ada_Environments.Dissociate

procedure (example) 9
Asis.Ada_Environments.Open procedure . . . 10
Asis.Ada_Environments.Open procedure

(example) . 8
Asis.Ada_Environments.Open query 30
ASIS.Clauses package . 17
Asis.Compilation_Units package 16, 19

Asis.Compilation_Units.Corresponding_

Body function . 48
Asis.Compilation_Units.Is_Body_Required

function . 48
Asis.Compilation_Units.Relations package

. 16
Asis.Compilation_Units.Unit_Full_Name

query (example) . 8
Asis.Compilation_Units.Unit_Kind query

(example) . 9
Asis.Compilation_units.Unit_Origin 48
Asis.Compilation_Units.Unit_Origin query

. 47
Asis.Compilation_Units.Unit_Origin query

(example) . 9
Asis.Declarations package 17
Asis.Definitions package 17
Asis.Elements package 16, 19
Asis.Elements.Enclosing_Element query

. 17
Asis.Elements.Statement_Kind query 19
Asis.Errors package . 17
Asis.Errors.Error_Kinds type 18
Asis.Errors.Value_Error error status 19
Asis.Exceptions package 17, 18
Asis.Exceptions.ASIS_Failed exception

(example) . 9
Asis.Exceptions.ASIS_Inappropriate_

Compilation_Unit exception 19
Asis.Exceptions.ASIS_Inappropriate_

Compilation_Unit exception (example)
. 9

Asis.Exceptions.ASIS_Inappropriate_

Context exception (example) 9
Asis.Exceptions.ASIS_Inappropriate_

Element exception . 19
Asis.Expressions package 17
Asis.Extensions package 47, 55
Asis.Ids package . 16
Asis.Implementation package 16
Asis.Implementation.Associate procedure

. 10
Asis.Implementation.Diagnosis query . . . 18
Asis.Implementation.Finalize procedure

. 11

65

ASIS-for-GNAT User’s Guide

Asis.Implementation.Finalize procedure
(example) . 9

Asis.Implementation.Initialize procedure
. 10, 45, 51

Asis.Implementation.Initialize procedure
(example) . 8

Asis.Implementation.Permissions package
. 16

Asis.Implementation.Set_Status procedure
. 18

Asis.Implementation.Status function
(example) . 10

Asis.Implementation.Status query 18
Asis.Iterator.Traverse_Element generic

procedure . 19, 44
Asis.Set_Get package . 55
Asis.Statements package 17
Asis.Text package 15, 16, 17
Asis.Text.Set_Get package 55
Asis_Failed exception 27, 30, 51
asistant . 33
asistant commands . 35
asistant variables . 35
AST (Abstract Syntax Tree) 23, 24

B
Browse (asistant command) 35
Browser (asistant utility) 36

C
Compilation_Unit type 10, 15, 16, 18
Compilation_Unit type (example 8
Consistency problems . 28
Container type . 15
Context type 10, 11, 12, 15, 16, 23, 26
Context type (example) . 7

D
Data Decomposition Annex (DDA) 25
Diagnosis string . 18, 51

E
Element type 10, 15, 16, 18
Enclosing_Element query 17, 36

Erroneous execution 10, 25
Error Handling . 18

F
Free Documentation License, GNU 57

G
gnatmake (for creating tree files) 45
GNU Free Documentation License 57

H
Help (asistant command) 35

I
Id type . 16

L
License, GNU Free Documentation 57
Line type . 10, 15
Log (asistant command) 35

N
N-trees Context . 27

O
One-tree Context . 27

P
Pause (asistant command) 35
Print (asistant command) 35
PrintDetail (asistant command) 35
Program_Error exception 29

Q
Quit (asistant command) 35

66

Index

R
Run (asistant command) 35

S
Script file (for asistant) 33, 35

Semantic ASIS queries . 17

Set (asistant command) 35

Span type . 16

Spec (definition of term) . 7

Storage_Error (propagated from ASIS
queries) . 18

Structural ASIS queries 17

Subunits and the Data Decomposition Annex
. 26

T
Tasking and error information 18
Templates (for ASIS applications) 39
Tools (that can use ASIS) 5
Tree file 12, 13, 23, 24, 25, 28, 29
Tree swapping (ASIS performance issue) . . 25,

43, 44

W
Warnings (from ASIS-for-GNAT) 51

67

Table of Contents

About This Guide . 1
What This Guide Contains . 1
What You Should Know Before Reading This Guide . 2
Related Information . 2
Conventions . 2

1 Introduction . 5
1.1 What Is ASIS? . 5
1.2 ASIS Scope \minus Which Kinds of Tools Can Be Built with ASIS? . . 5

2 Getting Started . 7
2.1 The Problem . 7
2.2 An ASIS Application that Solves the Problem . 7
2.3 Required Sequence of Calls . 10
2.4 Building the Executable for an ASIS application 11
2.5 Preparing Data for an ASIS Application \minus Generating Tree

Files . 12
2.6 Running an ASIS Application . 12

3 ASIS Overview . 15
3.1 Main ASIS Abstractions . 15
3.2 ASIS Package Hierarchy . 16
3.3 Structural and Semantic Queries . 17
3.4 ASIS Error Handling Policy . 18
3.5 Dynamic Typing of ASIS Queries . 18
3.6 ASIS Iterator . 19
3.7 How to Navigate through the \code Asis Package Hierarchy 20

4 ASIS \code Context . 23
4.1 ASIS \code Context and Tree Files . 23
4.2 Creating Tree Files for Use by ASIS . 23

4.2.1 Creating Trees for Data Decomposition Annex 25
4.3 Different Ways to Define an ASIS \code Context in ASIS-for-GNAT

. 26
4.3.1 Defining a set of tree files making up a \code Context 27
4.3.2 Dealing with tree files when opening a \code Context and

processing ASIS queries . 27

i

ASIS-for-GNAT User’s Guide

4.3.3 Processing source files during the consistency check 28
4.3.4 Setting search paths . 28

4.4 Consistency Problems . 28
4.4.1 Inconsistent versions of ASIS and GNAT . 29
4.4.2 Consistency of a set of tree and source files . 29

4.5 Processing Several \code Contexts at a Time . 30
4.6 Using ASIS with a cross-compiler . 30

5 ASIS Interpreter \code asistant 33
5.1 \code asistant Introduction . 33
5.2 \code asistant commands . 35
5.3 \code asistant variables . 35
5.4 Browsing an ASIS tree . 36
5.5 Example . 37

6 ASIS Application Templates . 39

7 ASIS Tutorials . 41

8 How to Build Efficient ASIS Applications 43
8.1 Tree Swapping as a Performance Issue . 43
8.2 Queries That Can Cause Tree Swapping . 43
8.3 How to Avoid Unnecessary Tree Swapping . 44
8.4 Using \code gnatmake to Create Tree Files . 45

9 Processing an Ada Library by an ASIS-Based Tool
. 47

10 Compiling, Binding and Linking Applications with
ASIS-for-GNAT . 49

11 ASIS-for-GNAT Warnings . 51

12 Exception Handling and Reporting Internal Bugs
. 53

ii

13 File Naming Conventions and Application Name
Space . 55

Appendix A GNU Free Documentation License 57

Index . 65

iii

	About This Guide
	What This Guide Contains
	What You Should Know Before Reading This Guide
	Related Information
	Conventions

	Introduction
	What Is ASIS?
	ASIS Scope \minus {} Which Kinds of Tools Can Be Built with ASIS?

	Getting Started
	The Problem
	An ASIS Application that Solves the Problem
	Required Sequence of Calls
	Building the Executable for an ASIS application
	Preparing Data for an ASIS Application \minus {} Generating Tree Files
	Running an ASIS Application

	ASIS Overview
	Main ASIS Abstractions
	ASIS Package Hierarchy
	Structural and Semantic Queries
	ASIS Error Handling Policy
	Dynamic Typing of ASIS Queries
	ASIS Iterator
	How to Navigate through the \code {Asis} Package Hierarchy

	ASIS \code {Context}
	ASIS \code {Context} and Tree Files
	Creating Tree Files for Use by ASIS
	Creating Trees for Data Decomposition Annex

	Different Ways to Define an ASIS \code {Context} in ASIS-for-GNAT
	Defining a set of tree files making up a \code {Context}
	Dealing with tree files when opening a \code {Context} and processing ASIS queries
	Processing source files during the consistency check
	Setting search paths

	Consistency Problems
	Inconsistent versions of ASIS and GNAT
	Consistency of a set of tree and source files

	Processing Several \code {Context}s at a Time
	Using ASIS with a cross-compiler

	ASIS Interpreter \code {asistant}
	\code {asistant} Introduction
	\code {asistant} commands
	\code {asistant} variables
	Browsing an ASIS tree
	Example

	ASIS Application Templates
	ASIS Tutorials
	How to Build Efficient ASIS Applications
	Tree Swapping as a Performance Issue
	Queries That Can Cause Tree Swapping
	How to Avoid Unnecessary Tree Swapping
	Using \code {gnatmake} to Create Tree Files

	Processing an Ada Library by an ASIS-Based Tool
	Compiling, Binding and Linking Applications with ASIS-for-GNAT
	ASIS-for-GNAT Warnings
	Exception Handling and Reporting Internal Bugs
	File Naming Conventions and Application Name Space
	GNU Free Documentation License
	Index

