
Templates Parser Documentation
Release 20.0

Pascal Obry

Apr 30, 2020

CONTENTS

1 Introduction 1

2 Tags 3
2.1 Tags in template files . 3
2.2 Translations . 4
2.3 Discrete, Boolean and Composite values . 4
2.4 Filters . 5

2.4.1 Predefined filters . 6
2.4.2 User defined filters . 9

2.5 Attributes . 11
2.6 Predefined tags . 11
2.7 Dynamic tags . 12

2.7.1 Lazy_Tag . 12
2.7.2 Cursor_Tag . 12

3 Template statements 15
3.1 Comments . 15
3.2 INCLUDE statement . 15
3.3 IF statement . 16
3.4 TABLE statement . 18
3.5 SET statement . 27
3.6 INLINE statement . 27
3.7 MACRO statement . 29
3.8 EXTENDS and BLOCK statements . 29

4 Macros 31

5 Other Services 33
5.1 Tag utils . 33
5.2 XML representation . 33
5.3 Templates2Ada . 33

5.3.1 Running templates2ada . 34
5.3.2 Customizing templates2ada . 36

5.4 Templatespp . 36
5.5 Debug . 36

6 Templates Parser API Reference 37
6.1 Templates_Parser . 37
6.2 Templates_Parser.Debug . 47
6.3 Templates_Parser.Utils . 48
6.4 Templates_Parser.XML . 50

i

ii

CHAPTER

ONE

INTRODUCTION

The templates parser package has been designed to parse files and to replace some specific tags into these files by
some specified values.

The main goal was to ease the development of Web servers. In CGI (Common Gateway Interface) mode you have
to write the HTML page in the program (in Ada or whatever other languages) by using some specific libraries or by
using only basic output functions like Ada Put_Line for example. This is of course not mandatory but by lack of a
good library every Web development end up doing just that.

The main problems with this approach are:

• It is painful to have to recompile the program each time you have a slight change to do in the design (center an
image, change the border width of a table...)

• You have the design and the program merged together. It means that to change the design you must know the
Ada language. And to change the Ada program you need to understand what is going on with all these inline
HTML command.

• You can’t use the nice tools to generate your HTML.

With the templates parser package these problems are gone. The code and the design is completely separated. This
is a very important point. PHP or JSP have tried this but most of the time you have the script embedded into the Web
template. And worst you need to use another language just for your Web development.

• The HTML page is separated from the program code. Then you can change the design without changing the
code. Moreover when you fix the code you don’t have to handle all the specific HTML output. And you do not
risk to break the design.

• It is easier to work on the design and the program at the same time using the right people for the job.

• It reduces the number of edit/build/test cycles. Writing HTML code from a program is error prone.

• It is possible to use standard tools to produce the HTML.

• You don’t have to learn a new language.

• The script is Ada, so here you have the benefit of all the Ada power.

In fact, the Ada program now simply computes some values, gets some data from a database or whatever and then
calls the templates parser to output a page with the data displayed. To the templates parser you just pass the template
file name and an associative table.

It is even more convenient to have different displays with the same set of data. You just have to provide as many
templates as you like.

1

Templates Parser Documentation, Release 20.0

2 Chapter 1. Introduction

CHAPTER

TWO

TAGS

2.1 Tags in template files

A tag is a string found in the template page and surrounded by a specific set of characters. The default is @_ at the start
and _@ at the end of the tag. This default can be changed using Set_Tag_Separators routine, see Templates Parser
API Reference. Note that it must be changed as the first API call and should not be changed after that.

The tag will be replaced by a value specified in the Ada code. In this context, the role of the Ada code is therefore to
prepare what is known as a translation, and then pass it to the templates parser, along with the name of the template
file to parse. This results in an expanded version of the templates file, where all tags have been replaced by the value
given in the Ada code.

Let’s start with a simple example. Here is the contents of the file demo.tmplt, which is a very basic template file:

<p>Hello @_NAME_@

On its own, this template has little interest. However, it is used from some Ada code similar to the following demo.
adb file:

with Ada.Text_IO;
with Templates_Parser;

procedure Demo is
Translations : constant Templates_Parser.Translate_Table :=
(1 => Templates_Parser.Assoc ("NAME", "Ada"));

begin
Ada.Text_IO.Put_Line

(Templates_Parser.Parse ("demo.tmplt", Translations));
end Demo;

Compile this program, link with the templates parser, and when you run it, the output will be:

<p>Hello Ada

As you can imagine, this is a bare bone example. More complex structures are of course possible. One thing to note,
though, is that the template file requires no Ada knowledge for editing, and is strongly related to your application
domain. One of the main usage for such templates is to generate web pages. This can be done by a designer that
knows nothing of how your Ada code works. But you can use templates in other domains, including to generate Ada
code.

3

Templates Parser Documentation, Release 20.0

2.2 Translations

In your Ada code, you can associate one or more values with a name, and then reference that name in the template file
as we just saw above.

Associating the value(s) with the name is done through one of the Assoc constructors, see Templates Parser API
Reference. Ada’s overloading resolution mechanism will take care of calling the appropriate constructor automatically.

These associations are then grouped into a dictionary. This dictionary is passed along with the name of the template
file to the Parse routine itself, which generates the final expanded representation of the template. In fact, you will
almost never have to manipulate an association directly, since as soon as it is created you store it in the dictionary.

There are two types of dictionaries in the templates parser:

Translate_Table This is an array of associations. If you know the exact number of associations when you write your
code, this will generally provide a very readable code. The array can be initialized as soon as it is declared:

declare
T : constant Translate_Table :=

(1 => Assoc ("NAME1", Value1),
2 => Assoc ("NAME2", Value2));

begin
Put_Line (Parse ("demo.tmplt", T));

end;

Translate_Set If, on the other hand, you do not know statically the number of associations, it is generally a lot more
flexible to use another type of dictionary, which isn’t limited in size. It is also better to use this type of dictionary
if you need extra code to compute the values:

declare
T : Translate_Set

begin
Insert (T, Assoc ("NAME1", Value1));
Insert (T, Assoc ("NAME2", Value2));

end;

Internally, the templates parser will always convert all dictionaries to a Translate_Set, which is much more efficient
when we need to look values up.

2.3 Discrete, Boolean and Composite values

As we just saw, the values by which a tag is replaced must be provided by the Ada code. Such values can be provided
in different formats, depending on the intended use.

The three kinds of tags are discrete, Boolean and composite tags. These are all ways to associate one or more value
to a name, which is the name used in the template file.

discrete values This represents a single value associated with a name. The types of value currently supported are
String, Unbounded_String and Integer:

Insert (T, Assoc ("NAME", 2));
Insert (T, Assoc ("NAME", "VALUE"));

Boolean values These are similar to discrete values. However, they are more convenient to manipulate within
@@IF@@ statements in the template. When outside an IF statement, such values are represented as TRUE or
FALSE:

4 Chapter 2. Tags

Templates Parser Documentation, Release 20.0

Insert (T, Assoc ("NAME", True));

composite values A composite tag is a variable which contains a set of values. In terms of programming languages,
these would generally be called vectors. Since each value within that can itself be a composite tag, you can
therefore build multi-dimensional arrays.

These kind of variables will be used with the TABLE tag statement see TABLE statement. Outside a table
statement, the tag is replaced by all values concatenated with a specified separator. See Set_Separator routine.
Such tag are variables declared in the Ada program a Templates_Parser.Tag type.

There are many overloaded constructors to build a composite tags (see “+” operators). The “+” operators are
used to build a Tag item from standard types like String, Unbounded_String, Character, Integer and Boolean.

To add items to a Tag many overloaded operators are provided (see “&” operators). The “&” operators add one
item at the start or the end of the tag. It is possible to directly add String, Unbounded_String, Character, Integer
and Boolean items using one of the overloaded operator.

A tag composed of only Boolean values TRUE or FALSE is called a Boolean composite tag. This tag is to be
used with a IF tag statement inside a TABLE tag statement.

It is possible to build a composite tag having any number of nested level. A vector is a composite tag with only
one level, a matrix is a composite tag with two level (a Tag with a set of vector tag).

Two aliases exists for composite tags with one or two nested level, they are named Vector_Tag and Matrix_Tag.
In the suite of the document, we call vector tag a tag with a single nested level and matrix tag a tag with two
nested level:

-- Building a composite tag
-- Then add it into a translate set

declare
V : Tag;
T : Translate_Set;

begin
for Index in 1 .. 10 loop

V := V & I;
end loop;
Insert (T, Assoc ("VECTOR", V));

end;

2.4 Filters

Within the template file, functions can be applied to tags. Such functions are called filters. These filters might require
one or more parameters, see the documentation for each filter.

The syntax is:

@_[[FILTER1_NAME[(parameter)]:]FILTER2_NAME[(parameter)]:]SOME_VAR_@

When multiple filters are associated to a tag, they are evaluated from right to left. In the example above, FIL-
TER1_NAME is applied to the result of applying FILTER2_NAME to SOME_VAR.

Remember that one of the goals in using templates is to remove as much hard-coded information from the actual Ada
source, and move it into easily editable external files. Using filters is a convenient way to give the template designer
the power to specify the exact output he wants, even without changing the Ada code. For instance, imagine that one
suddenly decides that some names should be capitalized in a template. There are two solutions to such a change in
design:

2.4. Filters 5

Templates Parser Documentation, Release 20.0

• Modify the Ada code to capitalize strings before storing them in a tag variable. What if, in the template, we
need the name once capitalized, and once with its original casing ? This means the Ada code would have to
create two tags.

• Modify the template itself, and use a filter. A single tag is required on the Ada side, which doesn’t even have to
be changed in fact. The template would for instance become:

@_CAPITALIZE:VAR_@ : constant String := "@_VAR_@";

The templates parser comes with a number of predefined filters, that can be used in various situations. Some of these
are highly specialized, but most of them are fairly general. You can also define your own filters, adapted to specific
needs you might have.

Here are some more examples using the predefined filters, If VAR is set to “vector_tag”, ONE to “1” and TWO to “2”
then:

@_VAR_@ -> vector_tag
@_UPPER:VAR_@ -> VECTOR_TAG
@_CAPITALIZE:VAR_@ -> Vector_Tag
@_EXIST:VAR_@ -> TRUE
@_UPPER:REVERSE:VAR_@ -> GAT_ROTCEV
@_MATCH(VEC.*):UPPER:VAR_@ -> TRUE
@_SLICE(1..6):VAR_@ -> vector
@_REPLACE(([^_]+)):VAR_@ -> vector
@_REPLACE(([a-z]+)_([a-z]+)/\\\\2_\\\\1):VAR_@ -> tag_vector
@_"+"(TWO):ONE_@ -> 3
@_"-"(TWO):ONE_@ -> -1

2.4.1 Predefined filters

Here is the complete list of predefined filters that come with the templates parser.

“+”(N) or ADD(N) Add N to variable and return the result. If the current variable value is not a number it returns
the empty string. N must be a number or a discrete tag variable whose value is a number.

“-“(N) or SUB(N) Subtract N to variable and return the result. If the current variable value is not a number it returns
the empty string. N must be a number or a discrete tag variable whose value is a number.

“*”(N) or MULT(N) Multiply N with variable and return the result. If the current variable value is not a number it
returns the empty string. N must be a number or a discrete tag variable whose value is a number.

“/”(N) or DIV(N) Divide variable by N and return the result. If the current variable value is not a number it returns
the empty string. N must be a number or a discrete tag variable whose value is a number.

ABS Returns the absolute value.

ADD_PARAM(NAME[=VALUE]) Add a parameter into an URL. This routine adds the ‘?’ and ‘&’ character if
needed. VALUE can be a tag variable name.

BR_2_EOL(EOL) Replaces all occurrences of the
 HTML tag by a line terminator determined by EOL. EOL
must be either CR (Carriage-Return), LF (Line-Feed), LFCR (Line-Feed followed by Carriage-Return) or CRLF
(Carriage-Return followed by Line-Feed).

BR_2_LF Shortcut for BR_2_EOL(LF).

CAPITALIZE Put all characters in the variable in lower case except characters after a space or an underscore which
are set in upper-case.

CLEAN_TEXT Keep only letters and digits all others characters are changed to spaces.

6 Chapter 2. Tags

Templates Parser Documentation, Release 20.0

COMA_2_POINT Replaces all comas by points.

CONTRACT Converts any suite of spaces by a single space character.

DEL_PARAM(NAME) Delete parameter NAME from the URL. This routine removes the ‘?’ and ‘&’ character if
needed. Returns the input string as-is if the parameter is not found.

EXIST Returns True if variable is set and has a value different that the null string and False otherwise.

FILE_EXISTS Returns True if variable is set and has a value that corresponds to a file name present on the file
system and False otherwise.

FORMAT_DATE(FORMAT) Returns the date with the given format. The date must be in the ISO format (YYYY-
MM-DD) eventually followed by a space and the time with the format HH:MM:SS. If the date is not given in the
right format it returns the date as-is. The format is using the GNU/date description patterns as also implemented
in GNAT.Calendar.Time_IO.

Characters:

%: a literal %

n: a newline

t: a horizontal tab

Time fields:

%H: hour (00..23)

%I: hour (01..12)

%k: hour (0..23)

%l: hour (1..12)

%M: minute (00..59)

%p: locale’s AM or PM

%r: time, 12-hour (hh:mm:ss [AP]M)

%s: seconds since 1970-01-01 00:00:00 UTC (a nonstandard extension)

%S: second (00..59)

%T: time, 24-hour (hh:mm:ss)

Date fields:

%a: locale’s abbreviated weekday name (Sun..Sat)

%A: locale’s full weekday name, variable length (Sunday..Saturday)

%b: locale’s abbreviated month name (Jan..Dec)

%B: locale’s full month name, variable length (January..December)

%c: locale’s date and time (Sat Nov 04 12:02:33 EST 1989)

%d: day of month (01..31)

%D: date (mm/dd/yy)

%h: same as %b

%j: day of year (001..366)

%m: month (01..12)

%U: week number of year with Sunday as first day of week (00..53)

2.4. Filters 7

Templates Parser Documentation, Release 20.0

%w: day of week (0..6) with 0 corresponding to Sunday

%W: week number of year with Monday as first day of week (00..53)

%x: locale’s date representation (mm/dd/yy)

%y: last two digits of year (00..99)

%Y: year with four digits (1970...)

Padding: By default, date pads numeric fields with zeroes. GNU date recognizes the following nonstandard
numeric modifiers:

- (hyphen): do not pad the field

_ (underscore): pad the field with spaces

FORMAT_NUMBER([DIGITSEP]) Returns the number with a separator added between each 3 digits blocks. The
decimal part is not transformed. If the data is not a number nothing is done. The default separator is a space,
although you can specify any separator (a single character) you wish. DIGITSEP can also be the name of another
tag, whose value (or the first character of it) will be used as a separator.

IS_EMPTY Returns True if variable is the empty string and False otherwise.

LF_2_BR Replaces all occurrences of the character LF (Line-Feed) by a
 HTML tag.

LOWER Put all characters in the variable in lower-case.

MATCH(REGEXP) Returns True if variable match the regular expression passed as filter’s parameter. The regular
expression is using a format as found in gawk, sed or grep tools.

MAX(N) Returns the maximum value between the variable and the parameter.

MIN(N) Returns the minimum value between the variable and the parameter.

MOD(N) Returns variable modulo N. If the current variable value is not a number it returns the empty string. N must
be a number or a discrete tag variable whose value is a number.

NEG Change the sign of the value.

NO_DYNAMIC This is a special command filter which indicates that the tag must not be searched in the dynamic
tags. See Lazy_Tag. NO_DYNAMIC must be the first filter. This filter returns the value as-is.

NO_DIGIT Replaces all digits by spaces.

NO_LETTER Replaces all letters by spaces.

NO_SPACE Removes all spaces in the variable.

OUI_NON If variable value is True it returns Oui, if False it returns Non, otherwise does nothing. It keeps the way
True/False is capitalized (all upper, all lower or first letter capital).

POINT_2_COMA Replaces all comas by points.

REPEAT(N) Returns N times the variable, N being passed as filter’s parameter. N must be a number or a discrete
tag variable whose value is a number.

REPEAT(STR) This is the second REPEAT form. In this case STR is repeated a number of time corresponding to
the variable value which must be a number.

REPLACE(REGEXP[/STR]) This filter replaces \n (where n is a number) STR‘s occurrences by the corresponding
match from REGEXP. The first match in REGEXP will replace \1, the second match \2 and so on. Each match
in REGEXP must be parenthesized. It replaces only the first match. STR is an optional parameter, its default
value is \1. It is possible to escape characters in STR to avoid parsing confusions. This is required if you need
to have @_ or _@ or a parenthesis in STR for example. STR can be a tag variable name. STR can contain the
following escaped characters : \n Carriage Return, \r Line Feed and \t for Horizontal Tabulation.

8 Chapter 2. Tags

Templates Parser Documentation, Release 20.0

REPLACE_ALL(REGEXP[/STR]) Idem as above but replaces all occurrences.

REPLACE_PARAM(NAME[=VALUE]) This is filter is equivalent to ADD_PARAM(NAME[=VALUE]):DEL_PARAM(NAME).
VALUE can be a tag variable name.

REVERSE Reverse the string.

SIZE Returns the size (number of characters) of the string value.

SLICE(x .. y) Returns the sub-string starting from position x and ending to position y. Note that the string to slice
always start from position 1. If x or y are negative, they are counted from the end of the string, so that 0 matches
the last character of the string, -1 matches the character just before,...

STRIP Removes leading and trailing spaces and special characters HT, VT, CR, LF, NUL, EOT, BS, FF.

TRIM Removes leading and trailing spaces.

UPPER Put all characters in the variable in upper-case.

WEB_ENCODE As WEB_ESCAPE and also encodes all non 7-bit characters and non printable characters using
&#xxx; HTML encoding.

WEB_ESCAPE Replaces characters ‘<’, ‘>’, ‘”’ and ‘&’ by corresponding HTML sequences: < > " and
&

WEB_NBSP Replaces all spaces by an HTML non breaking space.

WRAP(N) Wraps lines having more N characters.

YES_NO If variable value is True it returns Yes, if False it returns No, otherwise does nothing. It keeps the way
True/False is capitalized (all upper, all lower or first letter capital).

2.4.2 User defined filters

It is also possible to define a new filter by registering a callback routine associated with the filter name.

You can define three kinds of filters: filters that take no argument, and are therefore simply used as in @_FIL-
TER:TAG_@, filters that take one or more arguments, used as in @_FILTER(param1,param2):TAG_@, and filters
that are implemented as tagged objects, and take the same form as the filters with arguments described above.

The latter form of filters (using tagged types) provides slightly more flexibility, as you can store your own user data in
the filter when it is registered. Among other things, this makes it possible to share filters between various applications,
when the filter needs to access some application-specific variable as well.

The templates parser will not try to interpret the parameters for you, and will simply return the string representation
of the list of parameters, for instance “param1,param2” in the example above. This provides enhanced flexibility,
since you are free to use any parameter-separator you want, and to interpret parameters as integer, strings, references
to other tags,...

The templates parser doesn’t support tag substitution within the parameter list, but this is trivial to implement in your
own code. For instance, if the user has used @_FILTER(REFTAG):TAG_@, you are free to either take REFTAG as a
constant string, or as a reference to another tag, to be looked up in a translation table. You should of course properly
document the behavior of your filter.

Here is the templates parser API for defining your own custom filters:

type Filter_Context is record
Translations : Translate_Set;
Lazy_Tag : Dynamic.Lazy_Tag_Access;

end record;

type Callback is access function

2.4. Filters 9

Templates Parser Documentation, Release 20.0

(Value : in String;
Parameters : in String;
Context : in Filter_Context) return String;

-- User's filter callback

type Callback_No_Param is access function
(Value : in String;
Context : in Filter_Context) return String;

-- User's filter callback

procedure Register_Filter
(Name : in String;
Handler : in Callback);

-- Register user's filter Name using the specified Handler

procedure Register_Filter
(Name : in String;
Handler : in Callback_No_Param);

-- Register user's filter Name using the specified Handler

In the above calls, Value is the value of the tag on which the filter applies. In the examples above, that would be the
value of TAG as looked up in the translation table. Context contains the the translation table and the current lazy tag
object you can use if you need to look up other tags.

Here is a simple example of a custom filter, which can be used to generate HTML forms. In such a form, it is common
to have some <input> tags that need a selected=’selected’ attribute if the toggle button should be selected. This can
be done without the use of a filter, of course, using a simple @@IF@@ statement, but that makes the template less
readable. The custom filter below behaves as such: it takes one argument, and compares the value of the tag on which
the filter is applied to that argument. If they are equal, the string selected=’selected’ will be substituted. As a special
case, if the argument to the filter starts with a ‘@’ character, the argument is interpreted as the name of a tag to look
up first:

function Custom_Select_Filter
(Value : in String;
Parameters : in String;
Context : in Filter_Context) return String is

begin
if Parameters /= "" and then Parameters (Parameters'First) = '@' then

if Get (Get (Context.Translations,
Parameters (Parameters'First + 1 .. Parameters'Last)))

= Value
then

return "selected='selected'";
end if;

elsif Value = Parameters then
return "selected='selected'";

end if;

return "";
end Custom_Select_Filter;

Register_Filter ("SELECTED", Custom_Select_Filter'Access);

and a template would look like:

10 Chapter 2. Tags

Templates Parser Documentation, Release 20.0

<option value="foo" @_SELECTED(@SELECTED_STATUS):STATUS_@ />

2.5 Attributes

In addition to filters, you can also apply attributes to tags. Attributes are placed after the tag name and preceded with
a simple quote. @_SOME_VAR[’ATTRIBUTE_NAME]_@. It is possible to use filters and attributes together. In that
case the attribute is first evaluated and the result is passed-through the filters.

You cannot define your own attributes.

Current supported attributes are:

V’length Returns the number of item in the composite tag (can be applied only to a composite tag having a single
nested level - a vector).

V’Up_Level(n) Use index from the table command n level(s) upper so this attribute must be used in a nested table
command tag. ‘Up_Level is equivalent to ‘Up_Level(1) (can be applied only to a composite tag having a single
nested level - a vector).

M’Line Returns the number of line in the composite tag. This is identical to ‘Length but can be applied only to a
composite tag having two nested level - a matrix).

M’Min_Column Returns the size of smallest composite tag in M composite tag. This attribute can be applied only
to a composite tag having two nested level - a matrix.

M’Max_Column Returns the size of largest composite tag in M composite tag. This attribute can be applied only to
a composite tag having two nested level - a matrix.

M’Indent This attribute will indent (on the starting tag column) the tag value on new-line.

For example:

If VEC is set to “<1 , 2>” and MAT to “<a, b, c> ; <2, 3, 5, 7>” then:

@_VEC'Length_@ -> 2
@_ADD(3):VEC'Length_@ -> 5
@_MAT'Line_@ -> 2
@_MAT'Min_Column_@ -> 3
@_MAT'Max_Column_@ -> 4

2.6 Predefined tags

There are some specific tags that can be used in any templates. Here is an exhaustive list:

NOW Current date and time with format “YYYY-MM-DD HH:MM:SS”.

YEAR Current year number using 4 digits.

MONTH Current month number using 2 digits.

DAY Current day number using 2 digits.

HOUR Current hour using range 0 to 23 using 2 digits.

MINUTE Current minute using 2 digits.

SECOND Current seconds using 2 digits.

MONTH_NAME Current full month name (January .. December).

2.5. Attributes 11

Templates Parser Documentation, Release 20.0

DAY_NAME Current full day name (Monday .. Sunday).

2.7 Dynamic tags

Dynamic tags are associations that are not created when Parse is called, but only later on when they are actually
needed.

Dynamic tags are handled through abstract interfaces and give the opportunity to create tags dynamically while the
template is being parsed.

2.7.1 Lazy_Tag

The Lazy_Tag object can be used to dynamically handle tags. Such object can be passed to the Parse routines. If a
template’s tag is not found in the translation dictionary, the Lazy_Tag‘s Value callback method is called by the parser.
The default callback method does nothing, it is up to the user to define it. The callback procedure is defined as follow:

procedure Value
(Lazy_Tag : access Dynamic.Lazy_Tag;
Var_Name : in String;
Translations : in out Translate_Set) is abstract;

-- Value is called by the Parse routines below if a tag variable was not
-- found in the set of translations. This routine must then add the
-- association for variable Name. It is possible to add other
-- associations in the translation table but a check is done to see if
-- the variable Name as been set or not. The default implementation does
-- nothing.

One common usage is to handle tag variables that can be shared by many templates and are not always used (because
a conditional is False for example). If computing the corresponding value (or values for a ...) is somewhat expensive
it is better to delay building such tag at the point it is needed. Using a Lazy_Tag object, it is possible to do so. The
Value procedure will be called if the tag value is needed. At this point, one can just add the corresponding association
into the Translate_Set. Note that it is possible to add more than one association. If the association for Var_Name is
not given, this tag has no value.

Value will be called only once per template and per tag. This is so that if the value for the tag is expensive to compute,
you only pay the price once, and the value is then cached for the remaining of the template. If the value should be
recomputed every time, you should consider using a Cursor_Tag instead (see Cursor_Tag).

2.7.2 Cursor_Tag

In some cases, data structure on the Ada side can be so complex that it is difficult to map it into a variable tag. The
Cursor_Tag object has been designed to work around such problem. Using a Cursor_Tag it is possible to create an
iterator through a data structure without mapping it into a variable tag. The data stays on the Ada side. To create a
Cursor_Tag it is necessary to implement the following abstract routines:

function Dimension
(Cursor_Tag : access Dynamic.Cursor_Tag;
Var_Name : in String) return Natural is abstract;

-- Must return the number of dimensions for the given variable name. For
-- a matrix this routine should return 2 for example.

type Path is array (Positive range <>) of Natural;
-- A Path gives the full position of a given element in the cursor tag

12 Chapter 2. Tags

Templates Parser Documentation, Release 20.0

function Length
(Cursor_Tag : access Dynamic.Cursor_Tag;
Var_Name : in String;
Path : in Dynamic.Path) return Natural is abstract;

-- Must return the number of item for the given path. The first
-- dimension is given by the Path (1), for the second column the Path is
-- (1, 2). Note that each dimension can have a different length. For
-- example a Matrix is not necessary square.

function Value
(Cursor_Tag : access Dynamic.Cursor_Tag;
Var_Name : in String;
Path : in Dynamic.Path) return String is abstract;

-- Must return the value for the variable at the given Path. Note that
-- this routine will be called only for valid items as given by the
-- dimension and Length above.

2.7. Dynamic tags 13

Templates Parser Documentation, Release 20.0

14 Chapter 2. Tags

CHAPTER

THREE

TEMPLATE STATEMENTS

There are five different type statements. A tag statement is surrounded by @@.

3.1 Comments

Every line starting with @@– are comments and are completely ignored by the parser. The resulting page will have
the exact same format and number of lines with or without the comments:

@@-- This template is used to display the client's data
@@-- It uses the following tags:
@@--
@@-- @_CID_@ Client ID
@@-- @_ITEMS_V_@ List of items (vector tag)

<P>Client @_CID_@

...

3.2 INCLUDE statement

This statement is used to include another template file. This is useful if you have the same header and/or footer in all
your HTML pages. For example:

@@INCLUDE@@ header.tmplt

<P>This is by Web page

@@INCLUDE@@ footer.tmplt

It is also possible to pass arguments to the include file. These parameters are given after the include file name. It is
possible to reference these parameters into the included file with the special variable names @_$<n>_@, where n is
the include’s parameter index (0 is the include file name, 1 the first parameter and so on):

@@INCLUDE@@ another.tmplt @_VAR_@ azerty

In file another.tmplt:

@_$0_@ is another.tmplt

@_$1_@ is the variable @_VAR_@

@_$2_@ is the string “azerty”

15

Templates Parser Documentation, Release 20.0

If an include variable references a non existing include parameter the tag is kept as-is.

Note that it is possible to pass the include parameters using names, a set of positional parameters can be pass first, so
all following include commands are identical:

@@INCLUDE@@ another.tmplt one two three four "a text"
@@INCLUDE@@ another.tmplt (one, two, 3 => three, 4 => four, 5 => "a text")
@@INCLUDE@@ another.tmplt (one, 5 => "a text", 3 => three, 2 => two, 4 => four)

The file name can also be a tag. In this case the file loading is deferred at the parsing time.

For security reasons the filename can’t be a full pathname. If a full pathname is passed then the leading directory
separator is removed.

3.3 IF statement

This is the conditional statement. The complete form is:

@@IF@@ <expression1>
part1

@@ELSIF@@ <expression2
part2

@@ELSE@@
part3

@@END_IF@

<expression> is TRUE if it evaluates to one of “TRUE”, “T” or “1” and FALSE otherwise. Note that the test is not
case sensitive.

The part1 one will be parsed if expression1 evaluate to TRUE, part2 will be parsed if expression2 evaluate to TRUE
and the part3 will be parse in any other case. The ELSIF and ELSE parts are optional.

The expression here is composed of Boolean variables and/or Boolean expression. Recognized operators are:

A = B Returns TRUE if A equal B

A /= B Returns TRUE if A is not equal B

A > B Returns TRUE if A greater than B. If A and B are numbers it returns the the number comparison (5 > 003 =
TRUE) otherwise it returns the string comparison (‘5’ > ‘003’ = FALSE).

A >= B Returns TRUE if A greater than or equal to B. See above for rule about numbers.

A < B Returns TRUE if A lesser than B. See above for rule about numbers.

A <= B Returns TRUE if A lesser than or equal to B. See above for rule about numbers.

A and B Returns TRUE if A and B is TRUE and FALSE otherwise.

A or B Returns TRUE if A or B is TRUE and FALSE otherwise.

A xor B Returns TRUE if either A or B (but not both) is TRUE and FALSE otherwise.

A in B Returns TRUE if A is found into the composite tag B and FALSE otherwise. B must be a tag. If B contains a
single value then this expression is equivalent to (A = B).

not A Returns TRUE if either A is FALSE and FALSE otherwise.

A & B Returns the catenation of A and B. A and B can be either strings or variables.

16 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

The default evaluation order is done from left to right, all operators having the same precedence. To build an expression
it is possible to use parenthesis to change the evaluation order. A value with spaces must be quoted as a string. So
valid expressions could be:

@@IF@@ (@_VAR1_@ > 3) or (@_COND1_@ and @_COND2_@)

@@IF@@ not (@_VAR1_@ > 3) or (@_COND1_@ and @_COND2_@)

@@IF@@ (@_VAR1_@ > 3) and not @_COND1_@

@@IF@@ @_VAR1_@ = "a value"

@@IF@@ "/" & @_FILE_@ = "/filename"

Note also that variables and values can be surrounded by quotes if needed. Quotes are needed if a value contain spaces.

Let’s see an example using an IF tag statement. With the following template:

@@IF@@ @_USER_@
<p>As a user you have a restricted access to this server.

@@ELSE@@
<p>As an administrator you have full access to this server.

@@END_IF@@

The following program:

with Ada.Text_IO;
with Templates_Parser;

procedure User1 is
Translations : constant Templates_Parser.Translate_Table :=

(1 => Templates_Parser.Assoc ("USER", True));
begin

Ada.Text_IO.Put_Line
(Templates_Parser.Parse ("user.tmplt", Translations));

end User1;

Will display:

<p>As a user you have a restricted access to this server.

But the following program:

with Ada.Text_IO;
with Templates_Parser;

procedure User2 is
Translations : constant Templates_Parser.Translate_Table :=

(1 => Templates_Parser.Assoc ("USER", False));
begin

Ada.Text_IO.Put_Line
(Templates_Parser.Parse ("user.tmplt", Translations));

end User2;

Will display:

<p>As an administrator you have full access to this server.

3.3. IF statement 17

Templates Parser Documentation, Release 20.0

3.4 TABLE statement

Table tags are useful to generate HTML tables for example. Basically the code between the @@TABLE@@ and
@@END_TABLE@@ will be repeated as many times as the vector tag has values. If many vector tags are specified
in a table statement, the code between the table will be repeated a number of times equal to the maximum length of all
vector tags in the TABLE tag statement.

A TABLE tag statement is a kind of implicit iterator. This is a very important concept to build HTML tables. Using a
composite tag variable in a @@TABLE@@ tag statement it is possible to build very complex Web pages.

Syntax:

@@TABLE['REVERSE]['TERMINATE_SECTIONS]['TERSE]['ALIGN_ON("sep")]@@
...
[@@BEGIN@@]
...
[@@SECTION@@]
...
[@@END@@]
...
@@END_TABLE@

Let’s have an example. With the following template:

<p>Here is the ages of some peoples:

<table>
@@TABLE@@

<tr>
<td>@_NAME_@
<td>@_AGE_@

@@END_TABLE@@
</table>

And the following program:

with Ada.Text_IO;
with Templates_Parser;

procedure Table is

use type Templates_Parser.Vector_Tag;

Names : constant Templates_Parser.Vector_Tag :=
+"Bob" & "Bill" & "Toto";

Ages : constant Templates_Parser.Vector_Tag :=
+"10" & "30" & "5";

Translations : constant Templates_Parser.Translate_Table :=
(1 => Templates_Parser.Assoc ("NAME", Names),
2 => Templates_Parser.Assoc ("AGE", Ages));

begin
Ada.Text_IO.Put_Line

(Templates_Parser.Parse ("table.tmplt", Translations));
end Table;

The following output will be generated:

18 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

<p>Here is the ages of some peoples:

<table>
<tr>
<td>Bob
<td>10
<tr>
<td>Bill
<td>30
<tr>
<td>Toto
<td>5

</table>

Note that we use vector tag variables here. A discrete variable tag in a table will be replaced by the same (the only
one) value for each row. A vector tag outside a table will be displayed as a list of values, each value being separated
by a specified separator. The default is a comma and a space ”, ”.

The complete prototype for the Tag Assoc function is:

function Assoc
(Variable : in String;
Value : in Tag;
Separator : in String := Default_Separator) return Association;

-- Build an Association (Variable = Value) to be added to Translate_Table.
-- This is a tag association. Separator will be used when outputting the
-- a flat representation of the Tag (outside a table statement).

A table can contain many sections. The section to use will be selected depending on the current line. For example, a
table with two sections will use different data on even and odd lines. This is useful when you want to alternate the line
background color for a better readability when working on HTML pages.

A table with sections can have attributes:

REVERSE The items will be displayed in the reverse order.

TERMINATE_SECTIONS This ensure that the table output will end with the last section. If the number of data in
the vector variable tag is not a multiple of the number of sections then the remaining section will be complete
with empty tag value.

TERSE Empty lines won’t be output. If the composite tag used into the table has an empty value then the correspond-
ing line won’t be output. This is especially important to avoid empty ending lines for table containing vector of
different size.

ALIGN_ON The content of table will be aligned on the given separators. Multiple separators may be specified as
coma separated strings, for example ALIGN_ON(”:”,”:=”). Each line will have the corresponding separator
aligned in the specified order. That is, on the example above we first align on ”:” and then ”:=”, if another ”:” is
found on the line it is not taken into account.

For the following template:

<p>Here are some available computer devices:

<table>
@@TABLE@@

<tr bgcolor=#FF0000>
<td>@_DEVICES_@
<td>@_PRICES_@

@@SECTION@@

3.4. TABLE statement 19

Templates Parser Documentation, Release 20.0

<tr bgcolor=#00000F>
<td>@_DEVICES_@
<td>@_PRICES_@

@@END_TABLE@@
</table>

<table>
@@TABLE'TERMINATE_SECTIONS@@

<tr>
<td bgcolor=#00000F width=10>
<td width=150>@_DEVICES_@

@@SECTION@@
<td width=150>@_DEVICES_@

@@SECTION@@
<td width=150>@_DEVICES_@
<td bgcolor=#00000F width=10>

@@END_TABLE@@
</table>

And the following program:

with Ada.Text_IO;
with Templates_Parser;

procedure Table_Section is

use type Templates_Parser.Vector_Tag;

Devices : constant Templates_Parser.Vector_Tag :=
+"Screen" & "Keyboard" & "Mouse" & "Hard Drive";

Prices : constant Templates_Parser.Vector_Tag :=
+"$500" & "$20" & "$15" & "$140";

Translations : constant Templates_Parser.Translate_Table :=
(1 => Templates_Parser.Assoc ("DEVICES", Devices),
2 => Templates_Parser.Assoc ("PRICES", Prices));

begin
Ada.Text_IO.Put_Line

(Templates_Parser.Parse ("table_section.tmplt", Translations));
end Table_Section;

The following output will be generated:

<p>Here are some available computer devices:

<table>
<tr bgcolor=#FF0000>
<td>Screen
<td>$500
<tr bgcolor=#00000F>
<td>Keyboard
<td>$20
<tr bgcolor=#FF0000>
<td>Mouse
<td>$15
<tr bgcolor=#00000F>
<td>Hard Drive
<td>$140

20 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

</table>

<table>
<tr>
<td bgcolor=#00000F width=10>
<td width=150>Screen
<td width=150>Keyboard
<td width=150>Mouse
<td bgcolor=#00000F width=10>
<tr>
<td bgcolor=#00000F width=10>
<td width=150>Hard Drive
<td width=150>
<td width=150>
<td bgcolor=#00000F width=10>

</table>

It is important to note that it is possible to avoid code duplication by using the @@BEGIN@@ and @@END@@
block statements. In this case only the code inside the block is part of the section, the code outside is common to all
sections. Here is an example to generate an HTML table with different colors for each line:

The template file above can be written this way:

<p>Here are some available computer devices:

<table>
@@TABLE@@

<tr bgcolor=
@@BEGIN@@

"#FF0000"
@@SECTION@@

"#000000F"
@@END@@
>
<td>@_DEVICES_@
<td>@_PRICES_@

@@END_TABLE@@
</table>

Another example to for the ALIGN_ON table attribute:

procedure Call is
@@TABLE'ALIGN_ON(":",":=")@@

@_DECLS_@
@@END_TABLE@@
begin

null;
end Call;

And the following program:

with Ada.Text_IO;
with Templates_Parser;

procedure Table_Align is

use type Templates_Parser.Vector_Tag;

3.4. TABLE statement 21

Templates Parser Documentation, Release 20.0

Decls : constant Templates_Parser.Vector_Tag :=
+"Count : constant Integer := 8;"

& "Name : String := ""A Name"";"
& "I : Integer;";

Translations : constant Templates_Parser.Translate_Table :=
(1 => Templates_Parser.Assoc ("DECLS", Decls));

begin
Ada.Text_IO.Put_Line

(Templates_Parser.Parse ("table_align.tmplt", Translations));
end Table_Align;

The following output will be generated:

procedure Call is
Count : constant Integer := 8;
Name : String := "A Name";
I : Integer;

begin
null;

end Call;

Into a table construct there are some additional variable tags available:

@_UP_TABLE_LINE_@ This tag will be replaced by the table line number of the upper table statement. It will be
set to 0 outside a table statement or inside a single table statement.

@_TABLE_LINE_@ This tag will be replaced by the current table line number. It will be replaced by 0 outside a
table statement.

@_NUMBER_LINE_@ This is the number of line displayed in the table. It will be replaced by 0 outside a table
statement.

@_TABLE_LEVEL_@ This is the table level number. A table construct declared in a table has a level value of 2.
It will be replaced by 0 outside a table statement.

Let’s have a look at a more complex example with mixed IF and TABLE statements.

Here is the template:

Hello here is a list of devices:

<table>
<tr>
<th>Device Name
<th>Price
<th>Order

@@TABLE@@
<tr>
<td>@_DEVICES_@
<td>@_PRICES_@

<td>
@@IF@@ @_AVAILABLE_@
Order
@@ELSE@@
Sorry, not available
@@END_IF@@

22 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

@@END_TABLE@@
</table>

And the following program:

with Ada.Text_IO;
with Templates_Parser;

procedure Table_If is

use type Templates_Parser.Vector_Tag;

function In_Stock (Device : in String) return Boolean;
-- Complex function. Does a SQL access to the right database to know if
-- the Device is available and thus can be ordered.

procedure Add (Device, Price : in String);
-- Add the device into the list to be displayed

Devices : Templates_Parser.Tag;
Prices : Templates_Parser.Tag;
Available : Templates_Parser.Tag;

-- Add --

procedure Add (Device, Price : in String) is
begin

Devices := Devices & Device;
Prices := Prices & Price;
Available := Available & In_Stock (Device);

end Add;

-- In_Stock --

function In_Stock (Device : in String) return Boolean is
begin

if Device = "Keyboard" then
return True;

else
return False;

end if;
end In_Stock;

Translations : Templates_Parser.Translate_Table (1 .. 3);

begin
Add ("Screen", "$500");
Add ("Keyboard", "$15");
Add ("Mouse", "$15");
Add ("Hard Drive", "$140");

Translations := (Templates_Parser.Assoc ("DEVICES", Devices),
Templates_Parser.Assoc ("PRICES", Prices),
Templates_Parser.Assoc ("AVAILABLE", Available));

3.4. TABLE statement 23

Templates Parser Documentation, Release 20.0

Ada.Text_IO.Put_Line
(Templates_Parser.Parse ("table_if.tmplt", Translations));

end Table_If;

The following output will be generated:

Hello here is a list of devices:

<table>
<tr>
<th>Device Name
<th>Price
<th>Order

<tr>
<td>Screen
<td>$500

<td>
Sorry, not available

<tr>
<td>Keyboard
<td>$15

<td>
Order

<tr>
<td>Mouse
<td>$15

<td>
Sorry, not available

<tr>
<td>Hard Drive
<td>$140

<td>
Sorry, not available

</table>

Table tag statements can also be used with matrix tag or more nested tag variables. In this case, for a tag variable with
N nested levels, the Nth closest enclosing TABLE tag statement will be used for the corresponding index. If there are
not enough indexes, the last axis are just streamed as a single text value.

Let’s see what happens for a matrix tag:

• Inside a table of level 2 (a TABLE statement inside a TABLE statement).

In this case the first TABLE iterates through the matrix lines. First iteration will use the first matrix’s vector,
second iteration will use the second matrix’s vector and so on. And the second TABLE will be used to iterate
through the vector’s values.

• Inside a table of level 1.

24 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

In this case the TABLE iterates through the matrix lines. First iteration will use the first matrix’s vector, second
iteration will use the second matrix’s vector and so on. Each vector is then converted to a string by concatenating
all values using the specified separator (see Assoc constructor for Tag or Set_Separator routine).

• Outside a table statement.

In this case the matrix is converted to a string. Each line represents a vector converted to a string using the
supplied separator (see point 2 above), and each vector is separated by an ASCII.LF character. The separators
to use for each level can be specified using Set_Separator.

Let’s look at an example, with the following template:

A matrix inside a table of level 2:

@@TABLE@@
<tr>
@@TABLE@@
<td>
@_MAT_@
</td>
@@END_TABLE@@
</tr>

@@END_TABLE@@

The same matrix inside a single table:

@@TABLE@@
<tr>
<td>
@_MAT_@
</tr>

@@END_TABLE@@

The same matrix outside a table:

@_MAT_@

Using the program:

with Ada.Text_IO;
with Templates_Parser;

procedure Matrix is

package TP renames Templates_Parser;

use type TP.Tag;

V1 : constant TP.Vector_Tag := +"A1.1" & "A1.2";
V2 : constant TP.Vector_Tag := +"A2.1" & "A2.2";
V3 : constant TP.Vector_Tag := +"A3.1" & "A3.2";

M : constant TP.Matrix_Tag := +V1 & V2 & V3;

begin
Ada.Text_IO.Put_Line

(TP.Parse ("matrix.tmplt",

3.4. TABLE statement 25

Templates Parser Documentation, Release 20.0

TP.Translate_Table'(1 => TP.Assoc ("MAT", M))));
end Matrix;

We get the following result:

A matrix inside a table of level 2:

<tr>
<td>
A1.1
</td>
<td>
A1.2
</td>
</tr>

<tr>
<td>
A2.1
</td>
<td>
A2.2
</td>
</tr>

<tr>
<td>
A3.1
</td>
<td>
A3.2
</td>
</tr>

The same matrix inside a single table:

<tr>
<td>
A1.1, A1.2
</tr>

<tr>
<td>
A2.1, A2.2
</tr>

<tr>
<td>
A3.1, A3.2
</tr>

The same matrix outside a table:

A1.1, A1.2
A2.1, A2.2
A3.1, A3.2

26 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

3.5 SET statement

The SET command tag can be used to define a constant or an alias for an include file parameter. This is especially
important in the context of reusable template files. For example, instead of having many references to the red color
in an HTML document, it is better to define a constant COLOR with the value red and use COLOR everywhere. It is
then easier to change the color afterward.

The first form, to define a simple constant that can be used as any other variable in a template file, is:

@@SET@@ <name> = <value>

The second form, to define an alias for a template file parameter, is:

@@SET@@ <name> = $n [| <default_value>]

In this case <name> is an alias for the Nth include parameter. In this form it is also possible to define a default value
that would be used if the Nth include parameter is not specified.

Some examples:

@@SET@@ COLOR = red

@@SET@@ SIZE = $1

@@SET@@ COLOR = $4 | green

It is important to note that a variable is set global to a template file. It means that constants set into an include file are
visible into the parent template. This is an important feature to be able to have a “theme” like include template file for
example.

3.6 INLINE statement

The INLINE statement can be used to better control the result’s layout. For example it is not possible to have the
results of a vector tag on the same line, also it is not possible to have a conditional output in the middle of a line. The
INLINE block tag statement can be used to achieve that.

Elements in an inlined block are separated by a single space by default. It is possible to specify any string as the
separator. The text layout on an INLINE block has no meaning (the lines are trimmed on both side). As part of the
inline command it is possible to specify texts to output before and after the block.

Syntax:

@@INLINE[(<before>)(<separator>)(<after>)]@@
...
@@END_INLINE@

There are three supported uses:

@@INLINE@@ In this case there is no text before and after the block and the separator is a single space.

@@INLINE(<separator>)@@ In this case there is no text before and after the block and the separator is the string
given as parameter <separator>.

@@INLINE(<before>)(<separator>)(<after>)@@ In this case all three values are explicitly given.

<before>, <separator> and <after> may contain control characters:

\n To insert a new-line (CR+LF or LF depending on the Operation System)

3.5. SET statement 27

Templates Parser Documentation, Release 20.0

\r To insert a line-feed

\\ To insert a single backslash

Let’s look at an example, with the following template:

@@INLINE(colors=")(,)(")@@
@@TABLE@@

@_COLORS_@
@@END_TABLE@@

@@END_INLINE@@

Using the program:

with Ada.Text_IO;
with Templates_Parser;

procedure Table_Inline is

use type Templates_Parser.Vector_Tag;

Colors : constant Templates_Parser.Vector_Tag :=
+"Red" & "Green" & "Blue";

Translations : constant Templates_Parser.Translate_Table :=
(1 => Templates_Parser.Assoc ("COLORS", Colors));

begin
Ada.Text_IO.Put_Line

(Templates_Parser.Parse ("table_inline.tmplt", Translations));
end Table_Inline;

We get the following result:

colors="Red, Green, Blue"

Another example with an IF tag statement:

@@INLINE@@
A
@@IF@@ @_COND_@

big
@@ELSE@@

small
@@END_IF@@
car.
@@END_INLINE@@

Using the program:

with Ada.Text_IO;
with Templates_Parser;

procedure If_Inline is

use type Templates_Parser.Vector_Tag;

Translations : constant Templates_Parser.Translate_Table :=
(1 => Templates_Parser.Assoc ("COND", True));

begin

28 Chapter 3. Template statements

Templates Parser Documentation, Release 20.0

Ada.Text_IO.Put_Line
(Templates_Parser.Parse ("if_inline.tmplt", Translations));

end If_Inline;

We get the following result:

A big car.

3.7 MACRO statement

The MACRO statement is used to defined macros that can be used in other places in the template. The macro statement
takes a single parameter which is the name of the macro.

Syntax:

@@MACRO(NAME)@@
...
@@END_MACRO@

The code inside the macro can be anything supported by the templates engine. There is no restriction. The parameters
inside the macro are referenced as @_$N_@ (where N is a number and corresponds to the Nth parameter passed to
the macro). There is no maximum number of parameters. A reference to a parameter that has no corresponding formal
parameter at the call point is ignored (the value will be the empty string).

For example:

@@MACRO(SOMETEXT)@@
Some text, first parameter is @_$1_@ and the second is @_$2_@.
@@END_MACRO@@
@@--
@_SOMETEXT(12,@_VAR_@)_@
@_UPPER:SOMETEXT(Ada,GNAT)_@

For using macros see Macros.

3.8 EXTENDS and BLOCK statements

The EXTENDS statement is similar to INCLUDE. However, it is possible to replace parts of the included file. These
parts are defined with the BLOCK statement.

Syntax:

@@EXTENDS@@ filename [variables]
@@BLOCK(name1)@@
...
@@END_BLOCK@@

@@BLOCK(name2)@@
...
@@END_BLOCK@@

@@END_EXTENDS@

And in the included file (filename in the above example):

3.7. MACRO statement 29

Templates Parser Documentation, Release 20.0

...

@@BLOCK(name1)@@
default contents1

@@END_BLOCK@@

@@BLOCK(name3)@@
default contents3
@@END_BLOCK@@
...

When parsing the first file, it will automatically include the contents of the second file. However, the various BLOCK
will be replaced by the value given in the EXTENDS statement, if a value is provided. If no value is provided, the
default value given in the included file will be used.

30 Chapter 3. Template statements

CHAPTER

FOUR

MACROS

A macro usage is like a tag but with a set of parameters passed inside parenthesis. Macros support all filters but
attributes can’t be used. It is important to note that macros are expanded at the point of their calls. This implementation
maximizes speed but uses more memory as the definition is not shared. If the code is large it may be better to use an
@@INCLUDE@@ as the code is not expanded.

Syntax:

@_[[FILTER[(parameter)]:]MACRO_NAME([PARAM1][,N=>PARAMN])_@

A macro call can have positional parameters (like PARAM1 above) or named (where the name is a number correspond-
ing to the actual parameter position) parameters (like PARAMN above).

With the following definition:

@@MACRO(SOMETEXT)@@
Some text, first parameter is @_$1_@ and the second is @_$2_@.
@@END_MACRO@@
@@--
@_SOMETEXT(12,@_VAR_@)_@
@_UPPER:SOMETEXT(Ada,GNAT)_@

Using the program:

with Ada.Text_IO;
with Templates_Parser;

procedure Macro is

use type Templates_Parser.Vector_Tag;

Translations : Templates_Parser.Translate_Set;

begin
Templates_Parser.Insert

(Translations,
Templates_Parser.Assoc ("VAR", "Templates_Parser"));

Ada.Text_IO.Put_Line
(Templates_Parser.Parse ("macro.tmplt", Translations));

end Macro;

We get the following result:

Some text, first parameter is 12 and the second is Templates_Parser.
SOME TEXT, FIRST PARAMETER IS ADA AND THE SECOND IS GNAT.

31

Templates Parser Documentation, Release 20.0

32 Chapter 4. Macros

CHAPTER

FIVE

OTHER SERVICES

5.1 Tag utils

The child package Utils, see Templates_Parser.Utils contains a routine to encode a Tag variable into a string and the
inverse routine that build a Tag given it’s string representation. This is useful for example, in the context of AWS to
store a Tag into a session variable. See the AWS project.

5.2 XML representation

The child package XML, see Templates_Parser.XML contains routines to save a Translation_Set into an XML docu-
ment or to create a Translation_Set by loading an XML document. The XML document must conform to a specific
DTD (see the Ada spec file).

5.3 Templates2Ada

templates2ada is a tool that will generate a set of Ada packages from a templates file. These Ada packages can then
be used in your application to avoid hard-coded strings, and help maintain the templates and the code synchronized.

One of its goal is to ensure that you are only setting tags that actually exist in the template (and thus prevent, as much
as possibly, typos in the name of tags); also, when combined with other tools, to help ensure that all tags needed by
the template are properly set.

Templates2ada also has special knowledge about HTTP constructs and will generate Ada constants for the HTTP
parameters you might receive in return. Once more the goal is to help avoid typos in the Ada code.

For instance, we will consider a simple template file, found in a local file resources/block1.thtml. This
template contains the following simple html code:

<form>
<input name="PARAM1" value="@_TAG1_@" />
<input name="PARAM2" value="@_TAG2_@" />

</form>}

When you run templates2ada (as described in the following subsection), the following Ada package will be
generated. Note that this is only the default output of templates2ada, which can be fully tailored to your needs:

package Templates.Block1 is
pragma Style_Checks (Off);

Template : constant string := "resources/block1.thtml";

33

Templates Parser Documentation, Release 20.0

Tag1 : constant String := "TAG1";
Tag2 : constant String := "TAG2";

package Http is
Param1 : constant String := "PARAM1";
Param2 : constant String := "PARAM2";

end Http;
end Templates.Block1;

templates2ada knows about special constructs in the template file. Such templates are generally associated with html
pages. It is possible to specify within the template itself what the url associated with the template is, so that it provides
a convenient link between the two. Likewise, you can also define explicitly what the possible HTTP parameters are
when loading that page. This is mostly useful when those parameters do not correspond to some form fields within
the page itself. The syntax for these two is the following:

-- HTTP_URL(the_url): any comment you want
-- HTTP_GET(param1_name): description of the parameter
-- HTTP_GET(param2_name): description of the parameter

and that results in the following constants in the generated Ada package:

package Templates.Block1 is
URL : constant String := "the_url";

package Http is
Param1_Name : constant String := "param1_name";
Param2_Name : constant String := "param2_name";

end Http;
end Templates.Block1;

The templates parser API lets you define your own custom filters. It is often useful for those filters to take parameters,
just like the predefined filters do. However, it is also useful for these parameters to be able to check the value of other
tags. One convention for doing this is to start the name of the parameter with “@”. See for example the example in
User defined filters. As a reminder, the template would look like:

<option value="foo" @_SELECTED(@SELECTED_STATUS):STATUS_@ />

The templates2ada tool knows about this special convention, and would generate the following Ada package from this
example:

package Templates.Block1 is
Selected_Status : constant String := "SELECTED_STATUS";
Status : constant String := "STATUS";

end Templates.Block1;

5.3.1 Running templates2ada

This tool parses all the template files found in a directory, and then generate an output file from these, based on
a template file (a default example of which is provided as templates.tads). The latter contains in fact two
examples, depending on whether one Ada package should be generated per template, or whether a single package
should be build. In the former case, if you are using the GNAT compiler, you should run gnatchop on the resulting
file. Here is an example to run this tool for the example we described above.

34 Chapter 5. Other Services

Templates Parser Documentation, Release 20.0

$ rm -f src/templates/*.ads
$ templates2ada -d resources/ -o src/templates/generated -r
$ cd src/templates; gnatchop -w -q generated
$ rm -f src/templates/generated}

If, in you Ada code, you no longer use hard-coded strings but only the constants found in the output packages, this
will ensure that you are not trying to set tags that are never used in the template.

The other check that impacts the quality of your code is to ensure that all tags that are used by the templates are
properly set. This cannot be ensured by the compiler only, but using an external tool it is relatively to do.

For instance, if you are using GNAT, we recommend the following additional targets in your Makefile:

unset_tags:
gnat xref -u main.adb | fgrep templates-

This checks for all unused entities in files called templates-*, which are the files generated by templates2ada.

templates2ada can be used in other situations as well. For instance, one possible use is to generate, as output,
a new template file that itself contains a series of @@SET@@ commands. This generated file can then be included
(@@INCLUDE@@) in your own templates. We have used it with some success when implementation a web server:
it is often the case that hyper links refer to other pages in the same server. We have avoided hard-coding the URLs and
the names of their HTTP GET parameters, by fetching these names from the generated file we were talking above.

The templates parser comes with an example file, called all_urls.thtml, which can be used with the -t switch to
templates2ada, and will generated a template file as output. You would use it as:

@@INCLUDE@@ all_urls.html

and this ensures the link is valid.

templates2ada supports a number of command line switches:

• -d <dir>

This switch specifies the directory in which the templates file are searched for.

• -o <file>

This switch specifies the output file name

• -e <ext>

This file specifies the file name extension for template files. All files in the directory that have this extension
will be processed by templates2ada.

• -t <tmplt>

This file specifies the template file to be used for the output file. The templates parser comes with an example
for such a file, called templates.tads, that you can adapt to your own needs.

• -r

Sub directories of the one specified by -d will also be searched.

• -v

Activate the verbose mode. This will output a warning when an http parameter has a name made only of template
parser tags, since no matching entry can then be created for it in the output file.

5.3. Templates2Ada 35

Templates Parser Documentation, Release 20.0

5.3.2 Customizing templates2ada

As was mentioned before, the output of templates2ada is a single file that results from parsing a template file. An
example of such a file is provided in the templates2ada distribution, as templates.tads.

You are strongly encouraged to modify this file to adapt it to your needs, and then use the -t switch to
templates2ada to make use of your modified file.

This file contains extensive comments on how to make use, and customize, it. This documentation is not duplicated
here

5.4 Templatespp

templatespp is a pre-processor based on the template parser. It is generally used from scripts to process files and
generate other files. One of the possible uses, for instance, is to write the CSS (style-sheet) of a web site as a template
file (for instance mycss.tcss), and use template parser structures in there. This is a good way to share colors for
instance, or to name constants, as is often done in Ada code.

Here is a small example of such a CSS:

@@SET@@ COLOR1=blue
@@SET@@ COLOR2=red
@@SET@@ LENGTH1=10

body {background:@_COLOR1_@}
div {background:@_COLOR2_@}
ul.class {background:@_COLOR1_@} /* same color as body */

ul {width:@_ADD(3):LENGTH1_@px} /* ul 3 pixels wider than li */
li {width:@_LENGTH1_@px}

Such a file would be processed with the following command line:

$ templatespp -o mycss.css mycss.tcss

5.5 Debug

A set of routines to help to debug the Templates_Parser engine, see Templates_Parser.Debug. For example, De-
bug.Print_Tree will display, to the standard output, a representation of the internal semantic tree for a template file.

36 Chapter 5. Other Services

CHAPTER

SIX

TEMPLATES PARSER API REFERENCE

6.1 Templates_Parser

--
-- Templates Parser --
-- --
-- Copyright (C) 1999-2019, AdaCore --
-- --
-- This library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU General Public License as published by the --
-- Free Software Foundation; either version 3, or (at your option) any --
-- later version. This library is distributed in the hope that it will be --
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are --
-- granted additional permissions described in the GCC Runtime Library --
-- Exception, version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
--

pragma Ada_2012;

with Ada.Finalization;
with Ada.Strings.Unbounded;

with Templates_Parser_Tasking;
pragma Elaborate_All (Templates_Parser_Tasking);
pragma Warnings (Off, Templates_Parser_Tasking);
-- This unit is not used in the spec but is placed here to force proper
-- finalization order.

private with Ada.Containers.Indefinite_Hashed_Maps;

37

Templates Parser Documentation, Release 20.0

private with Ada.Containers.Indefinite_Hashed_Sets;
private with Ada.Strings.Hash;

package Templates_Parser is

use Ada.Strings.Unbounded;

function Version return String with Inline;

Template_Error : exception;

Default_Begin_Tag : constant String := "@_";
Default_End_Tag : constant String := "_@";

Default_Separator : constant String := ", ";

procedure Set_Tag_Separators
(Start_With : String := Default_Begin_Tag;
Stop_With : String := Default_End_Tag) with

Pre => Start_With'Length > 0 and then Stop_With'Length > 0;
-- Set the tag separators for the whole session. This should be changed as
-- the very first API call and should not be changed after.

function Tag_From_Name (Name : String) return String with
Post => Tag_From_Name'Result'Length >= Name'Length + 2;

-- Returns the tag given the Name, default is @_NAME_@

-- Generic Tag --

type Tag is private;
-- A tag is using a by reference semantic

function "+" (Value : String) return Tag
with Post => Size ("+"'Result) = 1;

function "+" (Value : Character) return Tag
with Post => Size ("+"'Result) = 1;

function "+" (Value : Boolean) return Tag
with Post => Size ("+"'Result) = 1;

function "+" (Value : Unbounded_String) return Tag
with Post => Size ("+"'Result) = 1;

function "+" (Value : Integer) return Tag
with Post => Size ("+"'Result) = 1;

function "+" (Value : Tag) return Tag
with Post => Size ("+"'Result) = 1;

-- Tag constructors

function "&" (T : Tag; Value : String) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (T : Tag; Value : Character) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (T : Tag; Value : Boolean) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (T : Tag; Value : Unbounded_String) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (T : Tag; Value : Integer) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

38 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

function "&" (T : Tag; Value : Tag) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

-- Add Value at the end of the tag, note that "&" will modify its
-- first parameter. It is intended to be used as [T := T & "val"],
-- doing [T1 := T2 & "val"] will add val to T2 and set T1 as an
-- alias. This is designed this way for efficiency.

function "&" (Value : String; T : Tag) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (Value : Character; T : Tag) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (Value : Boolean; T : Tag) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (Value : Unbounded_String; T : Tag) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

function "&" (Value : Integer; T : Tag) return Tag
with Post => Size ("&"'Result) = Size (T)'Old + 1;

-- Add Value at the front of the tag, see note above

procedure Append (T : in out Tag; Value : String)
with Post => Size (T) = Size (T)'Old + 1;

procedure Append (T : in out Tag; Value : Character)
with Post => Size (T) = Size (T)'Old + 1;

procedure Append (T : in out Tag; Value : Boolean)
with Post => Size (T) = Size (T)'Old + 1;

procedure Append (T : in out Tag; Value : Unbounded_String)
with Post => Size (T) = Size (T)'Old + 1;

procedure Append (T : in out Tag; Value : Integer)
with Post => Size (T) = Size (T)'Old + 1;

procedure Append (T : in out Tag; Value : Tag)
with Post => Size (T) = Size (T)'Old + 1;

-- Add Value at the end of tag

procedure Set_Separator (T : in out Tag; Separator : String);
-- Set separator to be used when building a flat representation of
-- a composite tag.

procedure Clear (T : in out Tag) with
Post => Size (T) = 0;

-- Removes all values in the tag. Current tag T is not released but
-- the returned object is separated (not using the same reference) than
-- the original one.

function Size (T : Tag) return Natural;
-- Returns the number of value into T

function Item (T : Tag; N : Positive) return String
with Pre => N <= Size (T);

-- Returns the Nth Tag's item. Raises Constraint_Error if there is
-- no such Item in T (i.e. T length < N).

function Composite (T : Tag; N : Positive) return Tag
with Pre => N <= Size (T);

-- Returns the Nth Tag's item. Raises Constraint_Error if there is
-- no such Item in T (i.e. T length < N).

subtype Vector_Tag is Tag;
subtype Matrix_Tag is Tag;

6.1. Templates_Parser 39

Templates Parser Documentation, Release 20.0

-- Associations --

type Association is private;

Null_Association : constant Association;

type Association_Kind is (Std, Composite);
-- The kind of association which is either Std (a simple value), a vector
-- tag or a Matrix tag.

function Assoc
(Variable : String;
Value : String) return Association

with Pre => Variable'Length > 0;
-- Build an Association (Variable = Value) to be added to a
-- Translate_Set. This is a standard association, value is a string.

function Assoc
(Variable : String;
Value : Unbounded_String) return Association

with Pre => Variable'Length > 0;
-- Build an Association (Variable = Value) to be added to a
-- Translate_Set. This is a standard association, value is an
-- Unbounded_String.

function Assoc
(Variable : String;
Value : Integer) return Association

with Pre => Variable'Length > 0;
-- Build an Association (Variable = Value) to be added to a
-- Translate_Set. This is a standard association, value is an Integer.
-- It will be displayed without leading space if positive.

function Assoc
(Variable : String;
Value : Boolean) return Association

with Pre => Variable'Length > 0;
-- Build an Association (Variable = Value) to be added to a
-- Translate_Set. It set the variable to TRUE or FALSE depending on
-- value.

function Assoc
(Variable : String;
Value : Tag;
Separator : String := Default_Separator) return Association

with Pre => Variable'Length > 0;
-- Build an Association (Variable = Value) to be added to Translate_Set.
-- This is a tag association. Separator will be used when outputting the
-- a flat representation of the Tag (outside a table statement).

function Get (Assoc : Association) return Tag;
-- Returns the Tag in Assoc, raise Constraint_Error if Assoc is not
-- containing a Tag (Association_Kind is Std).
-- See also the Templates_Parser.Query package for other functions to
-- manipulate associations.

40 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

function Get (Assoc : Association) return String;
-- Returns the value in Assoc, raise Constraint_Error if Assoc is not
-- containing a simple value (Association_Kind is Composite).
-- See also the Templates_Parser.Query package for other functions to
-- manipulate associations.

-- Association table/set --

type Translate_Table is array (Positive range <>) of Association;
-- A table with a set of associations, note that it is better to use
-- Translate_Set below as it is more efficient.

No_Translation : constant Translate_Table;

type Translate_Set is private;
-- This is a set of association like Translate_Table but it is possible to
-- insert item into this set more easily, furthermore there is no need to
-- know the number of item before hand. This is the object used internally
-- by the templates engine as it is far more efficient to retrieve a
-- specific item from it.

Null_Set : constant Translate_Set;

procedure Insert (Set : in out Translate_Set; Item : Association)
with Post => Size (Set) >= Size (Set)'Old;

-- Add Item into the translate set. If an association for this variable
-- already exists it just replaces it by the new item.

procedure Insert (Set : in out Translate_Set; Items : Translate_Set)
with Post => Size (Set) >= Size (Set)'Old;

-- Add Items into the translate set. If an association for variables in
-- Items already exists it just replaces it by the new one.

function "&"
(Left : Association; Right : Association) return Translate_Set
with Inline;

-- Returns new translate set created from 2 associations. If names of
-- both associations are the same, the returned translate set will
-- contain only Right.

function "&"
(Set : Translate_Set; Item : Association) return Translate_Set
with Inline;

-- Adds Item into Set. If an association with the same name already exists
-- in Set it is replaced by the new one. Note that "&" will modify its
-- first parameter. It is intended to be used as [T := T & Assoc],
-- doing [T1 := T2 & Assoc] will add Assoc into T2 and set T1 as an
-- alias. This is designed this way for efficiency.

function "+" (Item : Association) return Translate_Set
with Inline => True,

Post => Size ("+"'Result) = 1;
-- Create translate set from one association

procedure Remove (Set : in out Translate_Set; Name : String)

6.1. Templates_Parser 41

Templates Parser Documentation, Release 20.0

with Pre => Name'Length > 0,
Post => not Exists (Set, Name);

-- Removes association named Name from the Set. Does nothing if there is
-- not such association in the set.

function Get (Set : Translate_Set; Name : String) return Association
with Pre => Name'Length > 0,

Post => (if not Exists (Set, Name)
then Get'Result = Null_Association);

-- Returns the association named Name in the Set. Returns Null_Association
-- is no such association if found in Set.

function Size (Set : Translate_Set) return Natural;
-- Returns size of the translate set

function Exists (Set : Translate_Set; Variable : String) return Boolean
with Pre => Variable'Length > 0;

-- Returns True if an association for Variable exists into the Set

generic
with procedure Action (Item : Association; Quit : in out Boolean);

procedure For_Every_Association (Set : Translate_Set);
-- Iterates through all associations in the set, call Action for each one.
-- Set Quit to True to stop the iteration.

function To_Set (Table : Translate_Table) return Translate_Set
with Post => Size (To_Set'Result) = Table'Length;

-- Convert a Translate_Table into a Translate_Set

-- Dynamic --

package Dynamic is

-- Lazy_Tag --

type Lazy_Tag is abstract tagged private;
type Lazy_Tag_Access is access all Lazy_Tag'Class;

procedure Value
(Lazy_Tag : not null access Dynamic.Lazy_Tag;
Var_Name : String;
Translations : in out Translate_Set) is abstract;

-- Value is called by the Parse routines below if a tag variable was not
-- found in the set of translations. This routine must then add the
-- association for variable Name. It is possible to add other
-- associations in the translation table but a check is done to see if
-- the variable Name as been set or not. The default implementation does
-- nothing.

Null_Lazy_Tag : constant Lazy_Tag_Access;

-- Cursor_Tag --

42 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

type Cursor_Tag is abstract tagged private;
type Cursor_Tag_Access is access all Cursor_Tag'Class;
-- In some cases it is difficult and not efficient to have to map all
-- Ada data into a template Tag. A Cursor_Tag object gives the ability
-- to iterate through a data structure which is living on the Ada side
-- only.

function Dimension
(Cursor_Tag : not null access Dynamic.Cursor_Tag;
Var_Name : String) return Natural is abstract;

-- Must return the number of dimensions for the given variable name. For
-- a matrix this routine should return 2 for example.

type Path is array (Positive range <>) of Natural;
-- A Path gives the full position of a given element in the cursor tag

function Length
(Cursor_Tag : not null access Dynamic.Cursor_Tag;
Var_Name : String;
Path : Dynamic.Path) return Natural is abstract;

-- Must return the number of item for the given path. The first
-- dimension is given by the Path (1), for the second column the Path is
-- (1, 2). Note that each dimension can have a different length. For
-- example a Matrix is not necessary square.

function Value
(Cursor_Tag : not null access Dynamic.Cursor_Tag;
Var_Name : String;
Path : Dynamic.Path) return String is abstract;

-- Must return the value for the variable at the given Path. Note that
-- this routine will be called only for valid items as given by the
-- Dimension and Length above.

Null_Cursor_Tag : constant Cursor_Tag_Access;

private

type Lazy_Tag is abstract tagged null record;

Null_Lazy_Tag : constant Lazy_Tag_Access := null;

type Cursor_Tag is abstract tagged null record;

Null_Cursor_Tag : constant Cursor_Tag_Access := null;

end Dynamic;

package Dyn renames Dynamic;

-- User's Filters --

type Filter_Context is record
Translations : Translate_Set;
Lazy_Tag : Dynamic.Lazy_Tag_Access;

end record;

6.1. Templates_Parser 43

Templates Parser Documentation, Release 20.0

type Callback is access function
(Value : String;
Parameters : String;
Context : Filter_Context) return String;

-- User's filter callback

type Callback_No_Param is access function
(Value : String;
Context : Filter_Context) return String;

-- User's filter callback

procedure Register_Filter
(Name : String;
Handler : Callback);

-- Register user's filter Name using the specified Handler

procedure Register_Filter
(Name : String;
Handler : Callback_No_Param);

-- Register user's filter Name using the specified Handler

type User_Filter is abstract tagged private;
type User_Filter_Access is access all User_Filter'Class;
function Execute

(Filter : not null access User_Filter;
Value : String;
Parameters : String;
Context : Filter_Context) return String is abstract;

-- User filters can also be implemented through a tagged type, which allows
-- you to add your own user data and reuse a filter in several
-- applications, perhaps with a slightly different behavior each time.
-- It is possible for the callback to modify the data stored in Filter, but
-- this needs to be done with care, since multiple concurrent calls to
-- Callback might happen.

procedure Register_Filter
(Name : String;
Filter : not null access User_Filter'Class);

-- Register a new filter. Filter must not be freed by the caller, since no
-- copy is made.

procedure Free_Filters;
-- Free all user filters registered above. This is mostly intended when
-- you are testing memory leaks in your application.

-- Macro --

type Parameter_Set is array (Natural range <>) of Unbounded_String;

No_Parameter : constant Parameter_Set;

type Macro_Callback is access
function (Name : String; Parameters : Parameter_Set) return String;

procedure Register_Macro_Handler (Callback : Macro_Callback);

44 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

-- Use the given callbacks for every unknown macro in the template. The
-- default implementation of this routine just displays the macro (name
-- and parameters).

-- Parsing and Translating --

type Reason_Kind is (Unused, Undefined);

function Parse
(Filename : String;
Translations : Translate_Table := No_Translation;
Cached : Boolean := False;
Keep_Unknown_Tags : Boolean := False;
Lazy_Tag : Dyn.Lazy_Tag_Access := Dyn.Null_Lazy_Tag;
Cursor_Tag : Dyn.Cursor_Tag_Access := Dyn.Null_Cursor_Tag;
Report : access procedure (Tag_Name : String;

Filename : String := "";
Line : Natural := 0;
Reason : Reason_Kind) := null)

return String
with Pre => Filename'Length > 0;
-- Parse the Template_File replacing variables' occurrences by the
-- corresponding values. If Cached is set to True, Filename tree will be
-- recorded into a cache for quick retrieval. If Keep_Unknown_Tags is set
-- to True then tags that are not in the translate table are kept
-- as-is if it is part of the template data. If this tags is part of a
-- condition (in an IF statement tag), the condition will evaluate to
-- False.

function Parse
(Filename : String;
Translations : Translate_Table := No_Translation;
Cached : Boolean := False;
Keep_Unknown_Tags : Boolean := False;
Lazy_Tag : Dyn.Lazy_Tag_Access := Dyn.Null_Lazy_Tag;
Cursor_Tag : Dyn.Cursor_Tag_Access := Dyn.Null_Cursor_Tag;
Report : access procedure (Tag_Name : String;

Filename : String := "";
Line : Natural := 0;
Reason : Reason_Kind) := null)

return Unbounded_String
with Pre => Filename'Length > 0;
-- Idem but returns an Unbounded_String

function Parse
(Filename : String;
Translations : Translate_Set;
Cached : Boolean := False;
Keep_Unknown_Tags : Boolean := False;
Lazy_Tag : Dyn.Lazy_Tag_Access := Dyn.Null_Lazy_Tag;
Cursor_Tag : Dyn.Cursor_Tag_Access := Dyn.Null_Cursor_Tag;
Report : access procedure (Tag_Name : String;

Filename : String := "";
Line : Natural := 0;
Reason : Reason_Kind) := null)

return String

6.1. Templates_Parser 45

Templates Parser Documentation, Release 20.0

with Pre => Filename'Length > 0;
-- Idem with a Translation_Set

function Parse
(Filename : String;
Translations : Translate_Set;
Cached : Boolean := False;
Keep_Unknown_Tags : Boolean := False;
Lazy_Tag : Dyn.Lazy_Tag_Access := Dyn.Null_Lazy_Tag;
Cursor_Tag : Dyn.Cursor_Tag_Access := Dyn.Null_Cursor_Tag;
Report : access procedure (Tag_Name : String;

Filename : String := "";
Line : Natural := 0;
Reason : Reason_Kind) := null)

return Unbounded_String
with Pre => Filename'Length > 0;
-- Idem with a Translation_Set

function Translate
(Template : String;
Translations : Translate_Table := No_Translation) return String;

-- Just translate the discrete variables in the Template string using the
-- Translations table. This function does not parse the command tag (TABLE,
-- IF, INCLUDE). All composite tags are replaced by the empty string.

function Translate
(Template : String;
Translations : Translate_Set) return String;

-- Idem with a Translation_Set

procedure Release_Cache;
-- Release the internal cache. This free the memory used for all currently
-- loaded template trees.

private
-- implementation removed

end Templates_Parser;

46 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

6.2 Templates_Parser.Debug

--
-- Templates Parser --
-- --
-- Copyright (C) 2004-2012, AdaCore --
-- --
-- This library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU General Public License as published by the --
-- Free Software Foundation; either version 3, or (at your option) any --
-- later version. This library is distributed in the hope that it will be --
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are --
-- granted additional permissions described in the GCC Runtime Library --
-- Exception, version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
--

package Templates_Parser.Debug is

procedure Print (T : Tag);
-- Print tag representation

procedure Print_Tree (Filename : String; Expand_Macro : Boolean := False);
-- Print tree for template Filename

procedure Print_Defined_Macros;
-- Print all defined macros

end Templates_Parser.Debug;

6.2. Templates_Parser.Debug 47

Templates Parser Documentation, Release 20.0

6.3 Templates_Parser.Utils

--
-- Templates Parser --
-- --
-- Copyright (C) 2004-2014, AdaCore --
-- --
-- This library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU General Public License as published by the --
-- Free Software Foundation; either version 3, or (at your option) any --
-- later version. This library is distributed in the hope that it will be --
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are --
-- granted additional permissions described in the GCC Runtime Library --
-- Exception, version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
--

pragma Ada_2012;

with Ada.Environment_Variables;

package Templates_Parser.Utils is

use Ada;

function Image (N : Integer) return String with
Inline => True,
Post => Image'Result'Length > 0;

-- Returns N image without leading blank

function Image (T : Tag) return String;
-- Returns a string representation for this tag

function Value (T : String) return Tag;
-- Give a string representation of a tag (as encoded with Image above),
-- build the corresponding Tag object. Raises Constraint_Error if T is
-- not a valid tag representation.

function Get_Program_Directory return String;
-- Returns the directory full path name for the current running program

Is_Windows : constant Boolean :=
Environment_Variables.Exists ("OS") and then
Environment_Variables.Value ("OS") = "Windows_NT";

48 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

Directory_Separator : constant Character;
Path_Separator : constant Character;

function Executable_Extension return String;
-- Return the executable exetension for the running host

function Web_Escape (S : String) return String with
Post => Web_Escape'Result'Length >= S'Length;

-- Encode all characters that cannot be used as-is into an HTML page

function Is_Number (S : String) return Boolean;
-- Returns true if S is composed of digits only

-- Byte Order Mark

BOM_Utf8 : constant String :=
Character'Val (16#EF#)
& Character'Val (16#BB#)
& Character'Val (16#BF#);

private
-- implementation removed

end Templates_Parser.Utils;

6.3. Templates_Parser.Utils 49

Templates Parser Documentation, Release 20.0

6.4 Templates_Parser.XML

--
-- Templates Parser --
-- --
-- Copyright (C) 2004-2012, AdaCore --
-- --
-- This library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU General Public License as published by the --
-- Free Software Foundation; either version 3, or (at your option) any --
-- later version. This library is distributed in the hope that it will be --
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are --
-- granted additional permissions described in the GCC Runtime Library --
-- Exception, version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
--

-- This API provides a way to save a Translate_Set as an XML document.
-- There is special rules to know about composite tags.
--
-- Composite tags :
--
-- If a tag named TAG exists, then the name TAG_DESCRIPTION is used as a
-- description for this specific tag.
--
-- Composite tags (more than one nested level)
--
-- If a tag named TAG exists, then the names TAG_DIM[n]_LABELS is used as
-- a set of labels for the tag's nth axis. In this case TAG_DIM[n]_LABELS
-- must be a vector tag, each entry corresponds to a label on this
-- axis. Also TAG_DIM[n]_DESCRIPTION is used as a description for this
-- axis.
--
-- Here is the DTD :
--
-- <?xml version="1.0" encoding="UTF-8"?>
-- <!--Description of a tag or dimension (ex: year)-->
-- <!ELEMENT Description (#PCDATA)>
-- <!--a dimension-->
-- <!ELEMENT Dim (Description, Labels)>
-- <!ATTLIST Dim
-- n CDATA #REQUIRED
-- >
-- <!--entry of a CompositeTag-->

50 Chapter 6. Templates Parser API Reference

Templates Parser Documentation, Release 20.0

-- <!ELEMENT Entry (ind+, V)>
-- <!--label of an indice of a dimension (ex: 2000)-->
-- <!ELEMENT Label (#PCDATA)>
-- <!ATTLIST Label
-- ind CDATA #REQUIRED
-- >
-- <!--list of labels of one dimension (ex: 1999, 2000, 2001)-->
-- <!ELEMENT Labels (Label+)>
-- <!--alias and information-->
-- <!ELEMENT Tag (Name, Description)>
-- <!--tagged data to be published in templates-->
-- <!ELEMENT Tagged (SimpleTag*, CompositeTag*)>
-- <!--simple variable value-->
-- <!ELEMENT V (#PCDATA)>
-- <!ELEMENT ind (#PCDATA)>
-- <!ATTLIST ind
-- n CDATA #REQUIRED
-- >
-- <!--identification name for this tag-->
-- <!ELEMENT Name (#PCDATA)>
-- <!--Tag with no dimension (simple variable)-->
-- <!ELEMENT SimpleTag (Tag, V)>
-- <!--Tag with one or more dimensions-->
-- <!ELEMENT CompositeTag (Tag, Dim+, Entry)>

package Templates_Parser.XML is

function Image (Translations : Translate_Set) return Unbounded_String;
-- Returns a string representation encoded in XML for this
-- translate table.

function Value (Translations : String) return Translate_Set;
-- Returns a translate set for this string representation

function Value (Translations : Unbounded_String) return Translate_Set;
-- Save as above but based on an Ubounded_String

function Load (Filename : String) return Translate_Set;
-- Read XML document Filename and create the corresponding Translate_set

procedure Save (Filename : String; Translations : Translate_Set);
-- Write the translate table into filename

end Templates_Parser.XML;

6.4. Templates_Parser.XML 51

Templates Parser Documentation, Release 20.0

Copyright (C) 1999-2004, Pascal Obry

Copyright (C) 2005-2015, AdaCore

This document may be copied, in whole or in part, in any form or by any means, as is or with alterations, provided that
(1) alterations are clearly marked as alterations and (2) this copyright notice is included unmodified in any copy.

52 Chapter 6. Templates Parser API Reference

INDEX

Symbols
’Indent, 11
’Length, 11
’Line, 11
’Max_Column, 11
’Min_Column, 11
’Up_Level, 11
*|hyperpage, 6
+|hyperpage, 6
-|hyperpage, 6
/|hyperpage, 6

A
ABS, 6
ADD_PARAM, 6
Attribute, 11

B
BLOCK, 29
Boolean, 4
BR_2_EOL, 6
BR_2_LF, 6

C
CAPITALIZE, 6
CLEAN_TEXT, 6
COMA_2_POINT, 7
Command, 15, 16, 18, 27, 29
comments, 15
composite, 5
CONTRACT, 7
Cursor_Tag, 12

D
Debug, 36
DEL_PARAM, 7
discrete, 4
Dynamic tags, 12

E
EXIST, 7

EXTENDS, 29

F
FILE_EXISTS, 7
Filter, 6–9
Filters, 5
FORMAT_DATE, 7
FORMAT_NUMBER, 8

I
IF, 16
IF expression, 16
INCLUDE, 15
INLINE, 27
IS_EMPTY, 8

L
Lazy_Tag, 12
LF_2_BR, 8
LOWER, 8

M
MACRO, 29
MATCH, 8
MAX, 8
MIN, 8
MOD, 8

N
NEG, 8
NO_DIGIT, 8
NO_DYNAMIC, 8
NO_LETTER, 8
NO_SPACE, 8

O
OUI_NON, 8

P
POINT_2_COMA, 8

R
REPEAT, 8

53

Templates Parser Documentation, Release 20.0

REPLACE, 8
REPLACE_ALL, 9
REPLACE_PARAM, 9
REVERSE, 9, 18

S
SET, 27
SIZE, 9
SLICE, 9
STRIP, 9

T
TABLE, 18
Tag, 4, 5
Tag utils, 33
templates2ada, 33
templatespp, 36
TERMINATE_SECTIONS, 18
TERSE, 18
Translate_Set, 4
Translate_Table, 4
TRIM, 9

U
UPPER, 9

W
WEB_ENCODE, 9
WEB_ESCAPE, 9
WEB_NBSP, 9
WRAP, 9

X
XML, 33

Y
YES_NO, 9

54 Index

	Introduction
	Tags
	Tags in template files
	Translations
	Discrete, Boolean and Composite values
	Filters
	Predefined filters
	User defined filters

	Attributes
	Predefined tags
	Dynamic tags
	Lazy_Tag
	Cursor_Tag

	Template statements
	Comments
	INCLUDE statement
	IF statement
	TABLE statement
	SET statement
	INLINE statement
	MACRO statement
	EXTENDS and BLOCK statements

	Macros
	Other Services
	Tag utils
	XML representation
	Templates2Ada
	Running templates2ada
	Customizing templates2ada

	Templatespp
	Debug

	Templates Parser API Reference
	Templates_Parser
	Templates_Parser.Debug
	Templates_Parser.Utils
	Templates_Parser.XML

