
GPS User’s Guide
Release 2018

AdaCore

May 29, 2018

CONTENTS

1 Description of the Main Window 3
1.1 The Workspace . 3

1.1.1 Common features of the views . 3
1.1.2 Common features of browsers . 4

1.2 The Preferences Assistant . 7
1.3 The Welcome Dialog . 8
1.4 The Tool Bar . 9
1.5 The omni-search . 10
1.6 The Messages view . 13
1.7 The Locations View . 13
1.8 The Project view . 15
1.9 The Learn view . 19
1.10 The Scenario view . 20
1.11 The Files View . 23
1.12 The Windows view . 24
1.13 The Outline view . 26
1.14 The Clipboard view . 29
1.15 The Call trees view and Callgraph browser . 30

1.15.1 Call Trees . 30
1.15.2 Callgraph browser . 31

1.16 The Bookmarks view . 32
1.16.1 Basic usage: Creating a new bookmark . 32
1.16.2 Adding more bookmarks . 33
1.16.3 Organizing bookmarks into groups . 33
1.16.4 Adding notes . 34
1.16.5 Add note with drag and drop . 35
1.16.6 Filtering bookmarks . 35
1.16.7 Favorite files . 35

1.17 The Python Console . 36
1.18 The OS Shell Console . 37
1.19 The Execution window . 37
1.20 The Tasks view . 37
1.21 The Project Browser . 38
1.22 The Dependency Browser . 39
1.23 The Elaboration Circularities browser . 41
1.24 The Entity browser . 42
1.25 The File Selector . 43

2 The Menu Bar 45
2.1 The File Menu . 45

i

2.2 The Edit Menu . 47
2.3 The Navigate Menu . 48
2.4 The Find Menu . 50
2.5 The View Menu . 51
2.6 The Code Menu . 53
2.7 The VCS Menu . 54
2.8 The Build Menu . 55
2.9 The Analyze Menu . 56
2.10 The Debug Menu . 57
2.11 The SPARK Menu . 59
2.12 The CodePeer Menu . 59
2.13 The Window Menu . 59
2.14 The Help Menu . 60

3 Multiple Document Interface 61
3.1 Window layout . 61
3.2 Selecting Windows . 61
3.3 Closing Windows . 61
3.4 Splitting Windows . 62
3.5 Floating Windows . 62
3.6 Moving Windows . 63
3.7 Perspectives . 63

4 Editing Files 65
4.1 General Information . 65
4.2 Editing Sources . 68

4.2.1 Key bindings . 68
4.3 Recording and replaying macros . 69
4.4 Contextual Menus for Editing Files . 70
4.5 Handling of casing . 70
4.6 Refactoring . 71

4.6.1 Rename Entity . 72
4.6.2 Name Parameters . 72
4.6.3 Extract Subprogram . 72

4.7 Using an External Editor . 76
4.8 Using the Clipboard . 77
4.9 Saving Files . 77
4.10 Printing Files . 78

5 Source Navigation 79
5.1 Support for Cross-References . 79

5.1.1 Ada cross-reference heuristics . 79
5.1.2 The cross-reference database . 80
5.1.3 Cross-references and partially compiled projects . 81
5.1.4 Cross-reference and GNAT runtime . 81

5.2 Contextual Menus for Source Navigation . 81
5.3 Navigating with hyperlinks . 83
5.4 Highlighting dispatching calls . 84

6 Project Handling 85
6.1 Description of the Projects . 85

6.1.1 Project files and GNAT tools . 85
6.1.2 Contents of project files . 86

6.2 Supported Languages . 87
6.3 Scenarios and Configuration Variables . 88

ii

6.3.1 Creating new scenario variables . 88
6.3.2 Editing existing scenario variables . 89

6.4 Extending Projects . 91
6.4.1 Description of project extensions . 91
6.4.2 Creating project extensions . 91
6.4.3 Adding files to project extensions . 91

6.5 Aggregate projects . 91
6.6 Disabling Editing of the Project File . 92
6.7 The Project Wizard . 93
6.8 The Project Properties Editor . 93
6.9 The Switches Editor . 95

7 Searching and Replacing 97
7.1 Searching . 97
7.2 Replacing . 99
7.3 Searching in current file . 100

8 Compilation/Build 101
8.1 The Target Configuration Editor . 101

8.1.1 The Targets tree . 102
8.1.2 The configuration panel . 102
8.1.3 Background compilations . 104

8.2 The Build Mode . 104
8.3 Working with two compilers . 104

8.3.1 Interaction with the remote mode . 105

9 Debugging 107
9.1 The Call Stack View . 108
9.2 The Variables View . 108
9.3 The Breakpoint Editor . 109
9.4 The Memory View . 112
9.5 Using the Source Editor when Debugging . 112
9.6 The Assembly Window . 114
9.7 The Debugger Console . 115
9.8 Customizing the Debugger . 116
9.9 Command line interface . 117

10 Version Control System 119
10.1 Setting up projects for version control . 119
10.2 Finding file status (Project view) . 121
10.3 The VCS Perspective . 122
10.4 The Commits view . 124

10.4.1 Viewing modified files . 124
10.4.2 Committing files . 125
10.4.3 Actions in the Commits view . 125
10.4.4 The Commits view local toolbar . 126

10.5 The History view . 128
10.5.1 List of all past commits . 129
10.5.2 Graph of past history . 129
10.5.3 Details on selected commits . 131

10.6 The Branches view . 134
10.6.1 Git and the Branches view . 136
10.6.2 CVS and the Branches view . 138
10.6.3 Subversion and the Branches view . 138

10.7 The Diff View . 139

iii

11 Tools 141
11.1 Coding Standard . 141
11.2 Visual Comparison . 141
11.3 Code Fixing . 143
11.4 Documentation Generation . 143
11.5 Working With Unit Tests . 143

11.5.1 The GNATtest Menu . 144
11.5.2 The Contextual Menu . 144
11.5.3 Project Properties . 144

11.6 Metrics . 144
11.6.1 The Metrics Menu . 144
11.6.2 The Contextual Menu . 145

11.7 Code Coverage . 145
11.7.1 Coverage Menu . 145
11.7.2 The Contextual Menu . 146
11.7.3 The Coverage Report . 146

11.8 Stack Analysis . 148
11.8.1 The Stack Analysis Menu . 149
11.8.2 The Contextual Menu . 149
11.8.3 The Stack Usage Report . 149
11.8.4 The Stack Usage Editor . 149

12 Working in a Cross Environment 151
12.1 Customizing your Projects . 151
12.2 Debugger Issues . 152

13 Using GPS for Remote Development 153
13.1 Requirements . 153
13.2 Setup the remote servers . 153

13.2.1 The remote configuration dialog . 153
13.2.2 Connection settings . 154
13.2.3 Path settings . 156

13.3 Setup a remote project . 156
13.3.1 Remote operations . 156
13.3.2 The remote view . 157
13.3.3 Loading a remote project . 157

13.4 Limitations . 158

14 Customizing and Extending GPS 159
14.1 Color Themes . 159
14.2 Custom Fonts . 159
14.3 The Key Shortcuts Editor . 160
14.4 Editing Plugins . 161
14.5 Customizing through XML and Python files . 162

14.5.1 Customization files and plugins . 162
14.5.2 Defining Actions . 165
14.5.3 Macro arguments . 168
14.5.4 Filtering actions . 174
14.5.5 Adding new menus . 177
14.5.6 Adding contextual menus . 179
14.5.7 Adding tool bar buttons . 180
14.5.8 Binding actions to keys . 181
14.5.9 Configuring preferences . 182
14.5.10 Creating themes . 183

iv

14.5.11 Defining new search patterns . 184
14.5.12 Defining custom highlighters . 185
14.5.13 Adding support for new languages . 189
14.5.14 Defining text aliases . 193
14.5.15 Alias files . 195
14.5.16 Defining project attributes . 196
14.5.17 Adding casing exceptions . 202
14.5.18 Adding documentation . 202
14.5.19 Adding custom icons . 203
14.5.20 Customizing Remote Programming . 204
14.5.21 Customizing Build Targets and Models . 207
14.5.22 Customizing Toolchains . 212

14.6 Adding support for new tools . 213
14.6.1 Defining supported languages . 213
14.6.2 Defining the default command line . 214
14.6.3 Defining tool switches . 214
14.6.4 Executing external tools . 218

14.7 Customization examples . 222
14.7.1 Menu example . 222
14.7.2 Tool example . 222

14.8 Scripting GPS . 223
14.8.1 Scripts . 223
14.8.2 Scripts and GPS actions . 224
14.8.3 The GPS Shell . 224
14.8.4 The Python Interpreter . 224
14.8.5 Python modules . 225
14.8.6 Subprogram parameters . 226
14.8.7 Python FAQ . 230
14.8.8 Hooks . 235

14.9 The Server Mode . 238
14.10 Adding project templates . 239

15 Environment 241
15.1 Command Line Options . 241
15.2 Environment Variables . 242
15.3 Files . 243
15.4 Reporting Suggestions and Bugs . 245
15.5 Solving Problems . 245

16 Scripting API reference for GPS 249
16.1 Function description . 249
16.2 User data in instances . 249
16.3 Hooks . 250
16.4 Functions . 250
16.5 Classes . 259

16.5.1 GPS.Action . 259
16.5.2 GPS.Alias . 262
16.5.3 GPS.Bookmark . 262
16.5.4 GPS.BuildTarget . 263
16.5.5 GPS.Button . 264
16.5.6 GPS.Clipboard . 264
16.5.7 GPS.CodeAnalysis . 265
16.5.8 GPS.Codefix . 267
16.5.9 GPS.CodefixError . 268

v

16.5.10 GPS.Command . 269
16.5.11 GPS.CommandWindow . 270
16.5.12 GPS.Completion . 271
16.5.13 GPS.Console . 272
16.5.14 GPS.Construct . 277
16.5.15 GPS.ConstructsList . 277
16.5.16 GPS.Context . 278
16.5.17 GPS.Contextual . 279
16.5.18 GPS.Cursor . 282
16.5.19 GPS.Debugger . 282
16.5.20 GPS.DebuggerBreakpoint . 287
16.5.21 GPS.Editor . 287
16.5.22 GPS.EditorBuffer . 295
16.5.23 GPS.EditorHighlighter . 303
16.5.24 GPS.EditorLocation . 304
16.5.25 GPS.EditorMark . 308
16.5.26 GPS.EditorOverlay . 309
16.5.27 GPS.EditorView . 311
16.5.28 GPS.Entity . 312
16.5.29 GPS.Exception . 318
16.5.30 GPS.File . 318
16.5.31 GPS.FileLocation . 322
16.5.32 GPS.FileTemplate . 323
16.5.33 GPS.Filter . 324
16.5.34 GPS.GUI . 325
16.5.35 GPS.HTML . 326
16.5.36 GPS.Help . 327
16.5.37 GPS.History . 328
16.5.38 GPS.Hook . 328
16.5.39 GPS.Predefined_Hooks . 330
16.5.40 GPS.Invalid_Argument . 345
16.5.41 GPS.Language . 345
16.5.42 GPS.LanguageInfo . 347
16.5.43 GPS.Libclang . 347
16.5.44 GPS.Locations . 347
16.5.45 GPS.Logger . 349
16.5.46 GPS.MDI . 350
16.5.47 GPS.MDIWindow . 354
16.5.48 GPS.MemoryUsageProvider . 355
16.5.49 GPS.MemoryUsageProviderVisitor . 355
16.5.50 GPS.Menu . 356
16.5.51 GPS.Message . 356
16.5.52 GPS.Missing_Arguments . 359
16.5.53 GPS.OutlineView . 359
16.5.54 GPS.OutputParserWrapper . 359
16.5.55 GPS.Preference . 360
16.5.56 GPS.PreferencesPage . 362
16.5.57 GPS.Process . 363
16.5.58 GPS.Project . 367
16.5.59 GPS.ProjectTemplate . 377
16.5.60 GPS.ReferencesCommand . 377
16.5.61 GPS.Revision . 378
16.5.62 GPS.Search . 378
16.5.63 GPS.Search_Result . 381

vi

16.5.64 GPS.SemanticTree . 381
16.5.65 GPS.Style . 381
16.5.66 GPS.SwitchesChooser . 382
16.5.67 GPS.Task . 383
16.5.68 GPS.Timeout . 384
16.5.69 GPS.ToolButton . 385
16.5.70 GPS.Toolbar . 385
16.5.71 GPS.Unexpected_Exception . 385
16.5.72 GPS.VCS2 . 385
16.5.73 GPS.VCS2_Task_Visitor . 387
16.5.74 GPS.Valgrind . 388
16.5.75 GPS.Vdiff . 389
16.5.76 GPS.XMLViewer . 390

17 Scripting API reference for GPS.Browsers 393
17.1 Classes . 393

17.1.1 GPS.Browsers.AbstractItem . 393
17.1.2 GPS.Browsers.Diagram . 394
17.1.3 GPS.Browsers.EditableTextItem . 398
17.1.4 GPS.Browsers.EllipseItem . 399
17.1.5 GPS.Browsers.HrItem . 399
17.1.6 GPS.Browsers.ImageItem . 400
17.1.7 GPS.Browsers.Item . 400
17.1.8 GPS.Browsers.Link . 402
17.1.9 GPS.Browsers.PolylineItem . 404
17.1.10 GPS.Browsers.RectItem . 405
17.1.11 GPS.Browsers.Style . 405
17.1.12 GPS.Browsers.TextItem . 407
17.1.13 GPS.Browsers.View . 407

18 Useful plugins 413
18.1 User plugins . 413

18.1.1 The auto_highlight_occurrences.py module 413
18.1.2 The dispatching.py module . 413

18.2 Helper plugins . 413
18.2.1 The gps_utils module . 414
18.2.2 The gps_utils.highlighter.py module . 416
18.2.3 The gps_utils.console_process.py module . 420

18.3 Plugins for external tools . 421
18.3.1 QGen . 421

19 GNU Free Documentation License 423
19.1 PREAMBLE . 423
19.2 APPLICABILITY AND DEFINITIONS . 423
19.3 VERBATIM COPYING . 424
19.4 COPYING IN QUANTITY . 424
19.5 MODIFICATIONS . 425
19.6 COMBINING DOCUMENTS . 426
19.7 COLLECTIONS OF DOCUMENTS . 426
19.8 AGGREGATION WITH INDEPENDENT WORKS . 426
19.9 TRANSLATION . 427
19.10 TERMINATION . 427
19.11 FUTURE REVISIONS OF THIS LICENSE . 427
19.12 ADDENDUM: How to use this License for your documents . 427

vii

20 Indices and tables 429

Python Module Index 431

viii

GPS User’s Guide, Release 2018

GPS is a complete integrated development environment. It integrates with a wide range of tools, providing easy access
to each. It integrates especially well with AdaCore’s tools but can easily be extended to work with other tools by
writing small plugins in Python.

Here is a summary of the features of the GNAT Programming Studio:

• Multiple Document Interface

GPS uses a multiple document interface, allowing you to organize windows the way you want and organize your
desktop by floating them to other screens or dragging them to any location. (GPS restores the desktop the next
time it is restarted.)

• Built-in editor (Editing Files)

Fully customizable editor with syntax highlighting, smart completion of text, multiple views of the same file,
automatic indentation, block-level navigation, support for Emacs key bindings, code folding, refactoring, visual
comparison of files, and alias expansion, among other features.

• Support for compile/build/run cycle (Compilation/Build)

Any compiler called by a command line can be integrated in GPS, with built in support for GNAT, gcc, and
make. You can easily navigate through error messages, and automatic code fixing is provided for many common
errors. GPS includes support for cross-compilers (running compilers on a different machine than the one on
which GPS is running).

• Project management (Project Handling)

You can use project files (editable either graphically or manually) to describe attributes of a project, including
the location of sources, their naming schemes, and how they should be built. GPS provides a graphical browser
to analyze both dependencies between your projects and between sources within your projects.

• Integration with various Version Control System

CVS, subversion, git, and ClearCase are supported out of the box. You can add support for others by cus-
tomizing some XML plugins.

CONTENTS 1

GPS User’s Guide, Release 2018

• Intelligent Source Navigation

By leveraging information provided by the compilers and using its own parsers, GPS allows you to find program
information such as the declaration of entities and their references, that would otherwise be hard to locate. It
also provides advanced capabilities such as call graphs and UML-like entity browsers.

• Full debugger integration (Debugging)

GPS fully integrates with gdb and provides multiple graphical views to monitor the state of your application,
including a call stack, a visual display for the values of the variables, and a breakpoint editor.

• Integration with code analysis tools (Tools)

GPS integrates tightly with various command-line tools such as gcov and GNATcoverage (for the coverage of
your code) and CodePeer and Spark (to analyze your code). In most cases, it provides graphical rendering of
their output, often integrated with the editor itself so the information is available where and when you need it.

• Fully customizable (Customizing and Extending GPS)

GPS provides an extensive Python API, allowing you to customize existing features or easily develop your own
new plugins. Simpler customization can be done through the numerous preferences and local settings.

2 CONTENTS

CHAPTER

ONE

DESCRIPTION OF THE MAIN WINDOW

The GNAT Programming Studio has one main window, which is where you perform most of your work. However,
GPS is very flexible and lets you organize your desktop many different ways, as discussed in a later section (Multiple
Document Interface).

There are also other windows that might pop up at various times, documented in this section.

1.1 The Workspace

The overall workspace is based on a multiple document interface (see Multiple Document Interface) and can contain
any number of windows, the most important of which are usually the editors. However, GPS also provides a large
number of views that you can add to the workspace. The sections below list them.

1.1.1 Common features of the views

Some views are part of the default desktop and are visible by default. Open the other views through one of the
submenus of the View menu.

3

GPS User’s Guide, Release 2018

Some of the views have their own local toolbar that contains shortcuts to the most often used features of that view.

There is often a button to the right of these local toolbars that opens a local settings menu. This menu either contains
more actions you can perform in that view or various configuration settings allowing you to change the behavior or
display of the view.

Some views also have a filter in their local toolbar. You can use these filters to reduce the amount of information
displayed on the screen by only displaying those lines matching the filter.

If you click on the left icon of the filter, GPS brings up a popup menu to allow you to configure the filter:

• Use the first three entries to choose the search algorithm (full text match, regular expression, or fuzzy matching).
These modes are similar to the ones used in the omni-search (see The omni-search).

• The next entry is Invert filter. When you select this option, lines that do not match the filter are displayed, instead
of the default behavior of displaying ones that match the filter. You can also enable this mode temporarily by
beginning the filter with the string not:. For example, a filter in the Locations view saying not:warning
hides all warning messages.

• Select the last entry, Whole word, when you only want to match full words, not substrings.

1.1.2 Common features of browsers

GPS presents a view of information using an interactive display called a “browser”, which shows a canvas containing
boxes you can manipulate. Browsers provide the following additional capabilities:

• Links

Boxes can be linked together and remain linked when they are moved. There are different types of links; see the
description of the various browsers for more details.

Hide links using a button on the local toolbar. This keeps the canvas more readable at the cost of losing infor-
mation. You can also hide only a subset of links. Even when links are hidden, if you select a box, boxes linked
to it are still highlighted.

• Scrolling

When many boxes are displayed, the currently visible area may be too small for all of them. When that happens,
GPS adds scrollbars. You can also scroll using the arrow keys, or by dragging the background while pressing
the left mouse button.

• Layout

GPS organizes the boxes in a browser using a simple layout algorithm, which is layer oriented: items with no
parents are put in the first layer, their direct children are put in the second layer, and so on. Depending on the
type of browser, these layers are organized either vertically or horizontally. If you move boxes, this algorithm
tries to preserve their relative positions as much as possible.

Use the Refresh layout button in the local toolbar to recompute the layout at any time, including that of boxes
you moved.

• Moving boxes

Move boxes with the mouse. Drag the box by clicking on its title bar. The box’s links are still displayed during
the move, so you can see whether it overlaps any other box. If you try to move the box outside the visible part
of the browser, it is scrolled.

• Selecting boxes

Select a box by clicking it.

4 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

The title bar of selected boxes is a different color. All boxes linked to them also use a different title bar color
and so do the links. This is the most convenient way to visualize the relationships between boxes when many
are present in the browser.

Use buttons in the local toolbar to either remove the selected boxes or remove the boxes that are not selected.

• Zooming

GPS provides several different zoom levels. Use the zoom in, zoom out, and zoom buttons in the local toolbar to
change the level and use the latter to explicitly select the level you want.

You can also press the alt key and use the mouse wheel to zoom in or out.

This capability is generally useful when many boxes are displayed in the browser to allow you to get an overview
of the layout and the relationships between the boxes.

• export

Export the entire contents of a browser as a PNG or SVG image using the Export to... button in the local toolbar.

• Hyper-links

Some boxes contain hyper links, displayed in blue by default, and underlined. Clicking on these generally
displays new boxes.

• Contextual menus

Right-clicking on boxes displays a contextual menu with actions you can perform on that box. These actions
are specific to the kind of box you clicked.

• Grid

By default, GPS doesn’t display a grid on the canvas. Use the local settings menu to show the grid (uncheck
Draw grid) or to force items to align on the grid (Align on grid).

Icons for source language entities

Entities in the source code are represented by icons within the various GPS views (for example, the Outline and
Project views). These icons indicate both the semantic category of the entity within the language, such as packages
and methods, as well as compile-time visibility. The icons also distinguish entity declarations from other entities. The
same icons are used for all programming languages supported by GPS, with language-specific interpretations for both
compile-time visibility and distinguishing declarations and uses of entities.

These five language categories are used for all supported languages:

• The package category’s icon is a square.

• The subprogram category’s icon is a circle.

• The type category’s icon is a triangle.

• The variable category’s icon is a dot.

1.1. The Workspace 5

GPS User’s Guide, Release 2018

• The generic category’s icon is a diamond.

These icons are enhanced with decorations, when appropriate, to indicate compile-time visibility constraints and to
distinguish declarations from completions. For example, icons for entity declarations have a small ‘S’ decorator added,
denoting a ‘spec’.

Icons for ‘protected’ and ‘private’ entities appear within an enclosing box indicating a compile-time visibility con-
straint. For entities with ‘protected’ visibility, the enclosing box is gray. ‘Private’ entities are enclosed by a red box.
Icons for ‘public’ entities have no enclosing box. For example, a variable with ‘private’ visibility is represented by an
icon consisting of a dot enclosed by a red box. These additional decorations are combined when appropriate. For ex-
ample, the icon corresponding to the ‘private’ declaration of a ‘package’ entity would be a square, as for any package
entity, with a small ‘S’ added, all enclosed by a red box.

Language constructs are mapped to categories in a language-specific manner. For example, C++ namespaces and
Ada packages correspond to the package category and C functions and Ada subprograms correspond to the method
category. The generic category is a general category representing other language entities, but not all possible language
constructs are mapped to categories and icons. (Specifically, the generic category does not correspond to Ada generic
units or C++ templates.)

The names of the categories should not be interpreted literally as language constructs because the categories are meant
to be general in order to limit the number of categories. For example, the variable category includes both constants
and variables in Ada. Limiting the number of categories maintains a balance between presentation complexity and the
need to support many different programming languages.

Icons for a given entity may appear more than once within a view. For example, an Ada private type has both a partial
view in the visible part of the enclosing package and a full view in the private part of the package. A triangle icon
will appear for each of the two occurrences of the type name, one with the additional decoration indicating ‘private’
visibility.

6 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.2 The Preferences Assistant

When starting GPS for the first time, a preferences assistant window opens, allowing you to configure some general
preferences (color theme, key bindings etc.).

You can skip the remaining pages of the preferences assistant by clicking on the Start using GPS button or by clicking
on red cross.

1.2. The Preferences Assistant 7

GPS User’s Guide, Release 2018

1.3 The Welcome Dialog

When GPS starts, it looks for a project file to load so it knows where to find the sources of your project. This project
is often specified on the command line (via a -P switch). If not, and the current directory contains only one project
file, GPS selects it automatically. Finally, if you specify the name of a source file to edit, GPS loads a default project.
If GPS cannot find a project file, it displays a welcome dialog, giving you the following choices:

• Create new project

Clicking on this button launches an assistant to create a project using one of the predefined project templates.
This makes it easy to create GtkAda-based applications, or applications using the Ada Web Server, for example.

• Open project

Clicking on this button opens up a file browser, allowing you to select a project file to load.

• Start with default

Clicking on this button causes GPS to look for a project called default.gpr in the current directory and load
it if found. Otherwise, it copies the default project <prefix>/share/gps/default.gpr into the current
directory and loads it. GPS removes this temporary copy when exiting or loading another project if you have
not modified the copy.

The default project contains all the Ada source files from the specified directory (assuming they use the default
GNAT naming scheme .ads and .adb).

If the current directory is not writable, GPS instead loads <prefix>/share/gps/readonly.gpr. In this
case, GPS runs in a limited mode, where some capabilities (such as building and source navigation) are not
available. This project will not contain any sources.

In addition to these choices, you can also load a recently opened project by clicking the project of interest in the
left-hand pane listing the known recent projects.

8 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.4 The Tool Bar

The tool bar provides shortcuts to some common actions:

• Create a new file

• Open an existing file (see also the omni-search on the right of the bar)

• Save the current file

• Undo or redo last editing

• Go to previous or next saved location

• Multiple customizable buttons to build, clean, run or debug your project

• multiple buttons to stop and continue the debugger, step to the next instruction, and other similar actions when
a debugger is running.

When GPS is performing background actions, such as loading cross-reference information or all actions involving
external processes (including compiling), it displays a progress bar in the toolbar showing when the current task(s)
will be completed. Click on the button to pop up a window showing the details of the tasks. This window is a Tasks
view, and can be used to pause or interrupt running tasks (see The Tasks view). This window can be discarded by
pressing ESC or by clicking anywhere else in the GPS. This window also disappears when there are no more running
tasks.

1.4. The Tool Bar 9

GPS User’s Guide, Release 2018

1.5 The omni-search

The final item in the toolbar is “omni-search”. Use this to search for text in various contexts in GPS, such as filenames
(for convenient access to source files), the entities referenced in your application, and your code.

10 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

There are various ways to use the omni-search:

• The simplest way is to click on it and type the pattern you want to find. GPS immediately starts searching in the
background for possible matching open windows, file names, entities, GPS actions, bookmarks, and source files.
For each context, GPS display how many matches there are in that context but only displays the five matches
with the highest score.

Click on the name of context to search only in that context. For example, if GPS shows 20 file names matching
your search (while only displaying the five first), click on file names to view all 20 names and exclude the results
from all the other contexts. If you click on the context again, GPS again displays the results from all contexts.

• If you are searching in a single context, GPS defines a number of actions to which you can bind key shortcuts
via the Edit → Preferences... dialog instead of using the above procedure. These actions are found in the Search
category and are called Global Search in context:. GPS includes a menu for two of them by default: Find →
Find File in Project searches filenames, while Find → Find Entity searches all entities defined in your project.

Each context displays its results slightly differently and clicking on a result has different effects in each context. For
example, clicking on a file name opens the corresponding file, while clicking on an entity jumps to its declaration and
clicking on a bookmark displays the source file containing the bookmark.

Press enter at any point to select the top item in the list of search results.

1.5. The omni-search 11

GPS User’s Guide, Release 2018

You may have no interest in some search contexts. Disable them by clicking the Settings icon at the bottom-right
corner of the completion popup. The resulting dialog displays a list of all contexts to be searched; clicking on any
of the checkboxes next to the names disables searching that context. This list is only displayed when you started the
omni-search by clicking on it in the toolbar. If you started it via shift-F3 or the equivalent Find → Find File in
Project... menu, only a subset of the settings are displayed.

You can also reorder the contexts from this settings dialog, which affects the order in which they are searched and
displayed. We recommend keeping the Sources context last, because it is the slowest and while GPS is searching it,
cannot search the other, faster, contexts.

In the settings dialog, you can choose whether to display a Preview for the matches. This preview is displayed when
you use the down arrow key to select some of the search results. It displays the corresponding source file or the
details for the matching GPS action or bookmark. You can also select the number of results to be displayed for each
context when multiple contexts are displayed or the size of the search field (which depends on how big your screen
and the GPS window are).

One search context looks for file names and is convenient for quickly opening files. By default, it looks at all files
found in any of the source directories of your project, even if those files are not explicit sources of the project (for
example because they do not match the naming scheme for any of the languages used by the project). This is often
convenient because you can easily open support files like Makefiles or documentation, but it can also sometimes
be annoying if the source directories include too many irrelevant files. Use the Include all files from source dirs setting
to control this behavior.

GPS allows you to choose among various search algorithms:

• Full Text checks whether the text you typed appears exactly as you specified it within the context (for example,
a file name, the contents of a file, or the name of an entity).

• Regular Expression assumes the text you typed is a valid regular expression and searches for it. If it is not a
valid regexp, it tries to search for the exact text (like Full Text).

• Fuzzy Match tries to find each of the characters you typed, in that order, but possibly with extra characters in
between. This is often the fastest way to search, but might requires a bit of getting used to. For example, the
text mypks matches the file name MY_PacKage.adS because the letters shown in upper cases are contained
in the filename.

When searching within source files, the algorithm is changed slightly, to avoid having too many matches. In that
context, GPS only allows a close approximations between the text you typed and the text it tries to match (for
example, one or two extra or missing characters).

Select the algorithm to use at the bottom of the popup window containing the search results.

Once it finds a match, GPS assigns it a score, used to order the results in the most meaningful way for you. Scoring is
based on a number of criteria:

• length of the match

For example, when searching file names, it is more likely that typing ‘foo’ was intended to match ‘foo.ads’ than
‘the_long_foo.ads’.

• the grouping of characters in the match

As we have seen, when doing a fuzzy match GPS allows extra characters between the ones you typed. But the
closer the ones you typed are in the match result, the more likely it is that this is what you were looking for.

• when was the item last selected

If you recently selected an item (like a file name), GPS assumes you are more likely to want it again and raises
its score.

12 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.6 The Messages view

The Messages view, which is read-only, displays information and feedback about operations, including build output,
information about processes launched, and error messages.

Its local toolbar contains buttons to Clear the contents of the window, as well as Save and Load from files. The latter
operation also parses those messages into the Locations window.

The actual output of the compilation is displayed in the Messages view but is also parsed and many of its messages
are displayed more conveniently in the Locations view (see The Locations View). When a compilation finishes, GPS
displays the total elapsed time.

You cannot close the Messages view because it might contain important messages. If GPS closed it, you can reopen it
with the View → Messages menu.

1.7 The Locations View

GPS uses the Location view, which is also read-only, to display a list of locations in source files (for example, when
performing a global search or displaying compilation results).

It displays a hierarchy of categories, each of which contain files, each, in turn, containing messages at specific loca-
tions. The category describes the type of messages (for example, search or build results). If the full text of a message
is too large to be completely shown in the window, placing the mouse over it pops up a tooltip window with the full
text.

1.6. The Messages view 13

GPS User’s Guide, Release 2018

Each message in this window corresponds to a line in a source editor. This line has been highlighted and has a mark
on its left side. Clicking on a message brings up an editor pointing to that line.

The Locations view provides a local toolbar with the following buttons:

• Clear removes all entries from the view and, depending on your settings, may also close the view.

• Remove removes the currently selected category, file or message as well as the corresponding highlighting in the
source editor.

• Save saves the contents of the view to a text file for later reference. You cannot load this file back into the
Locations view, but you can load it into the Messages view. However, if you plan to reload it later, it is better to
save and reload the contents of the Messages view instead.

• Expand All and Collapse All shows or hides all messages in the view.

• a filter to selectively show or hide some messages. Filtering is done on the text of the message itself (the filter
is either text or a regular expression). You can also reverse the filter. For example, typing warning in the filter
field and reversing the filter hides warning messages

The local settings menu contains the following entries:

• Sort by subcategory

Toggle the sorting of messages by sub-categories. This is useful for separating warnings from errors in build
results. The error messages appear first. The default is to sort the message by their location.

• Sort files alphabetically

Sort messages by filenames (sorted alphabetically). The default does not sort by filenames to make it easier to
manipulate Locations view while the compilation is proceeding. (If sorted, the messages might be reordered
while you are trying to click on them).

• Jump to first location

Every time a new category is created, for example, as a result of a compilation or search operation, the first
message in that category is automatically selected and the corresponding editor opened, and the focus is given
to the Locations view.

• Warp around on next/previous

Controls the behavior of the Previous tag and Next tag menus (see below).

• Auto close locations

Automatically close this window when it becomes empty.

• Save locations on exit

Controls whether GPS should save and restore the contents of this window between sessions. Be careful, because
the loaded contents might not apply the next time. For example, the source files have changed, or build errors
have been fixed. So you should not select this option if those conditions might apply.

• Preserve messages

Preserve more build errors after recompiling. When the Locations view contains build errors, and one of the
files is being recompiled, the Locations view will now only update the entries for that file, rather than removing
all build errors.

GPS provides two menus to navigate through the locations using the keyboard: Navigate → Previous Tag and Navigate
→ Next Tag. Depending on your settings, they might wrap around after reaching the first or last message.

You can also bind key shortcuts to these menus via the Edit → Preferences... menu.

In some cases, a wrench icon will be visible on the left of a compilation message. See Code Fixing for more informa-
tion on how to take advantage of this icon.

14 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.8 The Project view

1.8. The Project view 15

GPS User’s Guide, Release 2018

The project view displays a representation of the various components of your project. By default, it is displayed on
the left side of the workspace. Select it using the View → Project menu.

On Windows, you can drop files (for example, from Windows Explorer) into the project view. If you drop a project
file, GPS loads it and it replaces the current project; if you drop a source file, GPS opens it in a new editor.

The project view, combined with the file and outline view, provide an interactive search capability allowing you to
quickly search information currently displayed. Start typing the text to search when the view has the focus. Note that
the contents of the Project view are computed lazily, so not all files are known to this search capability before they
have been opened.

This search opens a small window at the bottom of the view where you can interactively type names. The first matching
name in the tree is selected when you type it. Use the up and down keys to navigate through all the items matching
the current text.

The various components displayed in the project view are:

projects

Each source file you are working with is part of a project. Projects are a way to record the switches to use
for the various tools as well as a number of other properties such as the naming schemes for the sources.
They can be organized into a project hierarchy where a root project can import other projects, each with
their own set of sources (see The Welcome Dialog for details on how projects are loaded in GPS).

16 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

The Project view displays this project hierarchy: the top node is the root project of your application
(usually where the source file that contains the main subprogram will be located). A node is displayed
for each imported project and recursively for other imported projects. If a project is imported by several
projects, it may appear multiple times in the view,

If you edited the project manually and used the limited with construct to create cycles in the project
dependencies, the cycle will expand infinitely. For example, if project a imports project b, which in turn
imports project a through a limited with clause, then expanding the node for a shows b. In turn,
expanding the node for b shows a node for a, and so on.

An icon with a pen mark is displayed if the project was modified but not saved yet. You can save it at
any time by right-clicking the icon. GPS either reminds you to save it before any compilation or saves it
automatically, depending on your preference settings.

GPS provides a second display for this project view, which lists all projects with no hierarchy: all projects
appear only once in the view, at the top level. You may find this display useful for deep project hierarchies,
where it can make it easier to find projects. Activate this display using the local settings menu to the right
of the Project view toolbar.

directories

The files in a project are organized into several directories on disk. These directories are displayed under
each project node in the Project view

You choose whether to see the absolute path names for the directories or paths relative to the location of
the project by using the local settings menu Show absolute paths of the Project view. In all cases, the
tooltip displayed when the mouse hovers over a file or directory shows the full path.

Special nodes are created for object and executables directories. No files are shown for these.

Use the local setting Show hidden directories to select the directories to be considered hidden. Use this to
hide version control directories such as CVS or .svn.

files

Source files are displayed under the node corresponding to the directory containing the file. Only the
source files actually belonging to the project (i.e. are written in a language supported by that project
and follow its naming scheme) are visible. For more information on supported languages, see Supported
Languages. A file might appear multiple times in the Project view if the project it belongs to is imported
by several other projects.

You can drag a file into GPS. This opens a new editor if the file is not already being edited or moves to
the existing editor otherwise. If you press shift while dragging the file and it is already being edited,
GPS creates a new view of the existing editor.

entities

If you open the node for a source file, the file is parsed by a fast parsers integrated in GPS so it can
show all entities declared in the file. These entities are grouped into various categories that depend on the
language. Typical categories include subprograms, packages, types, variables, and tasks.

Double-clicking on a file or clicking on any entity opens an editor or display showing, respectively, the
first line in the file or the line on which the entity is defined.

If you open the search dialog via the Find → Find... menu, you can search for anything in the Project view, either a
file or an entity. Searching for an entity can be slow if you have many files and/or large files.

GPS also provides a contextual menu, called Locate in Project View, in source editors. This automatically searches
for the first entry in this file in the Project view. This contextual menu is also available in other modules, for example
when selecting a file in the Dependency browser.

1.8. The Project view 17

GPS User’s Guide, Release 2018

The local toolbar of the Project view contains a button to reload the project. Use this when you have created or
removed source files from other applications and want to let GPS know there might have been changes on the file
system that impact the contents of the current project.

It also includes a button to graphically edit the attributes of the selected project, such as the tool switches or the naming
schemes. It behaves similarly to the Edit → Project Properties... menu. See The Project Properties Editor for more
information.

If you right click a project node, a contextual menu appears which contains, among others, the following entries that
you can use to understand or modify your project:

• Show projects imported by...

• Show projects depending on...

Open a new window, the Project browser, which displays graphically the relationships between each project in
the hierarchy (see The Project Browser).

• Project → Properties

Opens a new dialog to interactively edit the attributes of the project (such as tool switches and naming schemes)
and is similar to the local toolbar button.

• Project → Save project...

Saves a single project in the hierarchy after you modified it. Modified but unsaved projects in the hierarchy have
a special icon (a pen mark on top of the standard icon). If you would rather save all modified projects in a single
step, use the menu bar item Project → Save All.

Any time you modify one or more projects, the contents of the project view is automatically refreshed, but
no project is automatically saved. This provides a simple way to temporarily test new values for the project
attributes. Unsaved modified projects are shown with a special icon in the project view, a pen mark on top of the
standard icon:

• Project → Edit source file

Loads the project file into an editor so you can edit it. Use this if you need to access some features of the project
files that are not accessible graphically (such as rename statements and variables).

• Project → Dependencies

Opens the dependencies editor for the selected project (see The_Project_Dependencies_Editor).

• Project → Add scenario variable

Adds new scenario variables to the project (see Scenarios and Configuration Variables). However, you may find
it more convenient to use the Scenario view for this purpose.

All the entries in the local settings menu can be manipulated via python extensions, which might be useful when
writing your own plugins. Here are examples on how to do that:

The 'Show flat view" local setting
GPS.Preference('explorer-show-flat-view').set(True)

The 'Show absolute paths" local setting
GPS.Preference('explorer-show-absolute-paths').set(True)

The 'Show hidden directories' local setting
GPS.Preference('explorer-show-hidden-directories').set(True)

The 'Show empty directories' local setting
GPS.Preference('explorer-show-empty-directories').set(True)

18 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

The 'Projects before directories' local setting
GPS.Preference('explorer-show-projects-first').set(True)

The 'Show object directories' local setting
GPS.Preference('explorer-show-object-dirs').set(True)

The 'Show runtime files' local setting
GPS.Preference('explorer-show-runtime').set(True)

The 'Group by directories' local setting
GPS.Preference('explorer-show-directories').set(True)

1.9 The Learn view

The Learn view’s purpose is to help users to familiarize with GPS.

In particular the Learn view displays a list of the most commonly used and useful GPS actions, with their optional key
shortcut.

1.9. The Learn view 19

GPS User’s Guide, Release 2018

The actual contents of the Learn view is filtered depending on the current context: for instance, the actions related to
text editing will only be listed when an editor is focused. Same thing when it comes to debugging: the actions related
to debugging will only be displayed when a debugger is running, etc. This way, you will be able to discover which
actions can be executed in a given context.

Single-clicking on a particular action will display the associated documentation, providing more details on what the
action actually does. You can also double-click on it if you want to actually run it.

1.10 The Scenario view

20 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

As described in the GNAT User’s Guide, project files can be configured through external variables (typically environ-
ment variables). This means the exact list of source files or the exact switches used to compile the application can be
changed when the value of these external variables is changed.

GPS provides a simple access to these variables, through a view called the Scenario view. These variables are called
Scenario Variables, since they provide various scenarios for the same set of project files.

Each such variable is listed on its own line along with its current value. Change the current value by clicking on it and
selecting the new value among the ones that pop up.

Across sessions, GPS will remember the values you set for scenario variables. On startup, the initial values of the
scenario variables come, in decreasing order of priority:

• from the -X command line arguments;

• from existing environment variables;

1.10. The Scenario view 21

GPS User’s Guide, Release 2018

• from the value you set in a previous GPS session;

• from the default set in the project file;

• or else defaults to the first valid value for this variable

Whenever you change the value of any variable, GPS automatically recomputes the project and dynamically changes
the list of source files and directories to reflect the new status of the project. Starting a new compilation at that point
uses the new switches, and all aspects of GPS are immediately changed to reflect the new setup.

Create new scenario variables by selecting the + icon in the local toolbar of the Scenario view. Edit the list of possible
values for a variable by clicking on the edit button in that toolbar. Delete a variable by clicking on the - button.

Each of these changes impacts the actual project file (.gpr), so you might not want to make them if you wrote the
project file manually since the impact can be significant.

The first line in the Scenario view is the current mode. This impacts various aspects of the build, including compiler
switches and object directories (see The Build Mode). Like scenario variables, change the mode by clicking on the
value and selecting a new value in the popup window.

If you are not using build modes and want to save some space on the screen, use the local settings menu Show build
modes to disable the display.

22 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.11 The Files View

In addition to the Project view, GPS also provides a Files view through the View → Files menu.

In this view, directories are displayed exactly as they are organized on the disk (including Windows drives). You can
also explore each source file explored as described in The Project view. You can also drop files into the Files view to
conveniently open a file.

By default, the Files view displays all files on disk. You can set filters through the local settings menu to restrict the
display to the files and directories belonging to the project (use the Show files from project only menu).

1.11. The Files View 23

GPS User’s Guide, Release 2018

1.12 The Windows view

24 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

The Windows view displays the currently opened windows. Open it via the View → Windows menu.

In the contextual menu, you can configure the display in one of two ways:

• Sorted alphabetically

• Organized by notebooks, as in the GPS window itself. This view is particularly useful if you have many windows
open.

You can also choose, through the local configuration menu, whether only source editors should be visible or whether
all windows should be displayed.

This view allows you to quickly select and focus on a particular window by clicking the corresponding line. If you
leave the button pressed, you can drag the window to another place on the desktop (see the description of the Multiple
Document Interface)

Select multiple windows by clicking while pressing the control or shift keys. You can then click in on the first button
in the local toolbar to close all selected windows at once, which is a fast way to clean up your desktop after you have
finished working on a task.

1.12. The Windows view 25

GPS User’s Guide, Release 2018

1.13 The Outline view

26 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.13. The Outline view 27

GPS User’s Guide, Release 2018

The Outline view, which you activate through the View → Outline menu, shows the contents of the current file.

Exactly what is displayed depends on the language of the file. For Ada, C and C++ files, this view displays the list
of entities declared at the global level in your current file (such as Ada packages, C++ classes, subprograms, and Ada
types). This view is refreshed whenever the current editor is modified.

Clicking on any entity in this view automatically jumps to the corresponding line in the file (the spec or the body).

The local settings menu contains multiple check boxes you can use to alter how the outline view is displayed:

• Show profiles

Indicates whether the list of parameters of the subprograms should be displayed. This is particularly useful for
languages allowing overriding of entities.

• Show types, Show objects, Show tasks, entries, and protected types, Show with clauses

Controls the display of the specified categories of entities.

• Show specifications

Indicates whether GPS displays a line for the specification (declaration) of entities in addition to the location of
their bodies.

• Sort alphabetically

Controls the order in which the entities are displayed (either alphabetically or in the same order as in the source
file).

• Flat View

Controls whether the entities are always displayed at the top level of the outline view. When disabled, nested
subprograms are displayed below the subprogram in which they are declared.

• Group spec and body

Displays up to two icons on each line (one for the spec and one for the body if both occur in the file). Click
on one of the icons to go directly to that location. If you click on the name of the entity, you are taken to its
declaration unless it is already the current location in the editor, in which case you are taken to its body.

• Group names by category

28 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

With this option enabled it is possible to collapse each entity type (package, type, pragma, sub-program, etc.) to
a single line in the Outline View. This works only in Flat View mode, so turning this option on makes the Flat
View automatically enabled.

• Dynamic link with editor

Causes the current subprogram to be selected in the outline view each time the cursor position changes in the
current editor. This option will slow down GPS.

1.14 The Clipboard view

GPS has an advanced mechanism for handling copy/paste operations.

When you click the Edit → Copy or Edit → Cut menu, GPS adds the current selection to the clipboard. However,
unlike many applications, GPS does not discard the previous contents of the clipboard, but instead saves it for future
use. By default, up to 10 entries are saved, but you can change that number using the Clipboard Size preference.

When you select the Edit → Paste menu, GPS pastes the last entry added to the clipboard at the current location in
the editor. If you then immediately select Edit → Paste Previous, this newly inserted text is removed and GPS instead
inserts the second to last entry. You can keep selecting the same menu to insert progressively older entries.

This mechanism allows you to copy several noncontiguous lines from one place in an editor, switch to another editor,
and paste all those lines without having to go back and forth between the two editors.

The Clipboard view graphically displays what is currently stored in the clipboard. Open it via the View → Clipboard
menu.

That view displays a list of entries, each of which is associated with one level of the clipboard. The text displayed for
each entry is its first line containing non blank characters with leading characters omitted. GPS prepends or appends
[...] if the entry is truncated. If you hover over an entry, a tooltip pops up displaying all lines in the entry.

In addition, one entry has an arrow on its left. This indicates the entry to be pasted if you select the Edit → Paste
menu. If you instead select the Edit → Paste Previous menu, the entry below that is inserted instead.

If you double-click any of these entries, GPS inserts the corresponding text in the current editor and makes the entry
you click current, so selecting Edit → Paste or the equivalent shortcut will insert that same entry again.

The local toolbar in the clipboard view provides two buttons:

• Append To Previous.

The selected entry is appended to the one below and removed from the clipboard so that selecting Edit → Paste
pastes the two entries simultaneously. Use this when you want to copy lines from separate places in a file, merge
them, and paste them together one or more times later, using a single operation.

1.14. The Clipboard view 29

GPS User’s Guide, Release 2018

• Remove.

The selected entry is removed from the clipboard.

The Clipboard view content is preserved between GPS sessions. However very large entries are removed and replaced
with an entry saying “[Big entry has been removed]”.

1.15 The Call trees view and Callgraph browser

These two views play similar roles in that they display the same information about entities, but in two different ways:
the Call tree view displays the information in a tree, easily navigable and perhaps easier to manipulate when lots of
entities are involved, and the Callgraph browser displays the information as graphical boxes that you can manipulate
on the screen. The latter is best suited to generate a diagram that you can later export to your own documents.

These views are used to display the information about what subprograms are called by a given entity, and what entities
are calling a given subprogram.

Some references are displayed with an additional “(dispatching)” text, which indicates the call to the entity is not
explicit in the sources but could potentially occur through dynamic dispatching. (This depends on what arguments are
passed to the caller at run time; it is possible the subprogram is in fact never called.)

1.15.1 Call Trees

The Call trees are displayed when you select one of the contextual menus <entity> calls and <entity> is called by.
Every time you select one of these menus, a new view is opened to display that entity.

Expand a node from the tree by clicking on the small expander arrow on the left of the line. Further callgraph
information is computed for the selected entity, making it very easy to get the information contained in a full callgraph
tree. Closing and expanding a node again recomputes the callgraph for the entity.

The right side of the main tree contains a list displays the locations of calls for the selected entity. Click on an entry in
this list to open an editor showing the corresponding location.

The Call tree supports keyboard navigation: Up and Down keys navigate between listed locations, Left collapses the
current level, Right expands the current level, and Return jumps to the currently selected location.

The contents of the calltree is not restored when GPS is restarted because its contents might be misleading if the
sources have changed.

The local toolbar provides the following buttons:

30 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

• Clear

Remove all entries from the Callgraph View.

• Remove entity

Remove the selected entity from the Callgraph View.

• Collapse all

Collapse all the entities in the Callgraph View.

1.15.2 Callgraph browser

The Callgraph browser graphically displays the relationship between subprogram callers and callees. A link between
two items indicates one of them is calling the other.

GPS provides special handling for renamed entities (in Ada): if a subprogram is a renaming of another, both items are
displayed in the browser with a special hashed link between the two. Since the renamed subprogram does not have a
proper body, you need to ask for the subprograms called by the renamed entity to get the list.

In this browser, clicking on the right arrow in the title bar displays all the entities called by the selected item. Clicking
on the left arrow displays all the entities that call the selected item (i.e. its callers).

Open this browser by right-clicking on the name of an entity in a source editor or Project view and selecting one of
the Browsers → <entity> calls, Browsers → <entity> calls (recursive), or Browsers → <entity> is called by menus.

1.15. The Call trees view and Callgraph browser 31

GPS User’s Guide, Release 2018

All boxes in this browser display the location of their declaration and the list of all references in the other entities
currently displayed in the browser. If you close the box for an entity that calls them, the matching references are also
hidden.

If you right-click on the title of one of the entity boxes, you get the same contextual menu as when you click on the
name of an entity in an editor, with the additional entries:

• Go To Spec

Open a source editor displaying the declaration of the entity.

• Go To Body

Open a source editor displaying the body of the entity.

• Locate in Project View

Move the focus to the project view, and select the first node representing the file in which the entity is declared.
This makes it easier to see which other entities are declared in the same file.

See also Common features of browsers for more capabilities of the GPS browsers.

1.16 The Bookmarks view

1.16.1 Basic usage: Creating a new bookmark

The basic usage of bookmarks is as follows: you open a source editor and navigate to the line of interest. You can then
create a new bookmark by either using the menu Navigate → Add Bookmark or by opening the Bookmarks view (View
→ Bookmarks) and then clicking on the [+] button in the local toolbar. In both cases, the Bookmarks view is opened,
a new bookmark is created and selected so that you can immediately change its name.

The default name of bookmark is the name of the enclosing subprogram and the initial location of the bookmark
(file:line). But you can start typing a new name, and press Enter to finally create the bookmark.

In practice, this is really just a few clicks (one of the menu and press Enter to use the new name), or even just two
key strokes if you have set a keyboard shortcut for the menu, via the Preferences dialog.

At any point in time, you can rename an existing bookmark by either clicking on the button in the local toolbar, or
simply with a long press on the bookmark itself.

Note the goto icon on the left of the editor line 1646, which indicates there is a bookmark there, as well as the colored
mark in the editor scrollbar that helps navigate in the file.

Even though the default name of the bookmark includes a file location, the major benefit of the bookmarks is that
they will remain at the same location as the text is edited. In our example, if we add a new subprogram before

32 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

Display_Splash_Screen, the bookmark will still point at the line containing the call to Gtk_New, even though that line
might now be 1700 for instance.

Of course, GPS is not able to monitor changes that you might do through other editors, so in this case the marks might
be altered and stop pointing to the expected location.

1.16.2 Adding more bookmarks

We can create any number of bookmarks, and these have limited impact on performance. So let’s do that and create a
few more bookmarks, in various files. As you can see in the scrollbar of the editor, we have two bookmarks set in the
file bookmark_views.adb, and we can easily jump to them by clicking on the color mark.

But of course, it is much simpler to double-click inside the Bookmarks view itself, on the bookmark of interest to us.

At this point, we have a rather long unorganized list of bookmarks, let’s improve.

1.16.3 Organizing bookmarks into groups

When we create new bookmarks, GPS adds them at the top of the list. We might want to organize them differently,
which we can do simply with a drag and drop operation: select the bookmark, keep the mouse pressed, and move it to
a better place in the list.

Things become more interesting when you drop a bookmark on top of another one. In this case, GPS creates a group
that contains the two bookmarks (and that basically behaves like a folder for files). The group is immediately selected
so that you can rename it as you see fit.

In our example, we created two groups, corresponding to two features we are working on.

Groups can be nested to any depth, providing great flexibility. So let’s create two nested groups, which we’ll name
TODO, beneath the two we have created. This is a great way to create a short todo list: one top-level group for the
name of the feature, then below one group for the todo list, and a few additional bookmarks to relevant places in the
code.

1.16. The Bookmarks view 33

GPS User’s Guide, Release 2018

To create these additional groups, we will select the Source editor group, then click on the Create New Group button
in the local toolbar, and type “TODO<enter>”. This will automatically add the new group beneath Source editor. Let’s
do the same for the bookmarks groups. These two groups are empty for now.

Let’s add new entries to them. if we already know where code should be added to implement the new todo item, we
can do as before: open the editor, select the line, then click on the [+] button. Most often, though, we don’t yet know
where the implementation will go.

So we want to create an unattached bookmark. Using the name bookmark here is really an abuse of language, since
these have no associated source location. But since they are visible in the Bookmarks view, it is convenient to name
them bookmarks.

To create them, let’s select one of the TODO groups, then select the Create Unattached Bookmark in the local toolbar,
and immediately start typing a brief description of the todo. As you can see in the screenshot, these bookmarks do not
have a goto icon, since you cannot double click on them to jump to a source location.

When you delete a group, all bookmarks within are also deleted. So once you are done implementing a feature, simply
delete the corresponding group to clean up the bookmarks view.

1.16.4 Adding notes

The short name we gave the bookmark is not enough to list all the great ideas we might have for it. Fortunately, we
can now add notes to bookmarks, as a way to store more information.

Let’s select the “write a blog post” item, then click on the Edit Note button in the local toolbar. This opens a small
dialog with a large text area where we can type anything we want. Press Apply to save the text.

Note how a new tag icon was added next to the bookmark, to indicate it has more information. You can view this
information in one of three ways:

• select the bookmark, and click again on the Edit Note button as before

• double-click on the tag icon.

• leave the mouse hover the bookmark line. This will display a tooltip with extra information on the bookmark:
its name, its current location and any note it might have. This is useful if you only want to quickly glance at the
notes for one or more bookmarks

34 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.16.5 Add note with drag and drop

Sometimes, though, you want to associate code with the note (i.e. the bookmark should not only point to a location,
but you also want to remember the code that was in that location). The simplest to do this is to select the text in the
editor, and then drag and drop the selected text directly onto the bookmark. This will create a note (if needed) or add
to the existing note the full selected text.

In the tooltips, we use a non-proportional font, so that the code is properly rendered and alignment preserved.

1.16.6 Filtering bookmarks

If you start creating a lot of bookmarks, and even if you have properly organized them into groups, it might become
difficult to find them later on. So we added a standard filter in the local toolbar, like was done already for a lot of other
views. As soon as you start typing text in that filter, only the bookmarks that match (name, location or note) are left
visible, and all the others are hidden.

1.16.7 Favorite files

GPS provides a large number of ways to navigate your code, and in particular to open source files. The most efficient
one is likely the omni-search (the search field at the top-right corner).

1.16. The Bookmarks view 35

GPS User’s Guide, Release 2018

But some users like to have a short list of favorite files that they go to frequently. The Bookmarks view can be used to
implement this.

Simply create a new group (here named Favorite files), and create one new bookmark in this group for each file you
are interested in. I like to create the bookmark on line 1, but I always remove the line number indication in the name
of the bookmark since the exact line is irrelevant here.

1.17 The Python Console

These consoles provide access to the various scripting languages supported by GPS, allowing you to type interactive
commands such as editing a file or compiling without using the menu items or the mouse.

The menu View → Python opens the python console. Python is the preferred language to customize GPS (many more

36 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

details will be provided in later sections of this documentation). The console is mostly useful for testing interactive
commands before you use them in your own scripts.

See Scripting GPS for more information on using scripting languages within GPS.

Both consoles provide a history of previously typed commands. Use the up and down keys to navigate through the
command history.

1.18 The OS Shell Console

GPS also provides an OS shell console, providing an access to the underlying OS shell (as defined by the SHELL or
COMSPEC environment variables).

Open this console via the View → OS Shell menu, which is available only if the plugin shell.py was loaded in GPS
(the default). Check the documentation of that plugin, which lists a few settings that might be useful.

This console behaves like the standard shell on your system, including support for ANSI sequences (and thus color
output). For example, it has been used to run vi within GPS.

1.19 The Execution window

When a program is launched using the Build → Run menu, GPS creates a new execution window allowing input and
output for the program. To allow post-mortem analysis and copy/pasting, GPS does not close execution windows when
the program terminates; you must close them manually. If you try to close the execution window while the program is
still running, GPS displays a dialog window asking if you want to kill it.

1.20 The Tasks view

1.18. The OS Shell Console 37

GPS User’s Guide, Release 2018

The Tasks view displays all running GPS operations currently running in the background, such as builds, searches, or
VCS commands.

For each task, the Tasks view displays its status and current progress. Suspend the execution of a task by clicking the
small pause button next to the task. Or kill a task by clicking the interrupt button.

Open the Tasks view by double clicking on the progress bar in the main toolbar or using the View → Tasks

menu. You can move it placed anywhere on your desktop.

If there are tasks running when exiting GPS, it displays a window showing those tasks. You can kills all remaining
tasks and exit by pressing the confirmation button or continue working in GPS by pressing the Cancel button.

1.21 The Project Browser

The Project browser shows the dependencies between all projects in the project hierarchy. Two items in this browser
are linked if one of them imports the other.

Access it through the contextual menu in the Project view by selecting the Show projects imported by... menu when
right-clicking on a project node.

38 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

Click on the left arrow in the title bar of a project to display all projects that import that project. Click on the right
arrow to display all projects imported by that project.

Right-clicking on a project brings up a menu containing several items. Most are added by the project editor and
provide direct access to such features as editing the properties of the project, adding dependencies.

Some items in the menu are specific to the Project Browser:

• Locate in Project View

Switch the focus to the Project view and highlight the first project node matching the project. This is a convenient
way to get information such as the list of directories or source files for a project.

• Show projects imported by...

Like the right arrow in the title bar, displays all the projects in the hierarchy that are directly imported by the
selected project.

• Show projects imported by ... (recursively)

Display all dependencies recursively for the project (i.e., the projects it imports directly and the projects they
import).

• Show projects importing...

Like the left arrow in the title bar, display all the projects that directly import the selected project.

See also Common features of browsers for more capabilities of the GPS browsers.

1.22 The Dependency Browser

The dependency browser displays dependencies between source files. Each item in the browser represents one source
file. Click on the right arrow in the title bar to display the list of files the selected file depends on. A file depends
on another if it explicitly imports it (with statement in Ada, or #include in C/C++). Implicit dependencies are
currently not displayed in this browser since you can access that information by opening the direct dependencies. Click
on the left arrow in the title bar to display the list of files that depend on the selected file.

This browser is accessible through the contextual menu in the Project view by selecting one of the following entries:

• Show dependencies for ...

Like clicking on the right arrow for a file already in the browser, displays the direct dependencies for that file.

1.22. The Dependency Browser 39

GPS User’s Guide, Release 2018

• Show files depending on ...

Like clicking on the left arrow for a file already in the browser, displays the list of files that directly depend on
that file.

The background contextual menu in the browser adds a few entries to the standard menu:

• Open file...

Display an external dialog where you can select the name of a file to analyze.

• Recompute dependencies

Check that all links displays in the dependency browser are still valid. Any that not are removed. The arrows in
the title bar are also reset if new dependencies were added for the files. Also recompute the layout of the graph
and changes the current position of the boxes. However, the browser is not refreshed automatically, since there
are many cases where the dependencies might change.

• Show system files

Indicates whether standard system files (runtime files for instance in the case of Ada) are displayed in the
browser. By default, these files are only displayed if you explicitly select them through the Open file menu or
the contextual menu in the project view.

• Show implicit dependencies

Indicates whether implicit dependencies should also be displayed for files. Implicit dependencies are ones
required to compile the selected file but not explicitly imported through a with or #include statement. For
example, the body of a generic in Ada is an implicit dependency. Whenever an implicit dependency is modified,
the selected file should be recompiled as well.

The contextual menu available by right clicking on an item also contain these entries:

• Analyze other file

Open a new item in the browser, displaying the files associated with the selected one. In Ada, this is the body if
you clicked on a spec file, or vice versa. In C, it depends on the naming conventions you specified in the project
properties, but it generally goes from a .h file to a .c file and back.

• Show dependencies for ...

These have the same function as in the project view contextual menu

See also Common features of browsers for more capabilities of GPS browsers.

40 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

1.23 The Elaboration Circularities browser

GPS detects elaboration cycles reported by build processes and constructs a visual representation of elaboration de-
pendencies in an Elaboration Cycles browser.

This visual representation depicts program units as items in the browser and direct dependencies between program
units as links. All units involved in a dependency cycle caused by the presence of a pragma Elaborate_All
(whether explicit or implicit) are also presented and connected by links labeled “body” and “with”.

The preference Browsers → Show elaboration cycles controls whether to automatically create a graph from cycles
listed in build output.

See also Common features of browsers for more capabilities of GPS browsers.

1.23. The Elaboration Circularities browser 41

GPS User’s Guide, Release 2018

1.24 The Entity browser

The Entity browser displays static information about any source entity. What is displayed for each entity depends on
the type of the entity, but are normally other entities. For example:

• Ada record / C struct

The list of fields is displayed.

• Ada tagged type / C++ class

The list of attributes and methods is displayed.

• Subprograms

The list of parameters is displayed

• Packages

The list of all the entities declared in that package is displayed

Access this browser via the Browsers → Examine entity contextual menu in the project view and source editor when
clicking on an entity.

Most entities displayed are clickable (by default, they appear as underlined blue text). Clicking on one opens a new
item in the entity browser for the selected entity.

You can display the parent entities for an entity. For example, in a C++ class or Ada tagged type, this is the type it
derives from. Display the parent by clicking on the up arrow in the title bar of the entity.

42 Chapter 1. Description of the Main Window

GPS User’s Guide, Release 2018

Similarly, you can display child entities (for example, types that derive from the item) by clicking on the down arrow
in the title bar.

An extra button appears in the title bar for the C++ class or Ada tagged types that toggles whether the inherited
methods (or primitive operations in Ada) should be displayed. By default, only new methods, or ones that override an
inherited one, are displayed. The parent’s methods are not shown unless you click on this button.

See also Common features of browsers for more capabilities of GPS browsers.

1.25 The File Selector

The file selector is a dialog used to select a file. On Windows, the default is to use the standard file selection widget.
On other platforms, the file selector provides the following contents:

• A tool bar on the top consists of five buttons:

– left arrow go back in the list of directories visited

1.25. The File Selector 43

GPS User’s Guide, Release 2018

– right arrow go forward

– up arrow go to parent directory

– refresh refresh the contents of the directory

– home go to home directory (value of the HOME environment variable, or / if not defined)

• A list with the current directory and the last directories explored. Modify the current directory by modifying the
text entry and pressing Enter or by clicking on the right arrow and choosing a previous directory in the pop
down list displayed.

• A directory tree. Open or close directories by clicking on the + and - icons on the left of the directories or
navigate using the keyboard keys: up and down to select the previous or next directory, + and - to expand and
collapse the current directory, and backspace to select the parent directory.

• A filter area. Depending on the context, one of several filters are available to select only a subset of files to
display. The filter All files is always available and displays all files in the selected directory.

• A file list. This area lists the files contained in the selected directory. If you specified a filter, only the matching
files are displayed. Depending on the context, the list of files may include additional information about the files
such as the type of file or its size.

• A file name area. This area displays the name of the current file, if any. You can also type a file or directory
name, with file completion provided by the Tab key.

• A button bar with the OK and Cancel buttons. When you have selected the desired file, click OK to confirm or
click Cancel at any time to cancel the file selection.

44 Chapter 1. Description of the Main Window

CHAPTER

TWO

THE MENU BAR

GPS provides a standard menu bar giving access to all operations. However, it is usually easier to access a feature
using the various contextual menus provided throughout GPS: these give direct access to the most relevant actions in
the current context (for example, a project, directory, file, or entity). Contextual menus pop up when you click the
right mouse button or use the special open contextual menu key on most keyboards.

You can access the following entries from the menu bar:

• File (see The File Menu)

• Edit (see The Edit Menu)

• Navigate (see The Navigate Menu)

• Find (see The Find Menu)

• View (see The View Menu)

• Code (see The Code Menu)

• VCS (see The VCS Menu)

• Build (see The Build Menu)

• Analyze (see The Analyze Menu)

• Debug (see The Debug Menu)

• SPARK (see The SPARK Menu)

• CodePeer (see The CodePeer Menu)

• Window (see The Window Menu)

• Help (see The Help Menu)

2.1 The File Menu

• File → New Project...

Open a dialog to create a new project from an existing template

• File → Open Project...

Open the Open Project dialog

• File → Open Project from Host...

45

GPS User’s Guide, Release 2018

Open remote project

• File → Project → Add Complex File Naming Conventions...

Ask naming patterns to the user and run gnatname on the current project to add the files located in
the project’s source directories matching these patterns to project’s sources files.

• File → Project → Reload Project

Recompute the list of source files for the project. This should be used whenever you create or remove
files outside of GPS

• File → New File

Create a new empty editor

• File → New File View

Create a new view for the selected editor

• File → Open File...

Open an existing file

Shortcut: F3

• File → Open File from Host...

Open a file from a remote host

Shortcut: Ctrl+F3

• File → Save

Save the current editor

Shortcut: Ctrl+S

• File → Save As...

Save the current editor with a different name

• File → Save More → All

Save all modified files and projects

• File → Save More → Projects

Save all modified projects to disk

• File → Save More → Desktop

Save the layout of the desktop to a file, so that it is restored when GPS is restarted later with the same
project

• File → Change Directory...

Change the current directory

• File → Locations → Export Locations to Editor

Export all messages listed in the Locations view to an editor.

• File → Print

Print the current editor

• File → Close

46 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

Close the currently selected window

Shortcut: Ctrl+W

• File → Close All

Close all open windows, asking for confirmation when relevant

• File → Close All Editors

Save and close all source editors.

• File → Close All Editors except Current

Save and close all source editors, except the curret one.

• File → Reset all perspectives

Reset all perspectives for all projects to their default. This also closes all editors.

• File → Exit

Exit GPS, after confirming whether to save modified files

Shortcut: Ctrl+Q

2.2 The Edit Menu

• Edit → Undo

Undo the last command

Shortcut: Ctrl+Z

• Edit → Redo

Redo the last command that was undone

Shortcut: Ctrl+R

• Edit → Cut

Cut the current selection to the clipboard

Shortcut: Shift+Delete or Ctrl+X

• Edit → Copy

Copy the current selection to the clipboard

Shortcut: Ctrl+Insert or Ctrl+C

• Edit → Paste

Paste the contents of the clipboard into the current text area

Shortcut: Shift+Insert or Ctrl+V

• Edit → Paste Previous

Cancel the previous Paste operation, and instead insert the text copied before through Copy To Clip-
board

Shortcut: Shift+Ctrl+Insert

• Edit → Select All

Select the whole contents of the editor

2.2. The Edit Menu 47

GPS User’s Guide, Release 2018

• Edit → Cursors → Add cursor and go down

Shortcut: Shift+Alt+Down

• Edit → Cursors → Add cursor and go up

Shortcut: Shift+Alt+Up

• Edit → Cursors → Cursor select next occurence of selection

Shortcut: Shift+Ctrl+N

• Edit → Cursors → Cursor skip next occurence of selection

Shortcut: Ctrl+Alt+N

• Edit → Cursors → Add cursors to all references of entity

Shortcut: Shift+Ctrl+E

• Edit → Insert File...

Insert the contents of the file into the current editor

• Edit → Compare → Two Files...

Compare two files

• Edit → Compare → Three Files...

Compare three files

• Edit → Increase Text Size

Increase the size of fonts in the source editors. This impacts the corresponding preferences.

Shortcut: Ctrl++

• Edit → Decrease Text Size

Decrease the size of fonts in the source editors. This impacts the corresponding preferences.

• Edit → Project Properties...

Open the project properties editor

• Edit → Preferences...

Open (or reuse if it already exists) the ‘Preferences’ view

2.3 The Navigate Menu

• Navigate → Back

Goto previous location

Shortcut: Shift+Ctrl+{

• Navigate → Forward

Goto next location

Shortcut: Shift+Ctrl+}

• Navigate → Goto Declaration

Jump to the declaration of the current entity

48 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

• Navigate → Goto Body

Jump to the implementation/body of the current entity

• Navigate → Goto Matching Delimiter

Jump to the matching delimiter ()[]{}

Shortcut: Ctrl+’

• Navigate → Goto Line...

Open a dialog to select a line to go to

Shortcut: Ctrl+G

• Navigate → Goto File Spec<->Body

Open the corresponding spec or body file

• Navigate → Locate in Files view

Display the files view, and expand nodes to show the selected file

• Navigate → Add Bookmark

Create a bookmark at the current location in the editor

• Navigate → Start of Statement

Move to the beginning of the current statement

Shortcut: Alt+Up

• Navigate → End of Statement

Move to the end of the current statement

Shortcut: Alt+Down

• Navigate → Previous Subprogram

Move to the previous subprogram

Shortcut: Ctrl+Up

• Navigate → Next Subprogram

Move to the next subprogram

Shortcut: Ctrl+Down

• Navigate → Previous Locations Message

Move to the previous message from the Locations window

Shortcut: Ctrl+<

• Navigate → Next Locations Message

Move to the next message from the Locations window

Shortcut: Ctrl+>

2.3. The Navigate Menu 49

GPS User’s Guide, Release 2018

2.4 The Find Menu

• Find → Find...

Open the search dialog. If you have selected the preference Search/Preserve search context, the same
context will be selected, otherwise the context is reset depending on the active window

Shortcut: Ctrl+F

• Find → Replace...

Open the search dialog in the replace mode. If you have selected the preference Search/Preserve
Search Context, the same context will be selected, otherwise the context is reset depending on the
active window

Shortcut: Shift+Ctrl+F

• Find → Find Previous

Find the previous occurrence of the search pattern

Shortcut: Ctrl+P

• Find → Find Next

Find the next occurrence of the search pattern

Shortcut: Ctrl+N

• Find → Find Action

Search amongst the GPS commands, and execute the selected one

• Find → Find Bookmark

Search amongst all bookmarks

• Find → Find Build Target

Search amongst build targets

• Find → Find in Current Source

Search for references in the current editor

• Find → Find Entity

Searches amonst entities defined in the project

Shortcut: Ctrl+T

• Find → Find File in Project

Search amongst the source files of the project or the run time files of the compiler. The following
syntax is supported to open a file at a specific location:

filename:line:column

where the line and column are optional. Possible completions are found by testing the filename
pattern with the base names of the source files, unless filename contains a ‘/’ or ‘’, in which case the
full name of the source file is used.

Shortcut: Shift+F3

• Find → Find Open Window

Search amongst opened windows

50 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

• Find → Find Plugin

Search amongst the GPS plugins, and display the associated page in the preferences editor dialog.

• Find → Find Preference

Search amongst the GPS preferences, and display the page containing it.

• Find → Find text in all sources

Search in the contents of all source files of the projects

• Find → Find All References

List all references to the selected entity in the Locations window

2.5 The View Menu

• View → Files

Open (or reuse if it already exists) the ‘Files’ view

• View → Project

Open (or reuse if it already exists) the ‘Project’ view

• View → Outline

Open (or reuse if it already exists) the ‘Outline’ view

• View → Bookmarks

Open (or reuse if it already exists) the ‘Bookmarks’ view

• View → Locations

Open (or reuse if it already exists) the ‘Locations’ view

• View → Messages

Open (or reuse if it already exists) the ‘Messages’ view

• View → Call Trees

Open (or reuse if it already exists) the ‘Call Trees’ view

• View → Clipboard

Open (or reuse if it already exists) the ‘Clipboard’ view

• View → File Switches

Open (or reuse if it already exists) the ‘Switches editor’ view

• View → Files

Open (or reuse if it already exists) the ‘Files’ view

• View → Learn

Open (or reuse if it already exists) the ‘Learn’ view

• View → Metrics

Open the Metrics view

• View → Memory Usage

2.5. The View Menu 51

GPS User’s Guide, Release 2018

Open (or reuse if it already exists) the ‘Memory Usage’ view

• View → Remote

Open (or reuse if it already exists) the ‘Remote’ view

• View → Scenario

Open (or reuse if it already exists) the ‘Scenario’ view

• View → Tasks

• View → VCS → Commits

Open (or reuse if it already exists) the ‘Commits’ view

• View → VCS → History

Open (or reuse if it already exists) the ‘History’ view

• View → VCS → Branches

Open (or reuse if it already exists) the ‘Branches’ view

• View → Windows

Open (or reuse if it already exists) the ‘Windows’ view

• View → Call Graph Browser

Open (or reuse if it already exists) the ‘Call Graph Browser’ view

• View → Dependency Browser

Open (or reuse if it already exists) the ‘Dependency Browser’ view

• View → Elaboration Circularities Browser

Open (or reuse if it already exists) the ‘Elaboration Circularities’ view

• View → Entity Browser

Open (or reuse if it already exists) the ‘Entity Browser’ view

• View → Project Browser

Open (or reuse if it already exists) the ‘Project Browser’ view

• View → Python Console

Open (or reuse if it already exists) the ‘Python’ view

• View → OS Shell

Spawns the user’s shell as read from the environment variable SHELL

• View → Auxiliary Builds

Open the Auxiliary Builds console

• View → Background Builds

Open the Backgorund Builds console

52 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

2.6 The Code Menu

• Code → Format Selection

Automatically indent the current line or selection

• Code → Selection → Comment Lines

Comment the selected lines

Shortcut: Ctrl+-

• Code → Selection → Uncomment Lines

Uncomment the selected lines

Shortcut: Ctrl+_

• Code → Selection → Print

Print the current selection

• Code → Selection → Refill

Reformat selected lines or current paragraph so that the list are shorter than the grey line on the right

Shortcut: Ctrl+=

• Code → Selection → Sort

Sorts the current selection, in ascending order

• Code → Selection → Sort Reverse

Sorts the current selection, in descending order

• Code → Selection → Move Right

Move the current selection chars characters to the right. If chars is negative, moves to the left.
If there is no selection, indent the current line.

Shortcut: Ctrl+Alt+>

• Code → Selection → Move Left

Shortcut: Ctrl+Alt+<

• Code → Selection → Untabify

Replace tab characters in the current selection (or the whole buffer) with the correct amount of
spaces. The tab stops are every n columns where n is specified by a preference in the Preferences
dialog.

• Code → Selection → Comment box

Search backward for the first subprogram or package declaration. Before the start of this dec-
laration, insert a comment box containing the name of the subprogram. This provides helpful
separations between subprograms, and is similar to the style used in the GNAT compiler or GPS
themselves

• Code → Smart Completion

Complete current identifier based on advanced entities database

Shortcut: Ctrl+Space

• Code → More Completion → Expand Alias

2.6. The Code Menu 53

GPS User’s Guide, Release 2018

Expand the alias found just before the cursor

• Code → More Completion → Complete Identifier

Complete current identifier based on the contents of the editor

Shortcut: Ctrl+/

• Code → More Completion → Complete Block

• Code → Fold All Blocks

Fold all blocks (if, loops,...)

• Code → Unfold All Blocks

Unfold all blocks (if, loops,...)

• Code → Edit with External Editor

Edit the file with an external editor, as configued in the preferences

• Code → Generate Body

Run gnatstub on the selected Ada specification to generate a matching body file.

• Code → Pretty Print

Reformat the current Ada source file, and reload the reformated version. Specific formating op-
tions can be set in the project file

• Code → Aliases...

Open the aliases editor

2.7 The VCS Menu

• VCS → Commits

Open (or reuse if it already exists) the ‘Commits’ view

• VCS → Branches

Open (or reuse if it already exists) the ‘Branches’ view

• VCS → View global history

Open (or reuse if it already exists) the ‘History’ view

• VCS → View file history

Show the History view and display the history of changes for the current file only.

• VCS → Pull & rebase

• VCS → Pull

• VCS → Review

Push all local changes to Gerrit, so that they can be reviewed by other team members.

• VCS → Push

Push all changes to the remote repository.

• VCS → Show local changes for file

Display the local changes for the current file

54 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

• VCS → Show local changes for file (in editor)

Display the local changes for the current file in an editor

• VCS → Show all local changes

Display all the local changes for the current version control system

• VCS → Show last modification for lines

For each line of the current file, show when the last modification was done

• VCS → Hide last modification for lines

Remove annotations done on each line of the current file that show when the last modification was
done

2.8 The Build Menu

• Build → Check Syntax

Build target Check Syntax

• Build → Check Semantic

Build target Check Semantic

• Build → Compile File

Build target Compile File

Shortcut: Shift+F4

• Build → Project → Build All

Build target Build All

• Build → Project → Compile All Sources

Build target Compile All Sources

• Build → Project → Build <current file>

Build target Build <current file>

• Build → Project → Custom Build...

Build target Custom Build...

Shortcut: F9

• Build → Clean → Clean All

Build target Clean All

• Build → Clean → Clean Root

Build target Clean Root

• Build → Run → Custom...

Build target Custom...

• Build → Settings → Toolchains

Open the toolchains editor (for builds)

• Build → Recompute Xref Info

2.8. The Build Menu 55

GPS User’s Guide, Release 2018

2.9 The Analyze Menu

• Analyze → GNAThub → Display GNAThub Analysis

• Analyze → GNAThub → Run...

• Analyze → Coverage → Show Report

Display the coverage report (must load data first)

• Analyze → Coverage → Load Data for All Projects

Load coverage data for all projects

• Analyze → Coverage → Load Data for Current Project

Load coverage data for current project

• Analyze → Coverage → Load Data for Current File

Load coverage data for current file

• Analyze → Coverage → Clear Coverage from Memory

Clear coverage information from memory

• Analyze → Coverage → Gcov → Compute Coverage Files

Run gcov to generate the coverage files

• Analyze → Coverage → Gcov → Remove Coverage Files

Cleanup the gcov coverage files

• Analyze → Metrics → Compute Metrics on Current File

Launch GNAT metric on the current file

• Analyze → Metrics → Compute Metrics on Current Project

Launch GNAT metric on the current project

• Analyze → Metrics → Compute Metrics on Current Project & Subprojects

Launch GNAT metric on the current project

• Analyze → Stack Analysis → Analyze Stack Usage

• Analyze → Stack Analysis → Open Undefined Subprograms Editor

• Analyze → Stack Analysis → Load Last Stack Usage

• Analyze → Stack Analysis → Clear Stack Usage Information

• Analyze → Coding Standard → Edit Rules File

Edit the coding standard file

• Analyze → Coding Standard → Check Root Project & Subprojects

Check coding standard for the root project and its subprojects

• Analyze → Coding Standard → Check Root Project

Check coding standard of the root project

• Analyze → GNATtest → Generate Unit Test Setup

Run gnattest on root project

56 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

• Analyze → GNATtest → Show not Implemented Tests

• Analyze → GNATtest → Open Harness Project

Open harness project for current project

• Analyze → GNATtest → Exit from Harness Project

Return to user project from current harness project

• Analyze → Documentation → Generate Project

Launch GNATdoc on the current project

• Analyze → Documentation → Generate Project & Subprojects

Launch GNATdoc on the the project, recursively

• Analyze → Documentation → Generate Current File

Launch GNATdoc on the current project

2.10 The Debug Menu

• Debug → Initialize → no main file

Initialize the debugger, no file specified

• Debug → Debug → Connect to Board...

Opens a simple dialog to connect to a remote board. This option is only relevant to cross debuggers.

• Debug → Debug → Load File...

Opens a file selection dialog that allows you to choose a program to debug. The program to debug
is either an executable for native debugging, or a partially linked module for cross environments (e.g
VxWorks).

• Debug → Debug → Add Symbols...

Add the symbols from a given file/module. This corresponds to the gdb command add-symbol-
file. This menu is particularly useful under VxWorks targets, where the modules can be loaded
independently of the debugger. For instance, if a module is independently loaded on the target (e.g.
using windshell), it is absolutely required to use this functionality, otherwise the debugger won’t
work properly.

• Debug → Debug → Attach...

Attach to a running process

• Debug → Debug → Detach

Detach the application from the debugger

• Debug → Debug → Debug Core File...

Debug a core file instead of a running process

• Debug → Debug → Kill

Kill the debuggee process

• Debug → Data → Variables

Open the Variables view for the debugger

2.10. The Debug Menu 57

GPS User’s Guide, Release 2018

• Debug → Data → Call Stack

Open the Call Stack window for the debugger

• Debug → Data → Protection Domains

Open the ‘Protection Domains’ window for the debugger

• Debug → Data → Threads

Open the ‘Threads’ window for the debugger

• Debug → Data → Tasks

Open the ‘Tasks’ window for the debugger

• Debug → Data → Assembly

Open the Assembly view for the debugger

• Debug → Data → Breakpoints

Open the Breakpoints Editor for the debugger

• Debug → Data → Registers

Open the Registers view for the debugger

• Debug → Data → Execution

Open the Debugger Execution console

• Debug → Data → Examine Memory

Examine the contents of the memory at the location of the selected variable

• Debug → Data → Display Local Variables

Display the local variables in the Variables view

• Debug → Data → Display Arguments

Display the arguments of the current subprogram in the Variables view

• Debug → Data → Display Any Expression...

Display the value of any expression in the Variables view

• Debug → Run...

Choose the arguments to the program, and start running it

Shortcut: F2

• Debug → Step

Execute until program reaches a new line of source code

Shortcut: F5

• Debug → Step Instruction

Execute the program for one machine instruction only

Shortcut: Shift+F5

• Debug → Next

Execute the program until the next source line, stepping over subprogram calls

Shortcut: F6

58 Chapter 2. The Menu Bar

GPS User’s Guide, Release 2018

• Debug → Next Instruction

Execute the program until the next machine instruction, stepping over subprogram calls

Shortcut: Shift+F6

• Debug → Finish

Continue execution until selected stack frame returns

Shortcut: F7

• Debug → Continue

Continue execution until next breakpoint. Start the debugger if not started yet

Shortcut: F8

• Debug → Interrupt

Asynchronously interrupt the debuggee program

Shortcut: Ctrl+Backslash

• Debug → Terminate Current

Terminate the current debugger

• Debug → Terminate

Terminate all running debugger

2.11 The SPARK Menu

• SPARK

This menu is available if the SPARK toolset is installed on your system and available on your PATH.
See Help → SPARK → Reference → Using SPARK with GPS for more details.

2.12 The CodePeer Menu

• CodePeer

This menu is available if the CodePeer toolset is installed on your system and available on your
PATH. See your CodePeer documentation for more details.

2.13 The Window Menu

• Window → Perspectives → Default

• Window → Perspectives → Maximized Editors

• Window → Perspectives → Debug

• Window → Perspectives → CodePeer

• Window → Perspectives → Analyze

• Window → Perspectives → VCS

2.11. The SPARK Menu 59

GPS User’s Guide, Release 2018

• Window → Perspectives → <create new>

• Window → Split Side-by-Side

• Window → Split Up-Down

• Window → Floating

• Window → Close

2.14 The Help Menu

• Help → Welcome

Open (or reuse if it already exists) the ‘Welcome’ view

• Help → Contents

Display a HTML page with a pointer to all documentation known to GPS

• Help → GPS → Welcome

Load the documentation for ‘Welcome’ into an external web browser

• Help → GPS → Tutorial

Load the documentation for ‘GNAT Programming Studio Tutorial’ into an external web browser

• Help → GPS → GPS User’s Guide

Load the documentation for ‘GPS User’s Guide’ into an external web browser

• Help → GPS → Python extensions

Load the documentation for ‘GPS extensions for Python’ into an external web browser

• Help → GPS → Release Notes

Load the documentation for ‘GPS Release Notes’ into an external web browser

• Help → GNAT Runtime

This menu is generated automatically, and provides pointers to the contents of the currently loaded
runtime.

• Help → Python → Python Tutorial

Load the documentation for ‘Python tutorial’ into an external web browser

• Help → Python → Python Library

Load the documentation for ‘Python Library’ into an external web browser

• Help → Python → PyGTK Tutorial

Load the documentation for ‘PyGTK tutorial’ into an external web browser

• Help → Python → PyGTK Reference Manual

Load the documentation for ‘PyGTK Reference Manual’ into an external web browser

• Help → About

Display the About dialog

60 Chapter 2. The Menu Bar

CHAPTER

THREE

MULTIPLE DOCUMENT INTERFACE

All windows (whether editors or views) that are part of the GPS environment are under control of what is commonly
called a multiple document interface (MDI for short). This is a common paradigm where related windows are put into
a larger window which is itself under control of the system or the windows manager.

By default, no matter how many editors and views you opened, your system still sees only one window (on Windows
systems, the task bar shows only one icon). You can organize the GPS windows in whatever way you want, all inside
the GPS main window. This section describes the capabilities GPS provides to help you do this.

3.1 Window layout

The GPS main window is organized into various areas. The most important distinction is between the central area
(which usually occupies the most space) and the side areas (which include the top and bottom areas). Some windows in
the GPS area are restricted to either the central or the side areas. You can split each area into smaller areas, as described
below. Each area can contain any number of windows, organized into notebooks with tabs, possibly displaying names.
Right-clicking on a tab displays a contextual menu providing capabilities showing the Tabs location and Tabs rotation,
which allows you to display the tabs on any side of the notebook or make them vertical if you want to save screen
space.

The central area can contain the source editors (which can only go there) as well as larger views like browsers. The
contents of the central area are preserved when switching perspectives (see below).

3.2 Selecting Windows

Only one window is selected in GPS (the active window) at a time. Select a window by clicking on its tab, which
becomes a different color, or selecting its name in the Window menu. Or use the Windows view (see The Windows
view), which also provides a convenient mechanism for selecting multiple windows at once.

Finally, you can select windows with the omni-search, the search field in the global toolbar. One of the contexts for
the search is the list of opened windows. To make things more convenient, you can bind a key shortcut via the Edit →
Preferences... menu (the name of the action is Search → Global Search in context: Opened).

Any window whose name contains the specified letter matches the search field. For example, if you are currently
editing the files unit1.adb and file.adb, pressing t leaves only unit1.adb selectable.

3.3 Closing Windows

Wherever a window is displayed, you can close it by clicking the small X icon in its tab or selecting the window by
clicking on its tab and selecting the Window → Close menu.

61

GPS User’s Guide, Release 2018

When you close a window, the focus is set to the window in the same notebook that previously had the focus. If you
open an editor as a result of a cross-reference query, close that editor to go back to where you were.

Finally, you can close a window by right-clicking in the associated notebook tab (if the tabs are visible) and selecting
Close in the contextual menu.

There is a Close all other editors menu in the notebook tab when you are in an editor, which closes most windows
except a single editor, the one you are using.

3.4 Splitting Windows

You can split windows horizontally and vertically in any combination. To do this requires at least two windows
(for example text editors or browsers) present in a given notebook. Select either the Window → Split Horizontally
or Window → Split Vertically menus to split the selected window. In the left (respectively, top) pane, the currently
selected window is put on its own. The rest of the previously superimposed windows are put in the right (respectively,
bottom) pane. You can further split these remaining windows to achieve any desired layout.

You can resize any split windows by dragging the handles that separate them.

You may want to bind the key shortcuts to the Window → Split Horizontally and Window → Split Vertically menus
using the key manager. If you want to achieve an effect similar to standard Emacs behavior (where control-x
2 splits a window horizontally and control-x 3 splits a window vertically), use the key manager (see The Key
Shortcuts Editor).

Moving Windows shows how to split windows using drag-and-drop, which is the fastest way.

You can put several editors or browsers in the same area. In that case, they are grouped together in a notebook; select
any of them by clicking on the corresponding tab. If there are many windows, two small arrows appear on the right of
the tabs. Click these arrows to show the remaining tabs.

GPS changes the color and size of the title (name) of a window in the notebook tab to indicate that the window content
has been updated but the window is not visible. This commonly occurs when new messages have been written in the
Messages or Console views.

3.5 Floating Windows

You may prefer to have several top-level windows under direct control of your system’s window manager. For ex-
ample, you want to benefit from some options your system might provide such as virtual desktops, different window
decoration depending on the window’s type, transparent windows, and/or multiple screens.

You can make any window currently embedded in the MDI a floating window by selecting the window and selecting
the Window → Floating menu. The window is detached and you can move it anywhere on your screen, even outside
GPS’s main window.

There are two ways to put a floating window back under control of GPS. The most general method is to select the
window using its title in the Window menu, and unselect Window → Floating.

The second method assumes you have set the preference Destroy Floats in the Edit → Preferences... menu to false.
If so, you can close the floating window by clicking the close button in the title bar; the window is put back in GPS’s
main windows. If you want to close the window, you need to click the cross button in its title bar a second time.

GPS provides a mode where all windows are floating and the MDI area in the main window is invisible. You may
want to use this if you rely on windows handling facilities supported by your system or window manager that are not
available in GPS, for example if you want to have windows on various virtual desktops and your window manager
supports this.

This mode is activated through the Windows → All Floating preference.

62 Chapter 3. Multiple Document Interface

GPS User’s Guide, Release 2018

3.6 Moving Windows

Change the organization of windows at any time by selecting a notebook containing several editors or browsers and
selecting one of the Split entries in the Window menu.

You can also drag and drop the window within GPS. Select an item to drag by selecting the notebook tab. In that case,
you can also reorder the windows within the notebook: select the tab, then start moving left or right to the window’s
new position. Your mouse must remain within the tab area or GPS will drop the window into another notebook.

Here are the various places where you can drop a window:

• Inside the MDI

While the mouse button is pressed, the target area is highlighted and shows where the window would be put
if you release the mouse button. The background color of the highlight indicates whether the window will be
preserved or not when changing perspectives (for example, when starting a debug session). You can drag a
window to one side of a notebook to split that notebook.

If you drop a window all the way on a side of the area, the window will occupy the full width (or height) of the
area.

GPS will however restrict where windows can be placed: editors and most browsers, for instance, must go into
the central area (the part that stays common when switching perspectives), whereas other views must stay on the
sides (left, right, bottom or top) of that central area. The color of the highlight during a move (blue or brown)
will indicate where the window can be dropped.

• System window

If you drop a window outside of GPS (for example, on the background of your screen), GPS floats the window.

Keeping the shift key pressed while dropping the window results in a copy operation instead of a simple move, if
possible. For example, if you drop an editor, a new view of the same editor is created, resulting in two views: the
original one at its initial location and a second at the new location.

If you keep the control key pressed while dropping the window, all the windows in the same notebook are moved,
instead of just the one you selected. This is the fastest way to move a group of windows to a new location.

3.7 Perspectives

GPS supports the concept of perspectives. These are activity-specific desktops, each with their own set of windows,
but sharing some common windows like the editors.

You can switch to a different perspective for different types of activities you want to perform (such as debugging
or version control operations). For example, when using the debugger, the default perspective consists of windows
containing the call stack, data window, and the debugger console, each at the location you have set. When you start
the debugger again, you do not have to reopen these windows.

Each perspective has a name. Switch perspectives by selecting the Window → Perspectives menu. Create a new
perspective by selecting the Window → Perspectives → Create New menu.

The most convenient way to change perspective, though, is to simply click on the button to the right of the main
toolbar. By default, it shows the label “Default”, which is the name of the default perspective. Selecting any item in
the popup window will switch to that perspective.

GPS sometimes automatically changes perspectives. For example, if you start a debugger, it switches to the perspective
called Debug if one exists. When the debugger terminates, you are switched back to the Default perspective, if one
exists.

3.6. Moving Windows 63

GPS User’s Guide, Release 2018

When you leave a perspective, GPS automatically saves its contents (including which windows are opened and their
location) so when you return to the same perspective you see the same layout.

When GPS exits, it saves the layout of all perspectives to a file perspectives6.xml so it can restore them when
you restart GPS. This behavior is controlled by the General → Save desktop on exit preference, which you can disable.

One difficulty in working with perspectives is knowing which windows are preserved when you switch to another
perspective and which are hidden. To help you determine this, there’s a central area where you can find all preserved
windows. It usually only contains editors (including those that you have split side by side). If you drop another
window on top or to one side of an editor, that window is preserved when changing perspectives unless it is already in
the new perspective. The color of the highlight appearing on the screen while you drag tells you whether the window
(if dropped at the current location) will be visible or hidden in other perspectives.

64 Chapter 3. Multiple Document Interface

CHAPTER

FOUR

EDITING FILES

4.1 General Information

Source editing is one of the central parts of GPS. It allows access to many other functionalities, including extended
source navigation and source analysis tools. You can have as many editor windows as you need. Each editor window
receives annotations from other components in GPS, such as a debugger.

We use the term “pointer” to refer to the mouse pointer and “cursor” to refer to the text cursor.

The source editor provides an extensive set of features, including:

Multi cursors

You are not limited to edition via a single cursor in GPS. You can create multiple cursors that will all
forward the text actions that you enter via your keyboard. This allows you to automate simple repetitive

65

GPS User’s Guide, Release 2018

actions, in a similar way to what you would do with text macros, but in a simpler fashion.

Most of the text actions described in this documentation will be handled transparently by multi cursors,
so you can delete several words at once, or select several pieces of text at once, for example.

At any time during edition with multiple cursors, you can press Escape to remove every cursor but the
main one, so that you are back to single cursor edition. Using the mouse to move the cursor will have the
same effect.

Title bar

Displays the full name of the file including path information in the title bar of the editor window.

Line number information

Located to the left of the source editor, Line numbers can be disabled using the Editor → Display line
numbers preference. This area also displays additional information in some cases, such as the current line
of execution when debugging or VCS annotations.

Scrollbar

Located to the right of the editor, this allows scrolling through the source file. The highlighted area of
the scrollbar corresponds to the visible portion of the file. While you are scrolling, the editor displays a
tooltip showing the file, line number, and subprogram corresponding to the center of the visible portion.

Speed column

This column, when visible, is located on the left of the editor. It allows you to view all the highlighted
lines in a file at a glance. For example, all the lines containing compilation errors are displayed in the
Speed Column. Use the Editor → Speed column policy preference to control the display of this area. It can
sometimes be convenient to keep it visible at all times (to avoid resizing the editors when new information
becomes available) or to hide it automatically when not needed to save space on the screen.

Status bar

Gives information about the file. It is divided in two sections, one each on the left and right of the window.

• The left part of the status bar shows the current subprogram name for languages that support this
capability. Currently Ada, C, and C++ have this ability. The Editor → Display subprogram names
preference controls this display.

• The right section contains multiple items:

– The box displays the position of the cursor in the file as a line and column number. When you
have made a selection in the editor, this area also displays the size of the selection (number of
lines and characters).

– Next to the box is an icon showing whether the file is writable or read only. Change this state by
clicking on the icon, which toggles between Writable and Read Only. This does not change the
permissions of the file on disk: it only changes the writability of the view in the source editor.

When you try to save a read-only file, GPS asks for confirmation, and if possible, saves the file,
keeping its read-only state.

– If the file is maintained under version control and version control is supported and enabled in
GPS, the next icon shows VCS information for the file: the VCS kind (e.g. CVS or subversion)
followed by the revision number and, if available, the file’s status.

Contextual menu

Displayed when you right-click on any area of the source editor. See in particular Contex-
tual_Menus_for_Source_Navigation for more details.

Syntax highlighting

66 Chapter 4. Editing Files

GPS User’s Guide, Release 2018

Based on the programming language associated with the file, reserved words and languages constructs
such as comments and strings are highlighted in different colors and fonts.

By default, GPS knows about many languages. You can also easily add support for other languages
through plugins. Most languages supported by GPS provide syntax highlighting in the editor.

Automatic indentation

When enabled, lines are automatically indented each time you press the Enter key or the indentation
key, which, by default, is Tab. Change it in the key manager dialog. See The Key Shortcuts Editor.

If you have selected a list of lines when you press the indentation key, GPS indents all the lines.

Tooltips

When you place the pointer over a word in the source editor, GPS displays a small window if there is
relevant contextual information to display about that word. The type of information displayed depends on
the current state of GPS.

In normal mode, the editor displays the entity kind and location of the declaration when this information
is available, i.e., when the cross-reference information about the current file has been generated. If there is
no relevant information, no tooltip is displayed. See Support for Cross-References for more information.

In addition, the editor displays documentation for the entity, if available. This is the block of comments
immediately before or after the entity’s declaration (without any intervening blank lines). For example,
the editor displays the following documentation for Ada:

-- A comment for A
A : Integer;

B : Integer;
-- A comment for B

C : Integer;

-- Not a comment for C, there is a blank line

When comments appear both before and after the entity, GPS chooses the one given by the preference
Documentation → Leading documentation. In debugging mode, the editor shows the value of the variable
under the pointer if the variable is known to the debugger.

Disable the automatic pop up of tool tips via the preference Editor → Tooltips.

Code completion

GPS provides two kinds of code completion: a smart code completion, based on semantic information,
and a text completion.

Text completion is useful when editing a file using the same words repeatedly where it provides automatic
word completion. When you type the Ctrl-/ key combination (customizable through the key manager
dialog) after a partial word, GPS inserts the next potential completion. Typing this key again cycles
through the list of potential completions. GPS searches for text completions in all currently open files.

Delimiter highlighting

When the cursor is placed before an opening delimiter or after a closing delimiter, GPS highlights both
delimiters. The following characters are considered delimiters: ()[]{}. Disable highlighting of delimiters
with the preference Editor → Highlight delimiters.

Jump to a corresponding delimiter by invoking the jump to matching delimiter action (which can be bound
to a key in the key shortcuts editor). Invoking this action a second time returns the cursor to its original
position.

4.1. General Information 67

GPS User’s Guide, Release 2018

Current line highlighting

Configure the editor to highlight the current line with a specified color (see the preference Editor → Fonts
& Colors → Current line color).

Current block highlighting

If the preference Editor → Block highlighting is enabled, GPS highlights the current block of code, e.g.
the current begin...end block or loop statement, by placing a vertical bar to its left.

Block highlighting also takes into account the changes made in your source code and is recomputed to
determine the current block when needed. This capability is currently implemented for the Ada, C, and
C++ languages.

Block folding

When the preference Editor → Block folding is enabled, GPS displays - icons on the left side correspond-
ing to the beginning of each block. If you click on one of these icons, all lines corresponding to this block
are hidden except the first. Like block highlighting, these icons are recomputed automatically when you
modify your sources.

This capability is currently implemented for Ada, C, and C++ languages.

Auto save

GPS will by default periodically save your work in temporary files. This can be configured via the Edit
→ Preferences... dialog).

Automatic highlighting of entities

When the pointer is positioned on an entity in the source editor, GPS will highlight all references to this
entity in the current editor. When the pointer is moved away from the entity, the highlighting is removed.

This is controlled by the plugin auto_highlight_occurrences.py: it can be deactivated by dis-
abling the plugin.

Details such as the presence of indications in the Speed Column or highlighting color can be customized
in the Plugins section of Edit → Preferences... dialog.

GPS also integrates with existing third party editors such as emacs or vi. See Using an External Editor.

4.2 Editing Sources

4.2.1 Key bindings

In addition to the standard keys used to navigate in the editor (up, down, right, left, page up, page down), the integrated
editor provides a number of key bindings allowing easy navigation in the file.

There are also several ways to define new key bindings, see Defining text aliases and Binding actions to keys.

68 Chapter 4. Editing Files

GPS User’s Guide, Release 2018

Ctrl-Shift-u Pressing these three keys and then holding Ctrl-Shift allow you to enter characters using
their hexadecimal value. For example, pressing

Ctrl-Shift-u-2-0will insert a space character (ASCII 32, which is 20 in hexadecimal).
Ctrl-x
Shift-delete

Cut to clipboard.

Ctrl-c
Ctrl-insert

Copy to clipboard.

Ctrl-v
Shift-insert

Paste from clipboard.

Ctrl-s Save file to disk.
Ctrl-z Undo previous insertion/deletion.
Ctrl-r Redo previous insertion/deletion.
Insert Toggle overwrite mode.
Ctrl-a Select the whole file.
Home
Ctrl-Pgup

Go to the beginning of the line.

End
Ctrl-Pgdown

Go to the end of the line.

Ctrl-Home Go to the beginning of the file.
Ctrl-End Go to the end of the file.
Ctrl-up Go to the beginning of the line or to the previous line if already at the beginning of the line.
Ctrl-down Go to the end of the line or to the beginning of the next line if already at the end of the line.
Ctrl-delete Delete to the end of the current word.
Ctrl-backspace Delete to the beginning of the current word.
Shift-Alt-down Add a cursor to the current location and go down one line
Shift-Alt-up Add a cursor to the current location and go up one line
Ctrl-Alt-N jump the main cursor to the next occurrence of the selection
Shift-Ctrl-N Add a cursor selecting the current selection and jump the main cursor to the next occurrence

of the selection

4.3 Recording and replaying macros

It is often convenient to be able to repeat a given key sequence a number of times.

GPS supports this with several different methods:

• Repeat the next action

If you want to repeat the action of pressing a single key, first use the GPS action Repeat Next (bound by default
to control-u, but this can be changed as usual through the Edit → Preferences... menu), entering the number
of times you wish to repeat, and then pressing the key whose action you want to repeat.

For example, the sequence control-u 79 - inserts 79 characters of ‘-‘ in the current editor. This is often
useful to insert separators.

If you are using the Emacs mode, you can also use the sequence control-u 30 control-k to delete 30
lines.

• Recording macros

To repeat a sequence of more than 1 key, record the sequence as a macro. All macro-related actions are found
in the Key Shortcuts section of the preferences dialog.

First, tell GPS that it should start recording the keys you are pressing via the Macro Start Keyboard action. This
only records keyboard events, not mouse events. GPS keeps recording the events until you select call the Macro
Stop action.

4.3. Recording and replaying macros 69

GPS User’s Guide, Release 2018

In Emacs mode, macro actions are bound to control-x (, control-x) and control-x e key short-
cuts. For example, you can execute the following to create a very simple macro that deletes the current line
wherever your cursor initially is on that line:

– control-x (start recording

– control-a go to beginning of line

– control-k delete line

– control-x) stop recording

4.4 Contextual Menus for Editing Files

Whenever you ask for a contextual menu (using, for example, the right button on your mouse) on a source file, you get
access to a number of entries, which are displayed or hidden depending on the current context.

These menu entries include the following categories:

Source Navigation

See Contextual_Menus_for_Source_Navigation.

Dependencies

See The Dependency Browser.

Entity browsing

See The Entity browser.

Project view

See The Project view.

Debugger

See Using the Source Editor when Debugging.

Case exceptions

See Handling of casing.

Refactoring

See Refactoring.

In addition, an entry Properties... is always visible in this contextual menu. When you select it, a dialog allows you to
override the language or the character set used for the file. This is useful when opening a file that does not belong to
the current project but where you want to benefit from the syntax highlighting, which depends on knowing the file’s
language.

Do not override the language for source files belonging to the current project. Instead, use the Edit → Project Prop-
erties menu and change the naming scheme as appropriate. This provides better consistency between GPS and the
compiler in the way they manipulate the file.

4.5 Handling of casing

GPS maintains a dictionary of identifiers and a corresponding casing that are used by all case-insensitive languages.
When editing or reformatting a buffer for such a language, the dictionary is checked first. If GPS finds an entry for a

70 Chapter 4. Editing Files

GPS User’s Guide, Release 2018

word or a substring of a word, it is used; otherwise the specified default casing for keywords or identifiers is used. A
substring is defined as a part of the word separated by underscores.

This feature is not activated for entities (keywords or identifiers) for which the casing is set to Unchanged in the Editor
→ Ada → Reserved word casing or Editor → Ada → Identifier casing preferences.

A contextual menu named Casing has the following entries:

• Casing → Lower *entity*

Set the selected entity to be in lower case.

• Casing → Upper *entity*

Set the selected entity to be in upper case.

• Casing → Mixed *entity*

Set the selected entity to be in mixed case (the first letter and letters before an underscore are in upper case and
all other letters are in lower case).

• Casing → Smart Mixed *entity*

Set the selected entity as smart mixed case, which is the same as above except that upper case letters are kept
unchanged.

• Casing → Add exception for *entity*

Add the current entity into the dictionary.

• Casing → Remove exception for *entity*

Remove the current entity from the dictionary.

To add or remove a substring from the dictionary, first select the substring in the editor. Then, the last two contextual
menu entries will be:

• Casing → Add substring exception for *str*

Add the selected substring into the dictionary.

• Casing → Remove substring exception for *str*

Remove the selected substring from the dictionary.

4.6 Refactoring

GPS includes basic facilities to refactor your code. “Refactoring” is the term used to describe manipulation of source
code that does not affect the behavior of the code but helps reorganize it to make it more readable, more extendable, or
make other similar improvements. Refactoring techniques are generally things that programmers have done by hand,
but which can be done faster and more securely when done automatically by a tool.

A basic recommendation when you refactor your code is to recompile and test your application regularly to make
sure each small modification you made did not change the behavior of your application. This is particularly true
with GPS, since it relies on the cross-references information generated by the compiler. If some source files have not
been recompiled recently, GPS prints warning messages indicating that the operation might be dangerous and/or only
partially performed.

One of the reference books used in the choice of refactoring methods for GPS is “Refactoring”, by Martin Fowler
(Addison Wesley).

4.6. Refactoring 71

GPS User’s Guide, Release 2018

4.6.1 Rename Entity

Clicking on an entity in a source file and selecting the Refactoring → Rename contextual menu opens a dialog asking
for the new name of the entity. GPS renames all instances of the entity in your application, including the definition
of the entity, its body, and all calls to it. No comments are updated so you should probably manually check that the
comment for the entity still applies.

GPS handles primitive operations by also renaming the operations it overrides or that override it, so any dispatching
call to that operation is also renamed, allowing the application to continue to work properly. If you are renaming a pa-
rameter to a subprogram, GPS also renames parameters with the same name in overriding or overridden subprograms.

You can specify the behavior for read-only files: by default, GPS will not do any refactoring in these files and instead
displays a dialog listing them. However, you can choose to make them writable just as if you had clicked on the
Read-Only button in the status bar of the editor and have GPS perform the renaming in them as well.

4.6.2 Name Parameters

If you are editing Ada code and click on a call to a subprogram, GPS displays a Refactoring → Name parameters
contextual menu, which replaces all unnamed parameters by named parameters, for example:

Call (1, 2)
=>

Call (Param1 => 1, Param2 => 2);

4.6.3 Extract Subprogram

This refactoring moves some code into a separate subprogram to simplify the original subprogram by moving part of
its code elsewhere. Here is an example from the “Refactoring” book. The refactoring takes place in the body of the
package pkg.adb, but the spec is needed so you can compile the source code (a preliminary, but mandatory, step
before you can refactor the code):

pragma Ada_05;

with Ada.Containers.Indefinite_Doubly_Linked_Lists;
with Ada.Strings.Unbounded;

package Pkg is

type Order is tagged null record;
function Get_Amount (Self : Order) return Integer;

package Order_Lists is new
Ada.Containers.Indefinite_Doubly_Linked_Lists (Order);

type Invoice is tagged record
Orders : Order_Lists.List;
Name : Ada.Strings.Unbounded.Unbounded_String;

end record;

procedure Print_Owing (Self : Invoice);

end Pkg;

An initial implementation for this is the following:

72 Chapter 4. Editing Files

GPS User’s Guide, Release 2018

pragma Ada_05;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;

package body Pkg is
use Order_Lists;

-- Get_Amount --

function Get_Amount (Self : Order) return Integer is
begin

return 0;
end Get_Amount;

-- Print_Owing --

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := 0;
Each : Order;

begin
-- <<< line 30
-- Print Banner

Put_Line ("");
Put_Line (" Customer Owes ");
Put_Line (""); -- << line 35

-- Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

-- Print Details

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding'Img);

end Print_Owing;
end Pkg;

Suppose we feel the procedure Print_Owing is too long and does several independent actions. We will perform a
series of three successive refactoring steps to extract the code and move it elsewhere.

First, we move the code that prints the banner. Moving it is easy, since this code does not depend on any context. We
could just do a copy-paste, but then we would have to create the new subprogram. Instead, we select lines 30 to 35 and
then select the Refactoring → Extract Subprogram contextual menu. GPS removes those lines from the subprogram
Print_Owing and creates a new procedure Print_Banner (the name is specified by the user; GPS does not try
to guess a name). Also, since the chunk of code that is extracted starts with a comment, GPS automatically uses that
comment as the documentation for the new subprogram. Here is the relevant part of the resulting file:

4.6. Refactoring 73

GPS User’s Guide, Release 2018

package body Pkg is

procedure Print_Banner;
-- Print Banner

-- Print_Banner --

procedure Print_Banner is
begin

Put_Line ("");
Put_Line (" Customer Owes ");
Put_Line ("");

end Print_Banner;

... (code not shown)

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := 0;
Each : Order;

begin
Print_Banner;

-- Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

-- Print Details <<< line 54

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding'Img); -- line 57

end Print_Owing;
end Pkg;

A more interesting example is when we want to extract the code to print the details of the invoice. This code depends
on one local variable and the parameter to Print_Owing. When we select lines 54 to 57 and extract it into a
new Print_Details subprogram, GPS automatically decides which variables to extract and whether they should
become parameters of the new subprogram or local variables. In the former case, it also automatically decides whether
to create in, out or in out parameters. If there is a single out parameter, GPS automatically creates a function
instead of a procedure.

GPS uses the same name for the local variable for the parameters. Often, it makes sense to recompile the new version
of the source and apply the Refactoring → Rename Entity refactoring to have more specific names for the parameters,
or the Refactoring → Name Parameters refactoring so that calls to the new method uses named parameters to further
clarify the code:

... code not shown

procedure Print_Details
(Self : Invoice'Class;
Outstanding : Natural);

-- Print Details

74 Chapter 4. Editing Files

GPS User’s Guide, Release 2018

-- Print_Details --

procedure Print_Details
(Self : Invoice'Class;
Outstanding : Natural)

is
begin

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding'Img);

end Print_Details;

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := 0;
Each : Order;

begin
Print_Banner;

-- Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

Print_Details (Self, Outstanding);
end Print_Owing;

Finally, we want to extract the code that computes the outstanding balance. When this code is moved, the vari-
ables E and Each become dead in Print_Owing and are moved into the new subprogram (which we call
Get_Outstanding). The initial selection should include the blank lines before and after the code to keep the
resulting Print_Owing simpler. GPS automatically ignores those blank lines. Here is the result of that last refac-
toring

... code not shown

procedure Get_Outstanding (Outstanding : in out Natural);
-- Calculate Outstanding

-- Get_Outstanding --

procedure Get_Outstanding (Outstanding : in out Natural) is
E : Order_Lists.Cursor := First (Self.Orders);
Each : Order;

begin
while Has_Element (E) loop

Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;
end Get_Outstanding;

4.6. Refactoring 75

GPS User’s Guide, Release 2018

procedure Print_Owing (Self : Invoice) is
Outstanding : Natural := 0;

begin
Print_Banner;
Get_Outstanding (Outstanding);
Print_Details (Self, Outstanding);

end Print_Owing;

The final version of Print_Owing is not perfect. For example, passing the initial value 0 to Get_Outstanding
is useless and, in fact, it should probably be a function with no parameter. But GPS already saves a lot of time and
manipulation even given these imperfections.

Finally, a word of caution: this refactoring does not check that you are starting with valid input. For example, if the
text you select includes a declare block, you should always include the full block, not just a part of it (or select text
between begin and end). Likewise, GPS does not expect you to select any part of the variable declarations, just the
code.

4.7 Using an External Editor

GPS is integrated with a number of external editors, in particular emacs and vi. The choice of the default external
editor is done in the Editor → External editor preference.

The following values are recognized:

• gnuclient

This is the recommended client. It is based on Emacs, but needs an extra package to be installed. This is the only
client providing a full integration in GPS, since any extended lisp command can be sent to the Emacs server.

By default, gnuclient opens a new Emacs frame for every file you open. You might want to add the following
code to your .emacs file (create one if needed) so that the same Emacs frame is reused each time:

(setq gnuserv-frame (car (frame-list)))

See http://www.hpl.hp.com/personal/ange/gnuserv/home.html for more information.

• emacsclient

This is a program that is always available if you have installed Emacs. As opposed to starting a new Emacs
every time, it reuses an existing Emacs sessions, so it is extremely fast to open a file.

• emacs

This clients start a new Emacs session every time a file needs to be opened. You should use emacsclient
instead, since it is much faster and makes it easier to copy and paste between multiple files. The only reason to
use this external editor is if your system does not support emacsclient.

• vim

Vim is a vi-like editor that provides a number of enhancements, for example, syntax highlighting for all languages
supported by GPS. Selecting this external editor starts an xterm (or command window, depending on your
system) with a running vim process editing the file.

One limitation of this editor is that if GPS needs to open the same file a second time, it opens a new editor
instead of reusing the existing one.

To enable this capability, the xterm executable must be found in the PATH and thus this is not supported on
Windows systems. On Windows systems, use the program editor instead.

76 Chapter 4. Editing Files

http://www.hpl.hp.com/personal/ange/gnuserv/home.html

GPS User’s Guide, Release 2018

• vi

This editor works exactly like vim, but uses the standard vi command instead of vim.

• custom

Specify any external editor by choosing this entry. Specify the complete command line used to call the editor in
the Editor → Custom editor command preference.

• none

No external editor is used and the contextual menus do not appear.

In the cases that require an Emacs server, the project file currently used in GPS is set appropriately the first time Emacs
is spawned. This means that if you load a new project in GPS or modify the paths of the current project, you should
kill any running Emacs, so a new one is spawned by GPS with the appropriate project.

Alternatively, explicitly reload the project from Emacs itself by using the File → Load Project menu in emacs (if
ada-mode is correctly installed).

The Editor → Always use external editor preference lets you choose to use an external editor every time you double-
click on a file, instead of opening GPS’s own editor.

4.8 Using the Clipboard

This section is of interest to X Window System users who are used to cutting and pasting with the middle mouse button.
In the GPS text editor, as in many recent X applications, the GPS clipboard is set by explicit cut/copy/paste actions,
either through menu items or keyboard shortcuts, and the primary clipboard (i.e. the ‘middle button’ clipboard) is set
to the current selection.

Therefore, copy/paste between GPS and other X applications using the primary clipboard still work provided there is
text currently selected. The GPS clipboard, when set, overrides the primary clipboard.

By default, GPS overrides the X mechanism. To prevent this, add the following line:

GPS.INTERNAL.OVERRIDE_MIDDLE_CLICK_PASTE = no

to your traces.cfg file (typically in ~/.gps/). Note that the X mechanism pastes all attributes of text, including
coloring and editability, which can be confusing.

See http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt for more information.

4.9 Saving Files

After you have finished editing your files, you need to save them. Do so by selecting the File → Save menu, which
saves the currently selected file.

Use the File → Save As... menu if you want to save the file with another name or in another directory.

If you have multiple files to save, use the File → Save More → All menu, which opens a dialog listing all the currently
modified editors. Select which ones should be saved and click on Save to save those editors.

When calling external commands, such as compiling a file, if the Editor → Autosave delay preference is set to 0, this
same dialog is also used to make sure the external command sees your changes. If the preference is enabled, editors
are saved automatically.

4.8. Using the Clipboard 77

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt

GPS User’s Guide, Release 2018

Conveniently select or unselect all the files at once by clicking on the title of the first column (labeled Select). This
toggles the selection status of all files.

If you press Cancel instead of Save, nothing is saved and the action that displayed this dialog is also canceled. Such
actions can be, for example, starting a compilation command, a VCS operation, or quitting GPS with unsaved files.

4.10 Printing Files

GPS lets you configure how printing is performed, via its External Commands/Print command preference.

This program is required for Unix systems, and is set to lp by default. Other popular choices include a2ps which
provides pretty-printing and syntax highlighting.

On Windows, this preference is optional and the preference is empty by default since GPS provides built-in printing. If
you specify an external tool, such as the PrintFile freeware utility available from http://www.lerup.com/printfile/
descr.html, GPS uses that.

78 Chapter 4. Editing Files

http://www.lerup.com/printfile/descr.html
http://www.lerup.com/printfile/descr.html

CHAPTER

FIVE

SOURCE NAVIGATION

5.1 Support for Cross-References

GPS provides cross-reference navigation for program entities defined in your application such as types, procedures,
functions, and variables. This support relies on compiler-generated cross-reference information, so you need to com-
pile your project before being able to navigate within it. Similarly, if you have modified your sources, you need to
rebuild and recompute the xref information it you want your changes to be taken into account by GPS.

Here is language specific information about source navigation:

Ada

By default, GPS uses the GNAT compiler to generate the cross-reference information it needs. However,
if you are using the -gnatD or -gnatx switches, no cross reference information is available to GPS.

If you need to navigate through sources that do not compile (such as after modifications or while porting
or initially developing an application), GNAT generates partial cross-reference information if you specify
the -gnatQ switch. Using this along with the -k switch of gnatmake generates as much relevant
information from your non-compilable sources as possible.

Sometimes GPS cannot find the external files (called ALI files) containing the cross-reference infor-
mation. Most likely, this is either because you have not compiled your sources yet or because the sources
changed since the ALI files were generated. Another possibility is that you have not included the
object directories that contain the ALI files in the project.

In addition, GPS cannot automatically handle one special case, when you have separate units whose file
names have been crunched by the gnatkr command.

C/C++

You need to use the GCC C and C++ compilers that come with GNAT to generate the cross-references
information needed by GPS and to call them with the -fdump-xref switch, so you need to first add that
switch to your project’s switches for C and C++ sources and compile your application before you browse
through the cross-references. If your sources have been modified, recompile the modified files.

5.1.1 Ada cross-reference heuristics

GPS provides basic navigation support for Ada, C, and C++ sources even in the absence of information coming from
the compiler by using a built-in parser, parsing the files both at startup and when they are modified. This provides
basic navigation in simple cases.

In this mode, GPS can navigate to an entity body from the declaration and vice versa. For other references, GPS can
navigate to the declaration only if the heuristics provides the necessary information without ambiguity, which may not
be the case with overloaded entities.

79

GPS User’s Guide, Release 2018

GPS also uses this parser to provide the Ada outline view, code completion and entity view, but these heuristics are
not used in global reference searching operations or to generate call graphs.

5.1.2 The cross-reference database

GPS parses the cross-reference information generated by the compiler (the .ali) files into one or several sqlite
databases (e.g: if your project uses Ada and C). These database files can become quite large and should preferably be
on a fast local disk.

By default, GPS places these database files in the object directory of the currently-loaded root project, or, if specified,
in the directory designated by the relative or absolute path given by the Artifacts_Dir attribute of the IDE package of
your project file:

-- assume this is in /home/user1/work/default.gpr
project Default is

for Object_Dir use "obj";

package IDE is
for Artifacts_Dir use "artifacts";
-- All the artifacts generated by GPS (including the xref databases)
-- will be put in the /home/user1/work/artifacts/ directory.
--
-- We could also have specified an absolute path here
-- (e.g: for Artifacts_Dir use "/home/user1/work/artifacts/").

end IDE;
end Default;

If you want to have more advanced control regarding the naming of the Ada cross-references database file, you can use
the Xref_Database in the IDE package of your project file, either as an absolute path or a path relative to the location
of the project file. We recommend this path to be specific to each use, and to each project this user might be working
on, as in the following examples:

-- assume this is in /home/user1/work/default.gpr
project Default is

for Object_Dir use "obj";

package IDE is
for Xref_Database use "xref_database.db";
-- This would be /home/user1/work/xref_database.db

for Xref_Database use Project'Object_Dir & "/xref_database.db";
-- This would be /home/user1/work/obj/xref_database.db
-- This is the default when this attribute is not specified

for Xref_Database use external("HOME") & "/prj1/database.db";
-- This would be /home/user1/prj1/database.db

end IDE;
end Default;

One drawback in altering the default location is that gprclean will not remove these database files when you clean
your project. But it might speed up GPS if your project is not on a fast local disk and you can put the databases there.

WARNING: You should not store this file in a directory that is accessed via a network filesystem, like NFS,
or Clearcase’s MVFS. If your obj directory is on such a filesystem, be sure to specify a local directory for
IDE’Artifacts_Dir project attribute or, if you project only uses Ada, a custom local file path for the IDE’Xref_Database
project attribute.

80 Chapter 5. Source Navigation

GPS User’s Guide, Release 2018

5.1.3 Cross-references and partially compiled projects

The cross-reference engine works best when the cross-reference information generated by the compiler (the .ali
files) is fully up to date.

If you start from such a state and then modify the spec or body of an Ada package and recompile only that file, any
reference to entities declared in that spec in other packages might no longer be found (until you recompile those other
packages, as gprbuild would).

This is because GPS has no way to know for sure whether an entity Foo in the spec is the same entity as before or is
a new one with the same name. It uses an approximate algorithm where the references are only preserved if an entity
with the same name remains at precisely the same location in the new version of the source. But if a blank line in the
file will change the declaration line for all entities declared further in the file, so those will lose their references from
other source files.

5.1.4 Cross-reference and GNAT runtime

By default, GPS does not parse the GNAT runtime files because there is a large number of them and doing so would
significantly slow down GPS, while producing only a minimal gain for most users. However, the location of subpro-
grams in those runtime files is available from the .ali files corresponding to the sources of your project.

From your own sources, you can navigate to one of the runtime files (for example, if you have a reference to
Put_Line(), you will jump to its declaration in a-textio.ads). But you cannot perform cross-reference queries
from a runtime file itself.

If you need this capability, enable the preference Project/Cross References in Runtime Files.

5.2 Contextual Menus for Source Navigation

This contextual menu is available from any source editor. If you right-click on an entity or selected text, the contextual
menu applies to the selection or entity. Most of these menus requires support for cross-references.

• Goto declaration of *entity*

Go to the declaration (spec) of entity.

• Goto declarations of *entity*

This entry appears when clicking on a dispatching subprogram call. In that case, GPS cannot know what
subprogram will actually be called at run time, so it gives you a list of all entities in the tagged type hierarchy
and lets you choose which of the declarations you want to jump to. See also the methods.py plugin (enabled
by default) which, given an object, lists all its primitive operations in a contextual menu so you can easily jump
to them. See also the References → Find References To... contextual menu, which allows you to find all calls to
a subprogram or one of its overriding subprograms.

• Goto full declaration of *entity*

This entry appears for a private or limited private types. Go to the full declaration (spec) of entity.

• Goto type declaration of *entity*

Go to the type declaration of entity.

• Display type hierarchy for *entity*

This entry appears for derived or access types. Put the type hierarchy for entity into the Location view.

5.2. Contextual Menus for Source Navigation 81

GPS User’s Guide, Release 2018

• Goto body of *entity*

Go to the body (implementation of entity.) If entity is the declaration of an Ada subprogram imported from C,
go to the location where the C function is defined.

• Goto bodies of *entity*

Similar to Goto declarations of, but applies to the bodies of entities.

• Goto file spec/body

Open the corresponding spec file if the current edited file is a body file, or the body file otherwise. This entry is
only available for the Ada language.

• *Entity* calls

Display a list of all subprograms called by entity in a tree view. This is generally more convenient than using
the corresponding Browsers/ submenu if you expect many references. See The Call trees view and Callgraph
browser.

• *Entity* is called by

Display a list of all subprograms calling entity in a tree view. This is generally more convenient than using
the corresponding Browsers/ submenu if you expect many references. See The Call trees view and Callgraph
browser.

• References → Find all references

Find all references to entity in all the files in the project.

• References → Find all references...

Similar to the entry above except you can select more precisely what kind of reference should be displayed.
You can also specify the scope of the search and whether the context (or caller) at each reference should be
displayed.

The option Include overriding and overridden operations includes references to overridden or overriding enti-
ties. This is particularly useful if you need to know whether you can easily modify the profile of a primitive
operation or method since you can see which other entities would also be changed. If you select only the
declaration check box, you see the list of all related primitive operations.

This dialog allows you to determine which entities are imported from a given file or unit. Click on any entity
from that file (for example on the with line for Ada code) and select the All entities imported from same file
toggle, which displays in the Location view the list of all entities imported from the same file.

Selecting the Show context option produces a list of all the references to these entities within the file. If it is not
selected, you just get a pointer to the declaration of the imported entities.

• References → Find all local references to *entity*

Find all references to entity in the current file (or in the current top level unit for Ada sources).

• References → Variables used in *entity*

Find all variables (local or global) used in entity and list each first reference in the locations window.

• References → Non Local variables used in *entity*

Find all non-local variables used in the entity.

• References → Methods of *entity*

This entry is only visible if you activated the plugin methods.py (the default) and when you click on a tagged
type or an instance of a tagged type. It lists all the primitive operations or methods of that type, allowing you to
jump to the declaration of any of these operations or methods.

82 Chapter 5. Source Navigation

GPS User’s Guide, Release 2018

• Browsers → *Entity* calls

Open or raise the Callgraph browser on the specified entity and display all the subprograms called by it. See
Callgraph browser.

• Browsers → *Entity* calls (recursively)

Open or raise the Callgraph browser on the specified entity and display all the subprograms called by entity,
transitively for all subprograms. Since this can take a long time to compute and generate a very large graph, an
intermediate dialog is displayed to limit the number of subprograms to display (1000 by default). See Callgraph
browser.

• *Entity* is called by

Open or raise the Callgraph browser on the specified entity and display all the subprograms calling entity. See
Callgraph browser.

• Expanded code

Present for Ada files only. Generates a .dg file by calling the GNAT compiler with the :index:command:-
gnatGL‘‘ switch and displaying the expanded code. Use this when investigating low-level issues and tracing
how your source code is transformed by the GNAT front-end.

• Expanded code → Show subprogram

Display expanded code for the current subprogram in the current editor.

• Expanded code → Show file

Display expanded code for the current file in the current editor.

• Expanded code → Show in separate editor

Display expanded code for the current file in a new editor.

• Expanded code → Clear

Remove expanded code from the current editor.

• Open *filename*

When you click on a filename (for example, a C #include, or an error message in a log file), this entry opens
that file. If the file name is followed by : and a line number, the cursor points to that line.

5.3 Navigating with hyperlinks

When you press the Control key and start moving the mouse, entities in the editors under the pointer become
hyperlinks and the form of the pointer changes.

Left-clicking on a reference to an entity opens a source editor on the declaration of the entity and left-clicking on
an entity declaration opens an editor on the implementation of the entity. Left-clicking on the Ada declaration of a
subprogram imported from C opens a source editor on the definition of the corresponding C entity. This capability
requires support for cross-references.

Middle-clicking on either a reference to an entity or the declaration of an entity jumps to the implementation (or type
completion) of the entity.

For efficiency, GPS may create hyperlinks for some entities which have no associated cross reference. In this case,
clicking has no effect even though a hyperlink is displayed.

This behavior is controlled by the General → Hyper links preference.

5.3. Navigating with hyperlinks 83

GPS User’s Guide, Release 2018

5.4 Highlighting dispatching calls

By default, GPS highlights dispatching calls in Ada and C++ source code via the dispatching.py plugin. Based
on the cross-reference information, this plugin highlights (with a special color you can configure in the preferences
dialog) all Ada dispatching calls or calls to virtual methods in C++. A dispatching call in Ada is a subprogram call
where the actual subprogram called is not known until run time and is chosen based on the tag of the object.

Disable this highlighting (which may be slow if you have large sources) by using the Edit → Preferences... menu,
going to the Plugins section and disabling the dispatching.py plugin.

84 Chapter 5. Source Navigation

CHAPTER

SIX

PROJECT HANDLING

The discussion of the Project view (see The Project view) gave a brief overview of what the projects are and the
information they contain. This chapter provides more in-depth information and describes how you create and maintain
projects.

6.1 Description of the Projects

6.1.1 Project files and GNAT tools

The projects used by GPS are the same as the ones used by GNAT: all command-line GNAT tools are project aware.
Projects files are text (with the extension .gpr), which you can edit with any text editor or through GPS’s interface.
GPS can load any project file, even those you created or edited manually, and you can manually edit project files
created by GPS. Most features of project files can be accessed without using GPS.

The detailed syntax and semantics of project files is fully described in the GNAT User’s Guide and GNAT Reference
Manual. Read these sections if you want to use the more advanced capabilities of project files that are not supported
by GPS’s graphical interface.

You usually will not need to edit project files manually, since GPS provides several graphical tools such as the project
wizard (see The Project Wizard) and the properties editor (see The Project Properties Editor).

GPS does not preserve the layout or comments of projects you created manually after you have edited them in GPS.
For example, multiple case statements in the project are merged into a single case statement. GPS needs to do this
normalization to be able to preserve the previous semantics of the project in addition to supporting the new settings.

GPS uses the same mechanisms to locate project files as GNAT:

• absolute paths

• relative paths

These paths, when used in a with line as described below, are relative to the location of the project containing
the with.

• ADA_PROJECT_PATH

If set, an environment variable containing a colon-separated (semicolon under Windows) list of directories to be
searched for project files.

• GPR_PROJECT_PATH

If set, an environment variable containing a colon-separated (semicolon under Windows) list of directories to be
searched for project files.

85

GPS User’s Guide, Release 2018

• predefined project path

The compiler internally defines a predefined project path in which standard libraries can be installed, for example
XML/Ada.

6.1.2 Contents of project files

Project files contain all the information describing the organization of your source files, object files, and executables.

A project file can contain comments, which have the same format as in Ada: they start with “–” and extend to the end
of the line. You can add comments when you edit the project file manually. GPS attempts to preserve them when you
save the project through the menu, but this is not always possible. GPS is more likely to preserve them if the comments
are put at the end of the line:

project Default is
for Source_Dirs use (); -- No source in this project

end Default;

Often, one project file is not enough to describe a complex system. If so, you will create and use a project hierar-
chy, with a root project importing subprojects. Each project and subproject is responsible for its own set of sources
(including compiling them with the appropriate switches and putting the resulting files in the correct directories).

Each project file contains the following information (see the GNAT User’s Guide for the full list):

• List of imported projects

When compiling sources from this project, the builder first makes sure it correctly recompiled all the imported
projects and that they are up to date. This properly handles dependencies between source files.

If one source file of project A depends on some source files from project B, B must be marked as imported by
A. If this is not done, the compiler will complain that those source files cannot be found.

Each source file name must be unique in the project hierarchy (i.e., a file cannot be under control of two different
projects), ensuring that the file will be found no matter what project is managing it.

• List of source directories

All sources managed by a project are located in one or more source directories. Each project can have multiple
source directories and a given source directory may be shared by multiple projects.

• Object directory

When sources of the project are compiled, the resulting object files are put in this directory. There must be
exactly one object directory for each project. If you need to split the object files across multiple directories, you
must create multiple projects importing each other.

When sources from imported subprojects are recompiled, the resulting object files are put in the subproject’s
own object directory and not the parent’s object directory.

• Exec directory

When the object files are linked into an executable, this executable is put in the exec directory specified by this
attribute. If it is omitted, the builder puts the executable into the object directory.

• List of source files

Each project is responsible for managing its set of source files. These files can be written in any programming
language, but the graphical interface supports only Ada, C, and C++.

By default, these source files are found by taking all the files in the source directories that follow the naming
scheme (see below) for each language. You can also edit the project file manually to provide an explicit list of
source files.

86 Chapter 6. Project Handling

GPS User’s Guide, Release 2018

This attribute cannot be modified graphically.

• List of main units

The main units of a project (or main files in some languages) are the units containing the main subprogram of
the application. The name of the file is generally related to the name of the executable.

A project file hierarchy can be used to compile and link several executables. GPS automatically updates the
Compile, Run and Debug menu with the list of executables based on this list.

• Naming schemes

The naming scheme refers to the way files are named for each language used by your project. GPS uses this to
choose the language to use when you open a source file and what tools to use to compile or otherwise manipulate
a source file.

• Embedded targets and cross environments

GPS supports cross environment software development: GPS itself can run on one host, such as GNU/Linux,
while compilation, execution, and debugging occur on a different remote host, such as Sun/Solaris.

GPS also supports embedded targets such as VxWorks by specifying alternate names for the build and debug
tools.

The project file contains the information required to log on to the remote host.

• Tools

Project files provide a simple way of specifying the compiler and debugger commands to use.

• Switches

Each tool used by GPS (such as the compiler, pretty-printer, and debugger) has its own set of switches. More-
over, these switches may depend on the file being processed and the programming language it is written in.

6.2 Supported Languages

Other information stored in the project file is the list of languages used by the project. GPS supports any language,
each with a name you choose, but advanced support is only provided by default for some languages (Ada, C, and C++).
You can specify other properties of the languages through customization files (see Adding support for new languages).

The graphical interface only allows you to choose languages currently known to GPS, either through built-in support
or your customization files. Supporting a languages means syntax highlighting in the editor, and possibly the Outline
view. Other languages have advanced cross-references facilities available. You can edit the project files by hand to
add support for any language.

Languages are a very important part of the project definition. For each language, you should specify a naming scheme
to allow GPS to associate files with that language. For example, you could specify that all .adb files are Ada, all
.txt files are standard text files, etc.

Only files that have an associated known language are displayed in the Project view and available for selection through
the Find → Find File in Project menu. Similarly, only these files are shown in the Version Control System interface.
It is important to properly set up your project to make these files conveniently available in GPS although you can still
open any file through the File → Open File menu.

If your project includes README files, or other text files, you should add “txt” as a language (the name is arbitrary)
and ensure these files are associated with that language in the Edit → Project Properties....

6.2. Supported Languages 87

GPS User’s Guide, Release 2018

6.3 Scenarios and Configuration Variables

You can further tailor the behavior of project by using scenarios.

You can specify the value of all attributes of a project except its list of imported projects based on the value of external
variables, each of which comes from either the host computer environment or is specifically set in GPS. The interface
to manipulate these scenarios is the Scenario view, which you display by selecting the menu View → Scenario (The
Scenario View). You may want to drop this window above the Project view so you can see both at the same time.

The Scenario view allows you to select new values for the scenario variables defined in your project and thus dynam-
ically change the view GPS has of your project and its source files.

For example, you can use this facility to compile all the sources either in debug mode (so the executables can be run
in the debugger) or in optimized mode (to reduce the space and increase the speed when delivering the software). In
that scenario, most of the attributes (such as source directories and tools) remain the same, but compilation switches
differ. You could also maintain a completely separate hierarchy of projects, but it is much more efficient to create a
new configuration variable and edit the switches for the appropriate scenario (see The Project Properties Editor).

There is one limitation on what GPS can do with scenario variables: although gnatmake and gprbuild can use
scenario variables whose default value is something other than static string (for example, a concatenation or the value
of another scenario variable), GPS cannot edit such a project graphically, though such projects load correctly.

6.3.1 Creating new scenario variables

Create a new scenario variable through the contextual menu (right-click) in the Project or Scenario views themselves.
Select the Project → Add Scenario Variable menu, which opens the following dialog:

There are two main areas in this dialog. You specify the name of the variable in the top line. This name is used for
two purposes:

• It is displayed in the Scenario view

• It is the name of the environment variable from which the initial value is read. When GPS starts, all configuration
variables are initialized from the host computer environment, although you can later change their values inside
GPS. Selecting a new value for the scenario variable does not change the value of the environment variable,
which is only used to get the default initial value of the scenario variable.

88 Chapter 6. Project Handling

GPS User’s Guide, Release 2018

When you spawn external tools like gnatmake you can also specify the value they should use for the scenario
variable by using a command line switch, typically -X.

Click on the arrow on the right of the name area to display the list of all currently-defined environment variables.
However, you can choose any variable; the environment variable need not exist when you start GPS.

The second area in this dialog is the list of possible values for this variable. GPS generates an error and will not load
the project if you specify any other value. One of these values is the default (the one whose button in the Default
column is selected). If the environment variable is not defined when GPS starts, it behaves as if it had this default
value.

You can edit the list of possible values by right-clicking on the name of the variable and selecting either Edit properties
or Delete variable.

6.3.2 Editing existing scenario variables

If at least one configuration variable is defined in your project, the Scenario view contains something similar to:

6.3. Scenarios and Configuration Variables 89

GPS User’s Guide, Release 2018

You can change the current value of any of these variables by clicking on one, which displays a pop-up window with
the list of possible values, from which you select the one you want to use.

As soon as a new value is selected, GPS recomputes the Project view (in case source directories, object directories or
list of source files have changed). GPS also updates other items such as the list of executables in the Compile, Run,
and Debug menus.

Because it can be time consuming and costly of system resources, GPS does not recompute the contents of the various
browsers, such as the call graph and dependencies, for this updated project. You must explicitly request that they be
updated if you want them recomputed.

Change the list of possible values for a configuration variable at any time by clicking on the edit button in the local
toolbar. This pops up the same dialog used to create new variables, and also allows you to change the name of the
scenario variable (the same name as the environment variable used to set the initial value of the scenario variable).

90 Chapter 6. Project Handling

GPS User’s Guide, Release 2018

To remove a variable, select it and click the remove button in the local toolbar. GPS displays a confirmation dialog.
When the variable is removed, GPS acts as if the variable always had the value it had when it was removed.

6.4 Extending Projects

6.4.1 Description of project extensions

Project files are designed to support large projects, with several hundred or even several thousand source files. In such
contexts, one developer will generally work on a subset of the sources. Such a project may often take several hours to
be fully compiled. Most developers do not need to have the full copy of the project compiled on their own machine.

However, it can still be useful to access other source files from the application. For example, a developer may need to
find out whether a subprogram can be changed, and where it is currently called.

Such a setup can be achieved through project extensions. These are special types of projects that inherit most of their
attributes and source files from another project and can have, in their source directories, some source files that hide
those inherited from the original project.

When compiling such projects, the compiler puts the newly created project files in the extension project’s directory
and leaves the original directory untouched. As a result, the original project can be shared read-only among several
developers (for example, the original project is often the result of a nightly build of the application).

6.4.2 Creating project extensions

The project wizard allows you to create extension projects. Select an empty directory (which is created if it does not
exist), as well as a list of initial source files (new files can be added later). GPS copies the selected source files to
the directory and creates a number of project files there. It then loads a new project, with the same properties as the
previous one, except that some files are found in the new directory and object files resulting from the compilation are
put into that directory instead of the object directory of the original project.

6.4.3 Adding files to project extensions

Once you load a project extension in GPS, most things are transparent to the extension. If you open a file through the
Find → Find File in Project dialog, the files found in the local directory of the extension project are picked up first.
Build actions create object files in the project extensions’ directory, leaving the original project untouched.

You may want to work on a source file you did not put in the project extension when you created it. You could edit
the file in the original project (provided, of course, you have write access to it). However, it is generally better to edit
it in the context of the project extension, so the original project can be shared among developers. Do this by clicking
the file in the Project view and selecting the Add To Extending Project menu. You will see a dialog asking whether
you want GPS to copy the file to the project extension’s directory. GPS may also create some new project files in that
directory, if necessary, and automatically reload the project as needed. From that point on, if you use the menu Find
→ Find File in Project, GPS uses the file from the project extension. Open editors will still edit the same files they
previously contained, so you should open the new file in them if needed.

6.5 Aggregate projects

Aggregate projects are a convenient way to group several independent projects into a single project that you can load
in GPS. Using an aggregate project has several advantages:

6.4. Extending Projects 91

GPS User’s Guide, Release 2018

• There is no restriction on duplicate names within aggregate sources and projects. There can be duplicate file
names between the aggregate projects or duplicate projects. For example, if you have a project liba.gpr
containing a library used by both projectA.gpr and projectB.gpr, you can still aggregate the latter two
projects. A source file is also permitted to belong to both projectA.gpr and projectB.gpr.

• You can use gprbuild to build the main units of all aggregate projects with a single command.

• The aggregated project can contain attributes to setup your environment, in particular you can use External
to set the value of the scenario variables and Project_Path to set the project path to be used to load the
aggregated projects.

Here is a short example of an aggregate project:

aggregate project BuildAll is
-- "liba.gpr" as described above, is automatically imported, but
-- not aggregated so its main units are not build
for Project_Files use ("projecta/projecta.gpr",

"projectb/projectb.gpr");

-- Set environment variables
for External ("BUILD") use "Debug";

end BuildAll;

GPS helps you use aggregate projects in the following ways:

• Since a source file can now belong to several projects, each editor is associated with a specific project. If the
common.ads file is part of multiple projects, you may end up with two editors, one for common.ads in the
context of projectA.gpr, and the other in the context of projectB.gpr. The project matters when doing
cross-reference queries, since a with C; in common.ads could point to different files depending on which
project owns that editor.

To help with this, GPS shows the name of the project in the notebook tabs.

• The omni-search (at the top-right corner of the GPS window) may list the a file several times, once per each
project that owns it. So you need to select the one you are interested in.

• After you perform a cross-reference (Navigate → Goto declaration), the newly opened editor automatically
selects the proper project.

6.6 Disabling Editing of the Project File

You should generally consider project files part of the sources and put them under the control of a version control
system. This will prevent accidental editing of the project files, either by you or someone else using the same GPS
installation.

One way to prevent such accidents is to change the write permissions of the project files themselves. On Unix systems,
you could also change the owner of the file. When GPS cannot write a project file, it reports an error to the user.
However, the above does not prevent a user from trying to make changes at the GUI level, since the error message only
occurs when trying to save the project (this is by design, so that temporary modification can be done in memory).

You can disable all the project editing related menus in GPS by adding a special startup switch, typically by creating
a short script that spawns GPS with these switches. Use the following command line:

gps --traceoff=MODULE.PROJECT_VIEWER --traceoff=MODULE.PROJECT_PROPERTIES

This prevents the loading of the two GPS modules responsible for editing project files. However, this also has an
impact on the Python functions that are exported by GPS and thus could break some plugins. Another possible

92 Chapter 6. Project Handling

GPS User’s Guide, Release 2018

solution is to hide the corresponding project editing menus and contextual menus. You could do this by enabling the
prevent_project_edition.py plugin via the Edit → Preferences... menu.

6.7 The Project Wizard

The project wizard lets you create a new project file in a few steps. It contains a number of project templates, making
it easy to create projects that rely on a particular technology (e.g: GtkAda).

You normally access this wizard through the File → New Project... menu.

The first page of the wizard lists the various project templates. Selecting one of them and clicking on the Next button
will show a page allowing you to modify the project template settings. Once modified, click on Apply to actually
create your project.

6.8 The Project Properties Editor

Use the Project Properties editor at any time to access the properties of your project through the Edit → Project
Properties... menu or the contextual menu Properties on any project item, e.g. from the Project views or the Project
browser.

In some cases, GPS cannot edit your project graphically. It will still display a read-only version of the Project Proper-
ties dialog. This is the case, among others, when:

• the project loaded with errors, such as invalid syntax or missing directories;

• you are editing an aggregate project;

• the project was written manually before and uses advanced features like variables (Var := ...).

6.7. The Project Wizard 93

GPS User’s Guide, Release 2018

The Project Properties editor is divided into three parts:

The attributes editor

The contents of this editor are very similar to that of the project wizard (see The Project Wizard). In fact,
all pages but the General page are exactly the same; read their description in the project wizard section.

See also Working in a Cross Environment for more info on the Cross environment attributes.

The project selector

This area, the top-right corner of the properties editor, displays a list of all projects in the hierarchy. The
value in the attributes editor is applied to all the selected projects in this selector. You cannot unselect the
project for which you activated the contextual menu.

Clicking on the right title bar (Project) of this selector sorts the projects in ascending or descending order.
Clicking on the left title bar (untitled) selects or unselects all the projects.

This selector has two different possible presentations, chosen by the toggle button on top: either a sorted
list of all the projects, each appearing only once, or the same project hierarchy displayed in the Project
view.

The scenario selector

This area, the bottom-right corner of the properties editor, displays all scenario variables declared in
the project hierarchy. By selecting some or all of their values, you can choose to which scenario the
modifications in the attributes editor apply.

Clicking on the left title bar (untitled, on the left of the Scenario label) selects or unselects all values of
all variables.

94 Chapter 6. Project Handling

GPS User’s Guide, Release 2018

To select all values of a given variable, click on the corresponding check button.

6.9 The Switches Editor

The switches editor, available through the Edit → Project Properties... menu, displays all source files associated with
the selected project.

For each file, it lists the compiler switches for that file. These switches are displayed in gray if they are the default
switches defined at the project level (see The Project Properties Editor) and in black if they are specific to that file.

Edit the switches for the file by double-clicking in the switches column. You can edit the switches for multiple files at
the same time by selecting them before displaying the contextual menu Edit switches for all selected files.

When you double-click in one of the columns containing switches, GPS opens a new dialog allowing you to edit the
switches specific to the selected files. This dialog has a button titled Revert, which cancels any file-specific switch and
reverts to the default switches defined at the project level.

6.9. The Switches Editor 95

GPS User’s Guide, Release 2018

96 Chapter 6. Project Handling

CHAPTER

SEVEN

SEARCHING AND REPLACING

GPS provides extensive search capabilities in different contexts. For example, you can search in the currently edited
source file or in all source files belonging to the project, even those that are not currently open. You can also search in
the project view (on the left side of the main GPS window).

All of these search contexts are merged into a single graphical window that you can open either through the Find →
Find menu or the shortcut Ctrl-F.

7.1 Searching

By default, the search window is floating and appears as a dialog on top of GPS. Put it inside the multiple document
interface for easier access by selecting the Window → Floating menu and dropping the search window into a new
location (for example, above the Project view). Selecting either option pops up a dialog on the screen similar to the
following:

This dialog’s toolbar contains several buttons that enable some specific options:

• Regexp

Toggles between strings and regular expressions. Or you can select the arrow to the right of the Search for: field.
The grammar used by regular expressions is similar to the Perl and Python regular expressions grammar and is
documented in the GNAT run time file g-regpat.ads. To open it from GPS, use the open from project menu
(Find → Find File in Project) and type g-regpat.ads.

• Whole Word

Force the search engine to ignore substrings. For example, “sensitive” no longer matches “insensitive”.

• Case Sensitive Search

97

GPS User’s Guide, Release 2018

By default, patterns are case insensitive (upper-case letters and lower-case letters are considered equivalent).
Change this behavior by clicking this check box.

In addition, the dialog’s local menu contains more general options used to control the behavior of the Search view:

• Incremental search

Enable the incremental mode. In this mode, a search will be automatically performed whenever the search
pattern is modified, starting from the current location to the next occurrence in the current file.

• Close on Match

This button only appears if the search window is floating. If pressed, the search window is automatically closed
when an occurrence of the search string is found.

• Select on Match

Gives the focus to the editor containing the match. If not selected, the focus remains on the search window. If
so, press Enter to search for the next occurrence.

By default, the search view contains three searching related widgets:

Search Type the string or pattern to search for.

The combo box provides a number of predefined patterns. The top two are empty patterns that automatically
set the appropriate strings or regular expression mode. The other regular expressions are language-specific and
match patterns such as Ada type definitions or C++ method declarations.

Where Used restrict the search to a set of language constructs. For example, use this to to avoid matching comments
when you are only interested in actual code or to only search strings and comments, but not code.

In The context in which the search should occur.

GPS automatically selects the most appropriate context when you open the search dialog by looking at the
component that currently has the focus. If several contexts are possible for one component (for example, the
editor has Current_File, Files from Project, Files..., and Open Files), the last one you used is selected.

Change the context to a different one by clicking on the arrow on the right, which displays the list of all possible
contexts, including:

• Open Files

Search all files currently open in the source editor.

• Files...

Search a specified set of files. An extra Files box is displayed where you specify the files using
standard shell (Unix or Windows) regular expressions (such as *.ad? for all files ending with .ad
and any trailing character). The directory specifies where the search starts and the Recursive search
button whether subdirectories are also searched.

• Files From Projects

Search all files from the current project, including files from project dependencies.

• Files From Current Project

Search all files from the current project, defaulting to the root project if none. The currently selected
project might be the one to which the source file belongs (if you are in an editor) or the selected
project (if you are in the Project view).

• Files From Runtime

Search all specification files from GNAT runtime library

98 Chapter 7. Searching and Replacing

GPS User’s Guide, Release 2018

• Current File

Search the current source editor.

Normally, GPS sets the default value for In that matches the currently selected window. For example, if
you are in an editor and open the search dialog, the context is set to Current File. Optionally, GPS can
remember the last context that was set (see the preference Search → Preserve Search Context). In that
case, if an editor is selected, GPS remembers whether the last time you started a search from an editor
you decided to search in (for example) Current File or Files From Project.

Finally, you can create key shortcuts (through the Edit → Preferences... menu, in the Search category) to
open the search dialog and set the context to a specific value.

The right part of the dialog is a row of three buttons, used to navigate among the search results.

Press the Find or Previous button to perform an interactive search, which stops as soon as one occurrence of the pattern
is found. At that point, the Find button is renamed to Next, which you press (or type the equivalent shortcut Ctrl-N)
to go to the next occurrence.

The Find all button starts a search for all occurrences and puts the results in a view called Locations view, see The
Locations View.

7.2 Replacing

The combo box present in the toolbar is used to switch the search view’s mode: switch to Find & Replace to enable
replacing capabilities. You can also use the Navigate → Replace menu or the Ctrl-Shift-F shortcut to switch to
this mode.

In this mode, an additional field is displayed:

Replace Contains the string to replace the occurrences of the pattern. The combo box provides a history of previously
used replacement strings. If a regular expression is used for search, special escapes in this field are used as:

• \1, \2 .. \9 refer to the corresponding matching subexpressions.

• \0 refers to the complete matched string.

• \i, \i(start,step) refers to the sequentially increasing number (starting from start and increased by
step on each replace).

The Replace and Replace & Find buttons are grayed out if no occurrence of the pattern is found. To enable them, start
a search, for example by pressing the Find button. Pressing Replace replaces the current occurrence (grays out the two

7.2. Replacing 99

GPS User’s Guide, Release 2018

buttons) and Replace & Find replaces the occurrence and jumps to the next one, if any. If you do not want to replace
the current occurrence, jump to the next one by pressing Next.

The Repl all button replaces all occurrences found. By default, a popup is displayed asking for confirmation. You
can disable this popup by either checking the box Do not ask this question again or going to the Search panel of the
preferences pages and unchecking Confirmation for Replace all.

Like most GPS components, the search window is under control of the multiple document interface and can be inte-
grated into the main GPS window instead of being an external window. To do this, open the Window → Search menu
in the list at the bottom of the menu, and either select Window → Floating or Window → Docked.

If you save the desktop (File → Save More → Desktop), GPS automatically reopens the search dialog in its new place
when it is next started.

7.3 Searching in current file

The dialog we described above is convenient when you want to search in multiple files, or even in files that are not
opened in GPS. However, the most frequent context is to search in the current file. GPS provides a number of facilities
just for this:

• Use the Incremental search option

When this option is enabled, GPS automatically jumps to the next match for the word you are currently typing.

• Use the omni-search

At the top-right corner of the GPS window, the search field is able to search in all the sources of your project.
But it can also search just in the current source. The recommended approach is once again to define a new key
shortcut via Edit → Preferences..., for the action Global Search in context: current file. Whenever you press
that shortcut from now on, GPS will move the keyboard focus to the global search box, and when you type some
text, a popup window will show all occurrences of that text within the current file.

100 Chapter 7. Searching and Replacing

CHAPTER

EIGHT

COMPILATION/BUILD

This chapter describes how to compile files, build executables, and run them. Most capabilities can be accessed
through the Build top-level menu or through the Build and Run contextual menu items, as described below.

When GPS detects compiler messages, it adds entries to the Locations view, allowing you to easily navigate through
the compiler messages (see The Locations View) and even to automatically correct some errors or warnings (see Code
Fixing).

In source editors, compiler messages also appear as icons on the side of each line that has a message. When the pointer
is placed on these icons, a tooltip appears, listing the error messages posted on the corresponding line. When GPS can
automatically correct the errors, clicking the icon applies the fix. These icons are removed when the corresponding
entries are removed from The Locations View.

8.1 The Target Configuration Editor

GPS provides an interface for launching operations such as building projects, compiling individual files, and perform-
ing syntax or semantic checks. These operations all involve launching an external command and parsing the output for
error messages. In GPS, these operations are called “Targets”, and can be configured either through the Target Con-
figuration Editor, accessible from the Edit → Preferences... menu, or through XML configuration. See Customizing
Build Targets and Models.

101

GPS User’s Guide, Release 2018

This editor is divided in two areas: on the left is a tree listing Targets and in the main area is a panel for configuring
the Target which is currently selected in the tree.

8.1.1 The Targets tree

The Tree contains a list of targets, organized by categories.

On top of the tree are three buttons:

• The Add button creates a new target.

• The Remove button removes the currently selected target. Note that only user-defined targets can be removed;
the default targets created by GPS cannot be removed.

• The Clone button creates a new user-defined target that is identical to the currently selected target.

8.1.2 The configuration panel

From the top of the configuration panel, you can select the Target model. That Model determines the graphical options
available in the Command line frame.

The Revert button resets all target settings to their original value.

The Options frame contains a number of options available for all Targets.

• The Launch mode selects the way the target is launched:

102 Chapter 8. Compilation/Build

GPS User’s Guide, Release 2018

– Manually:

The target is launched when you click on the corresponding icon in the toolbar or activate the corresponding
menu item. In the latter case, a dialog is displayed, allowing final modifications of the command line.

– Manually with dialog:

Same as Manually, but the dialog is always displayed.

– Manually with no dialog:

Same as Manually, but the dialog is never displayed.

– On file save:

The Target is launched automatically by GPS when a file is saved. The dialog is never displayed.

– In background:

The Target is launched automatically in the background after each modification in the source editor. See
Background compilations.

• Icon:

The icon to use for representing this target in the menus and in the toolbar. To use one of your icons, register
icons using the <stock> XML customization node. (See Adding custom icons). Then use the “custom” choice
and enter the ID of the icon into the text field.

• Target type:

Type of target described. If empty or set to “Normal”, it represents a simple target. If set to another
value, it represents multiple subtargets. For example, if set to “main”, each subtarget corresponds to a Main
source as defined in the currently loaded project. Other custom values may be defined and handled via the
compute_build_targets hook.

The Display frame indicates where the launcher for this target should be visible.

• in the toolbar:

When active, a button is displayed in the main toolbar that can be used to quickly launch a Target.

• in the main menu:

Whether to display a menu item corresponding to the Target in the main GPS menu. By default, Targets in
the “File” category are listed directly in the Build menu and Targets in other categories are listed in a submenu
corresponding to the name of the category.

• in contextual menus for projects:

Whether to display an item in the contextual menu for projects in the Project View

• in contextual menus for files:

Whether to display an item in the contextual menus for files, for example in file items in the Project View or
directly on source file editors.

The Command line contains a graphical interface for some configurable elements of the Target that are specific to the
Model of this Target.

The full command line is displayed at the bottom. It may contain Macro Arguments. For example, if the command
line contains the string “%PP”, GPS will expand this to the full path to the current project. For a full list of available
Macros, see Macro arguments.

8.1. The Target Configuration Editor 103

GPS User’s Guide, Release 2018

8.1.3 Background compilations

GPS can launch compilation targets in the background. This means GPS launches the compiler on the current state of
the file in the editor.

Error messages resulting from background compilations are not listed in the Locations or Messages views. The full
list of messages are shown in the Background Build console, accessible from the View → Background Builds menu.
Error messages that contain a source location indication are shown as icons on the side of lines in editors and the exact
location is highlighted directly in the editor. In both places, tooltips show the contents of the error messages.

Messages from background compilations are removed automatically when either a new background compilation has
finished or a non-background compilation is launched.

GPS launches background compilations for all targets that have a Launch mode set to In background after you have
made modifications in a source editor. Background compilation is mostly useful for targets such as Compile File
or Check Syntax. For targets that operate on Mains, the last main used in a non-background is considered, default-
ing to the first main defined in the project hierarchy.

Background compilations are not launched while GPS is already listing results from non-background compilations
(i.e. as long as there are entries in the Locations view showing entries in the Builder results category).

8.2 The Build Mode

GPS provides an easy way to build your project with different options, through the mode selection, located in the
Scenario view (see Scenario view).

When the mode is set to “default”, GPS performs the build using the switches defined in the project. When the mode
is set to another value, specialized parameters are passed to the builder. For example, the gcov mode adds all the
compilation parameters needed to instrument the generated objects and executables to work with the gcov tool.

In addition to changing the build parameters, changing the mode changes the output directory for objects and executa-
bles. For example, objects produced under the debug mode will be located in the debug subdirectories of the object
directories defined by the project. This allows switching from one Mode to another without having to erase the objects
pertaining to a different Mode.

You can define new modes using XML customization, see Customizing Build Targets and Models.

The Build Mode only affects builds done using recent versions of gnatmake and gprbuild. The Mode selection
has no effect on builds done through Targets that launch other builders.

8.3 Working with two compilers

This functionality is intended if your projects need to be compiled with a specific (old) version of the GNAT toolchain
while you still need to take full advantage of up-to-date associated tools for non-compilation actions, such as checking
the code against a coding standard, getting better cross-reference browsing in GPS, or computing metrics.

To configure GPS to handle two compiler toolchains, use the Build → Settings → Toolchains menu. This opens a
dialog from which you can activate the multiple-toolchains mode.

104 Chapter 8. Compilation/Build

GPS User’s Guide, Release 2018

In this dialog, two paths need to be configured: the compiler path and the tools path. The first is used to compile the
code, while the second is used to run up-to-date tools in order to get more functionality or more accurate results. GPS
only enables the OK button when the two paths are set to different locations, as that is the only case where it makes
sense to enable the multiple toolchains mode.

You can also activate an automated cross-reference generation from this dialog. The cross-reference files are the .ali
files generated by the GNAT compiler together with the compiled object files. The .ali files are used by GPS for
several purposes, such as cross-reference browsing and documentation generation. Having those .ali files produced
by a recent compiler provides more accurate results for those purposes but might cause serious problems if an old
compiler were to also read those .ali files when compiling a project.

If you activate the automated cross-reference generation, GPS generates those .ali files using the compiler found in
the tools path and places them in a directory distinct from the one used by the actual compiler. This allows GPS to
take full benefit of up-to-date cross-reference files, while the old toolchain’s .ali files remain untouched.

Cross-reference files generation does not output anything in the Messages view so as not to be confused with the output
of the regular build process. If needed, you can see the output of the cross-ref generation command with the View →
Auxiliary Builds menu.

8.3.1 Interaction with the remote mode

The ability to work with two compilers has impacts on the remote mode configuration: paths defined here are local
paths so they have no meaning on the server side. To handle the case of using a specific compiler version on the remote
side while wanting up-to-date tools on the local side, GPS does the following when both a remote compilation server
is defined and the multiple toolchains mode is in use:

• The compiler path is ignored when a remote build server is defined. All compilation actions are performed
normally on the build server.

• The tools path is used and all related actions are performed on the local machine using this path.

• The cross-reference files are handled rsync so they do not get overwritten during local and remote host syn-
chronizations. Otherwise, they would cause build and cross-reference generation actions to occur at the same
time on the local machine and on remote server.

8.3. Working with two compilers 105

GPS User’s Guide, Release 2018

106 Chapter 8. Compilation/Build

CHAPTER

NINE

DEBUGGING

GPS also serves as a graphical front-end for text-based debuggers such as GDB. If you understand the basics of
the underlying debugger used by GPS, you will better understand how GPS works and what kind of functionality it
provides.

Please refer to the debugger-specific documentation, e.g. the GNAT User’s Guide (chapter Running and Debugging
Ada Programs), or the GDB documentation for more details.

Debugging is tightly integrated with other components of GPS. For example, you can edit files and navigate through
your sources while debugging.

To start a debug session, click on the Debug button in the main toolbar or go to the Debug → Initialize menu and choose
either the name of your executable, if you specified the name of your main program(s) in the project properties, or
start an empty debug session using the <no main file> menu. You can then load any file to debug, by using the Debug
→ Debug → Load File... menu.

You first need to build your executable with debug information (-g switch), either explicitly as part of your project
properties or via the Debug build mode (see The Build Mode for more details).

Create multiple debuggers by using the Debug → Initialize (or the corresponding toolbar button) menu several times:
this creates a new debugger each time. All debugger-related actions (e.g. stepping, running) are performed in the
current debugger, represented by the current debugger console. To switch to a different debugger, select its corre-
sponding console. Setting breakpoints, though, will be done for all debuggers, to help debug when you work on
multiple executables that share code.

After the debugger has been initialized, you have access several new views: the debugger console (in a new page, after
the Messages window), the Breakpoints views and the Variables view.

You can now access any of the menus under Debugger, and you also have access to additional contextual menus, in
particular in the source editor where you can easily display variables, set breakpoints, and get automatic displays (via
tooltips) of object values.

To exit the debugger without quitting GPS, use the Debug → Terminate Current menu, which terminates your current
debug session, or the Debug → Terminate menu which terminates all of your current debug sessions.

107

GPS User’s Guide, Release 2018

9.1 The Call Stack View

The call stack view lists the frames corresponding to the current execution stack for the current thread or task.

The bottom frame corresponds to the outermost frame (where the thread is currently stopped). This frame corresponds
to the first function executed by the current thread (e.g, main if the main thread is in C). Click on any frame to switch
to that caller’s context; this updates the display in the source window. Use the up and down buttons in the tool bar to
go up and down one frame in the call stack.

The local configuration menu allows you to choose which information you want to display in the call stack window
(via check buttons):

• Frame number:

The debugger frame number (usually starts at 0 or 1).

• Program Counter:

The machine address corresponding to the function’s entry point.

• Subprogram Name:

The name of the subprogram.

• Parameters:

The parameters to the subprogram.

• File Location:

The filename and line number information.

By default, only the subprogram name is displayed. Hide the call stack view by closing it and show it again using the
menu Debug → Data → Call Stack menu.

Showing extra information like the value for parameters requires more work from the debugger, and thus will be
slower.

9.2 The Variables View

The Variables view displays the value of selected variables or debugger command every time the debugger stops. The
display is done in a tree, so that for instance the fields of a record are displayed in child nodes (recursively).

Access types (or pointers) can also be expanded to show the value they reference.

Values that have been modified since the debugger last stopped are highlighted in red.

This value is very similar to The_Data_Browser.

108 Chapter 9. Debugging

GPS User’s Guide, Release 2018

9.3 The Breakpoint Editor

Access the breakpoint editor from the Debug → Data → Breakpoints menu. It allows you to manipulate the vari-
ous kinds of breakpoints: those at a source location, on a subprogram, at an executable address, on memory access
(watchpoints), or on Ada exceptions.

This view lists the existing breakpoints that are currently set in the debugger. You can quickly and conveniently enable
or disable breakpoints by clicking on the checkboxes directly in the list.

Select a breakpoint in the list and click on the View button in the toolbar to shows the corresponding editor at that
location. You can alternatively double-click on the breakpoint.

9.3. The Breakpoint Editor 109

GPS User’s Guide, Release 2018

To view the details of a breakpoint, select it in the list and click on the Edit button in the toolbar. You can also do a
long click on the breakpoint (keep your mouse pressed for a short while).

This opens up a separate dialog that shows the various attributes:

• Details on where the breakpoint is set: the file and line, the specific address in memory, or the name of the
exception which will stop the debugger when raised. These are not editable, so to change this you must create a
new breakpoint instead;

• The conditions to be met for the debugger to stop at that location. Such conditions can refer to variables valid at
that location, and for instance test the value of specific variables;

• The number of times that the breakpoint should be ignored before the debugger actually stops. This is useful
when you know the error occurs after the 70th time hitting the breakpoint;

• Debugger commands to execute when reaching the breakpoint.

• When running VxWorks AE, this dialog also lets you two extra properties:

– The scope indicates which tasks will be stopped. Possible values are:

* task: The breakpoint only affects the task that was active when the breakpoint was set. If the break-
point is set before the program is run, the breakpoint affects the environment task.

* pd: Any task in the current protection domain is affected by the breakpoint.

* any: Any task in any protection domain is affected by the breakpoint. This setting is only allowed for
tasks in the Kernel domain.

– The action indicates which tasks are stopped when the breakpoint is hit:

* task: only the task that hit the breakpoint.

110 Chapter 9. Debugging

GPS User’s Guide, Release 2018

* pd: all tasks in the current protection domain.

* all: all stoppable tasks in the system.

Both of these properties can either be configured for the specific breakpoint, or configured as the default for the
session, so that from then on every breakpoint will have the specified values for scope and action.

To create new breakpoints, click on the Add button in the toolbar. This opens up the same dialog as above, but lets you
edit the top section (file, line, exception, address,...). Select the type of the breakpoint or watchpoint at the top.

If you enabled the preference Debugger → Preserve state on exit, GPS automatically saves the currently set break-
points and restores them the next time you debug an executable in the same project. This allows you to immediately
start debugging your application without having to set the breakpoints every time. These breakpoints will be reused
for all executables in the same project.

9.3. The Breakpoint Editor 111

GPS User’s Guide, Release 2018

9.4 The Memory View

The memory view allows you to display the contents of memory by specifying either an address or a variable name.

To display memory contents, enter either the address using the C hexadecimal notation (0xabcd) or the name of a
variable in the Location text entry. (If a variable is entered, the underlying debugger computes its address.) Then
either press Enter or click the View button. GPS displays the memory with the corresponding addresses in the
bottom text area.

Specify the unit size (Byte, Halfword or Word) and the format (Hexadecimal, Decimal, Octal, or ASCII) and you can
display the corresponding ASCII value at the same time.

The up and down arrows as well as the Page up and Page down keys in the memory text area allow you to walk
through the memory in order of ascending or descending addresses respectively.

Finally, modify a memory area by clicking on the location you want to modify and entering the new values. Modified
values appear in a different color (red by default) and are only written to the target when you click on the Submit
changes button. Clicking on Undo changes or going up or down in the memory also undoes your editing.

Clicking on Close closes the memory window, canceling your last pending changes, if any.

9.5 Using the Source Editor when Debugging

When debugging, the left area of each source editor provides the following information:

Current line executed

The line about to be executed by the debugger is highlighted in green (by default), and a green arrow is
displayed on its left side.

Lines with breakpoints The line number (if present, otherwise the first few pixels) is highlighted with a background
color for lines where breakpoints have been set. Add or delete breakpoints by clicking on the line number. These
breakpoints can be set or unset even when no debugger is running.

112 Chapter 9. Debugging

GPS User’s Guide, Release 2018

The second area in the source editor is a text window on the right that displays the source files, with syntax highlighting.
If you hold the pointer over a variable, GPS displays a tooltip showing the value of that variable. Disable these
automatic tooltips using the preferences menu.

At all times, the contextual menu of the source window contains a Debug submenu providing some or all of the entries
below. These entries are dynamic and apply to the entity under the pointer (depending on the current language). In
addition, if you have made a selection in the editor, the text of the selection is used instead. This allows you to easily
display complex expressions (for example, you can add comments to your code with expressions you want to display
in the debugger).

• Debug → Graph Display *selection*

Displays the selection (or by default the name under the pointer) in the data window. GPS automatically re-
freshes this value each time the process state changes (e.g after a step or a next command). To freeze the display,
click on the corresponding icon in the browser or use the contextual menu for that item (see The_Data_Browser).

• Debug → Graph Display *selection*.all

Dereferences the selection (or by default the name under the pointer) and displays the value in the data browser.

• View memory at address of *selection*

Brings up the memory view dialog and explores memory at the address of the selection.

• Set Breakpoint on Line *xx*

Sets a breakpoint on the line under the pointer. This menu is always enabled, even when no debugger is started.
This means that you can prepare breakpoints while working on the code, before you even start the debugger.

• Set Breakpoint on *selection*

Sets a breakpoint at the beginning of the subprogram named selection. This menu is always enabled, even when
no debugger is started. This means that you can prepare breakpoints while working on the code, before you
even start the debugger.

9.5. Using the Source Editor when Debugging 113

GPS User’s Guide, Release 2018

• Continue Until Line *xx*

Continues execution (the program must have been started previously) until it reaches the specified line.

• Show Current Location

Jumps to the current line of execution. This is particularly useful after navigating through your source code.

9.6 The Assembly Window

It is sometimes convenient to look at the assembly code for the subprogram or source line you are currently debugging.

Open the assembly window by using the Debug → Data → Assembly menu.

The current assembler instruction is highlighted on the left with a green arrow. The instructions corresponding to the
current source line are highlighted (by default in red). This allows you to easily see where the program counter will
point after you press the Next button on the tool bar.

Move to the next assembler instruction using the Nexti (next instruction) button in the tool bar. If you choose Stepi
instead (step instruction), it steps into any subprogram being called by that instruction.

For efficiency purposes, GPS only displays a small part of the assembly code around the current instruction. Specify
how many instructions are displayed in the preferences dialog. Display the instructions immediately preceding or
following the currently displayed instructions by pressing one of the Page up or Page down keys or using the
contextual menu in the assembly window.

A convenient complement when debugging at the assembly level is the ability to display the contents of machine
registers. When the debugger supports it (as gdb does), select the Debug → Data → Display Registers menu to get

114 Chapter 9. Debugging

GPS User’s Guide, Release 2018

an item in the data browser that shows the current contents of each machine register and that is updated every time one
of them changes.

You might also choose to look at a single register. With gdb, select the Debug → Data → Display Any Expression
menu, enter something like:

output /x $eax

in the field and select toggle button Expression is a subprogram call. This creates a new browser item that is refreshed
every time the value of the register (in this case eax) changes.

9.7 The Debugger Console

The debugger console is the text window located at the bottom of the main window. It gives you direct access to the
underlying debugger, to which you can send commands (you need to refer to the underlying debugger’s documentation,
but usually typing “help” will gives you an overview of the available commands).

If the underlying debugger allows it, pressing Tab in this window provides completion for the command being typed
(or its arguments).

Additional commands are defined here to provide a simple text interface to some graphical features. Here is the
complete list of such commands (the arguments between square brackets are optional and can be omitted):

• tree display expression

This command displays the value of the expression in the Variables view. The expression should be the
name of a variable, or any expression matching the source language of the current frame (for instance A(0).
Field).

• tree display command

This command executes the gdb command, and displays the result in the Variables view. The command should
be an internal debugger command, for instance info local.

graph (print|display) expression [dependent on display_num] [link_name name] [at x, y] [num num]

Create a new item in the browser showing the value of Expression, which is the name of a variable, or
one of its fields, in the current scope for the debugger. The command graph print creates a frozen item,
one that is not automatically refreshed when the debugger stops, while graph display displays an
item that is automatically refreshed.

The new item is associated with a number displayed in its title bar. This number can be specified with
the num keyword and can be used to create links between the items, using the second argument to the
command, dependent on. By specifying the third argument, the link itself (i.e. the line) can be given
a name that is also displayed.

graph (print|display) ‘command‘

Similar to the above, except you use it to display the result of a debugger command in the browser. For
example, using gdb, if you want to display the value of a variable in hexadecimal rather than the default
decimal, use a command like:

graph display `print /x my_variable`

This evaluates the command between back-quotes every time the debugger stops and displays the result
in the browser. The lines that have changed are automatically highlighted (by default, in red).

graph (enable|disable) display display_num [display_num ...]

9.7. The Debugger Console 115

GPS User’s Guide, Release 2018

Change the refresh status of items in the canvas. As explained above, items are associated with a number
visible in their title bar.

The graph enable command forces the item to be refreshed automatically every time the debugger
stops and graph disable freezes the item, preventing its display from being changed.

graph undisplay display_num

Remove an item from the browser.

9.8 Customizing the Debugger

GPS is a high-level interface to several debugger backends, in particular gdb. Each backend has its own advantages,
but you can enhance the command line interface to these backends through GPS by using Python.

This section provides a short such example whose goal is to demonstrate the notion of an “alias” in the debugger
console. For example, if you type just “foo”, it executes a longer command, such as one displaying the value of a
variable with a long name. gdb already provides this feature through the define keywords, but here we implement
that feature using Python in GPS.

GPS provides an extensive Python API to interface with each of the running debuggers. In particular, it provides the
function “send”, used to send a command to the debugger and get its output, and the function “set_output”, used when
you implement your own functions.

It also provides, through hook, the capability to monitor the state of the debugger back-end. In particular, one such
hook, debugger_command_action_hook is called when the user types a command in the debugger console and
before the command is executed. This can be used to add your own commands. The example below uses this hook.

Here is the code:

import GPS

aliases={}

def set_alias(name, command):
"""Set a new debugger alias. Typing this alias in a debugger window

will execute command"""
global aliases
aliases[name] = command

def execute_alias(debugger, name):
return debugger.send(aliases[name], output=False)

def debugger_commands(hook, debugger, command):
global aliases
words = command.split()
if words[0] == "alias":

set_alias(words[1], " ".join (words [2:]))
return True

elif aliases.has_key(words [0]):
debugger.set_output(execute_alias(debugger, words[0]))
return True

else:
return False

GPS.Hook("debugger_command_action_hook").add(debugger_commands)

116 Chapter 9. Debugging

GPS User’s Guide, Release 2018

The list of aliases is stored in the global variable aliases, which is modified by set_alias. Whenever the user
executes an alias, the real command is sent to the debugger through execute_alias.

The real work is done by debugger_commands. If you execute the alias command, it defines a new alias. Otherwise,
if you type the name of an alias, we want to execute that alias. And if not, we let the underlying debugger handle that
command.

After you copied this example in the $HOME/.gps/plug-ins directory, start a debugger as usual in GPS, and type
the following in its console:

(gdb) alias foo print a_long_long_name
(gdb) foo

The first command defines the alias, the second line executes it.

This alias can also be used within the graph display or tree display commands so the value of the variable
is displayed in the data window, for example:

(gdb) graph display `foo`
(gdb) tree display `foo`

You can also program other examples. You could write complex Python functions, which would, for example, query
the value of several variables and pretty-print the result. You can call any of these complex Python functions from the
debugger console or have it called automatically every time the debugger stops via the graph display command.

9.9 Command line interface

GPS is still running the standard gdb underneath. So any command that you might be used to run in gdb can also be
executed from the Debugger Console.

In particular, gdb has a feature where it reads initialization commands from a .gdbinit configuration file. Here are
some pieces of information if you would like to use such files:

• When gdb starts, the current directory (which is where you should put your .gdbinit file is the environment’s
current directory. GPS doesn’t override it. In general, this will also be the directory from which you started GPS
itself. You can type:

(gdb) pwd

in the debugger console to find out exactly what the directory is.

• gdb always loads the global configuration .gdbinit in your home directory. It can also load a .gdbinit from the
current directory, but this feature is disabled by default for security reasons to avoid malicious scripts.

To enable the local .gdbinit, you will need to create the global one as well, with a contents similar to:

add-auto-load-safe-path <your directory>
set auto-load local-gdbinit

If you feel safe, you can replace “<your directory>” with “/” to always allow it on your system.

9.9. Command line interface 117

GPS User’s Guide, Release 2018

118 Chapter 9. Debugging

CHAPTER

TEN

VERSION CONTROL SYSTEM

Version control systems (VCS) are used to keep previous versions of your files, so that you can refer to them at any
point in the future.

GPS provides integration with a number of such systems. It tries to provide a similar GUI interface for all of them,
while preserving their specific vocabulary and features.

10.1 Setting up projects for version control

GPS does not come with any version control system. Instead, it expects that you already have such a system install
on your machine. In some cases, it is able to automatically recognize them. In other cases, you will need to edit your
project file as described below.

GPS has built in support for the following VCS systems:

• None

Disables version control support in GPS:

project Default is
package IDE is

for VCS_Kind use "None";
end IDE;

end Default;

• Auto (default)

Let GPS guess the correct version control system:

project Default is
package IDE is

for VCS_Kind use "Auto";
end IDE;

end Default;

• CVS

The Concurrent Version System. To use this, you must have a patch tool, which usually comes with CVS.
GPS is automatically able to recognize that your project is using this system, but looking for a CVS directory in
the root directory of your project. You can also force it by setting the following in your project:

project Default is
package IDE is

for VCS_Kind use "CVS";

119

GPS User’s Guide, Release 2018

end IDE;
end Default;

This can of course be done via the graphical project editor in GPS.

• Subversion

The Subversion version control system. As for CVS, GPS will automatically recognize that your project is using
subversion by looking for a .svn directory in the root directory of your project. You can also force it by setting
the following in your project:

project Default is
package IDE is

for VCS_Kind use "Subversion";
end IDE;

end Default;

• git

Distributed fast source code management. Again, GPS will automatically recognize this by looking for a .git
directory in your project, but you can force this with:

project Default is
package IDE is

for VCS_Kind use "git";
end IDE;

end Default;

Previous versions of GPS supported a larger range of systems, but these have not been ported to the new code yet.
Please let us know whether there is interest in doing so:

• ClearCase

• ClearCase Native

• Mercurial

Most of the version control code in GPS is generic, and customized for each system via one small python plugin. As
a result, it should be possible to add support for other systems, by creating such plugins. Take a look at the files in the
directory prefix/share/gps/plug-ins/vcs2 in your GPS install.

As mentioned before, GPS automatically attempts to guess the correct version system you are using. This is similar to
having the following declaration in your project:

project Default is
package IDE is

for VCS_Kind use "auto";
end IDE;

end Default;

Note: you must be sure VCS commands can be launched without needing to enter a password.

In general, you will be have loaded one root project in GPS, but this is turn imports many other projects. Each of
these can use its own version control system (so you can mix git and subversion for instance if your sources come
from different places), or even the same system but for a different repository (so you could be cloning multiple git
repositories).

If you have a setup with multiple systems, GPS will show special buttons in the local toolbars of the views to let you
select which is the one to use for the operations (fetching the history, committing,...) These operations only apply to
one system at a time, you cannot do a single commit with files that belong to multiple systems (although you can do

120 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

a single commit for files that belong to multiple projects, provided these projects all use the same system and same
repository).

10.2 Finding file status (Project view)

Most of the times, you will be using GPS on a project that already exists and for which version control has already
been setup.

For such a project, the first task is to find out what is the status of the files, i.e. whether they are locally modified,
up-to-date, whether you have created new files but not yet added them to version control, and so on.

To make this convenient, GPS displays this information in a number of places, via a small icon and appropriate tooltips.

• The editor status bar

Whenever you are editing a file, GPS displays a small icon in the status bar that indicates its current status as
seen by GPS. If you hover the mouse, it will show a textual status. In this screenshot, the file has been modified
locally, but not committed yet into the version control system (git in this case).

Clicking on this icon will change to the The VCS Perspective.

• The Project view

10.2. Finding file status (Project view) 121

GPS User’s Guide, Release 2018

The Project view is convenient to see all your source files, grouped by projects and optionally directories. GPS
will show the same icon as the editor next to the name of each file, so that you can easily see their status. Again,
the tooltip would show the textual status.

• The Files view

This view is similar to the Project view, but groups files as they are organized on the disk. GPS will try to guess
the best system here, but there might be ambiguities when the same directory is shared among multiple projects
which use a different VCS system or repository. We do not recommend this setup.

10.3 The VCS Perspective

To display all pertinent information on your files, GPS uses multiple views, as described below. Although you can
open any of them whenever you want, via the View or VCS menus, the most convenient is to select the VCS perspective.

122 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

This perspective was created to show all VCS related views, and hide unrelated views. As for all GPS perspectives,
you can modify the way it looks, which views are displayed,... simply by opening new views or moving them around
while this perspective is selected.

See also Perspectives for more information on how to manipulate them.

There are multiple ways to switch to this VCS perspective: as always, you can use the toolbar’s perspective selector,
or the Window → Perspectives menu. The most convenient might be to click on the VCS status icon at the bottom of
each editor.

In all of these cases, GPS will change which windows are displayed on the screen. It will preserve your editors, but
close all other views, and instead show the following:

• The Project view, used to check the status of all files

• The Commits view (The Commits view), used to select which files should be committed, and do the actual
commit

• The History view (The History view), to view all past commits

• The Branches view (The Branches view), to view various pieces of information about your repository, depending
on which system you use.

10.3. The VCS Perspective 123

GPS User’s Guide, Release 2018

10.4 The Commits view

The purpose of this view is to let you prepare and then commit your files.

10.4.1 Viewing modified files

The view lists all files in your project, to the exception of up-to-date files (i.e. those files that have been checked out,
and never touched locally), and ignored files (i.e. those files for which you have explicitly told the VCS that you will
never want to commit them).

By default, they are organized into three sections:

124 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

• Staged files

These files will be part of the next commit (see below)

• Modified but unstaged files

These are locally modified files, which will not be part of the next commit, unless you stage them.

It is possible for a file to be in both groups (on the screenshot, this is the case for vcs.rst), when it had been
modified, then staged, then further modified. If you are using git, the later modification have not been staged for
commit, and git will only commit the first set of changes. Other systems like CVS and Subversion will always
apply all current change to the file, no matter whether they were done before or after the staging operation.

• Untracked files

These are files found in your directory, but that are unknown to the VCS. Sometimes these files should simply
be ignored and never committed, but sometimes they will be newly created files that you should stage to include
them in the next commit.

Various local configurations can be selected to change what is displayed in this view, take a look at the menu and the
tooltips.

10.4.2 Committing files

Committing is always a three step process in GPS (this is exactly what git does natively, but also provides more
flexibility for over systems).

• First, you need to select which files will be part of the next commit. It is possible that you have been modifying
unrelated source files, which you do not want to commit yet.

This is called staging the files, and can be performed simply by clicking in the checkbox next to the file’s name,
or by selecting multiple files at once and then clicking on the “stage” toolbar button.

Staging files can be done at any point in time, not necessarily just before you commit. You can also stage files,
exit GPS then restart, and GPS will remember which files had been staged.

• The second step is to provide a commit message. GPS will not let you do a commit without an actual message
(most VCS systems don’t either). You can enter any message in the editor at the top of the Commits view.

With git, the standard is to have one single short line first then an empty line, then a more extensive message. We
recommend similar approaches for other systems. That first line is the one that will be displayed in the History
(The History view).

Just like for staging files, you can edit this message at any point in time, so it is a useful way to explain your
changes as you do them, even if you intend to do further changes before the actual commit.

• Finally, you just press the Commit button in the local toolbar. GPS will ask the VCS to do the actual commit,
and then will refresh all views. All files that were modified and staged before are shown as no longer modified,
for instance.

10.4.3 Actions in the Commits view

Double-clicking on a file will open an editor for that file.

Clicking and keeping the mouse pressed on a file will open a Diff view showing the current changes to the file.

10.4. The Commits view 125

GPS User’s Guide, Release 2018

10.4.4 The Commits view local toolbar

The commits view contains a number of buttons in its toolbar. The exact set of buttons will depend on which VCS you
are using, but here is some buttons that will be useful in a lot of cases:

• On the left of the toolbar is a button to select the current VCS system, in case your projects uses multiple such
systems, or multiple repositories with the same system. The commit and staging will always be done for the
current system only.

This button is hidden if you are using a single VCS system for all your projects.

• A button is provided to undo all local changes.

After confirmation, GPS will revert to the last commit, and cancel all changes you might have done locally. This
works for all supported VCS.

• A button to refresh the contents of all VCS views

This button is not needed if you do all operations from GPS, including editing files. But if you do operations
outside of GPS’s control, you will need to manually resynchronize the views with what’s really in your VCS.

126 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

10.4. The Commits view 127

GPS User’s Guide, Release 2018

10.5 The History view

128 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

The purpose of this view is to show all past changes that you have done with your VCS.

This view is divided into three parts:

10.5.1 List of all past commits

For each commit, GPS displays the first line of the commit message. Optionally, you can configure the view to also
show the author, the date, and the unique identifier for these commits.

Depending on the VCS in use, GPS will also show the name of the branches associated with these commits, as well as
specific tag names that might have been set.

In particular, git shows the contents of all active branches, so the history is not so linear, and there is a wealth of
information to show how the branches were split and joined in the past.

When this is too much information, you can use the local configuration menu to only show the details for the current
branch.

A special line (added at the top in the screenshot above) is displayed in gray when there are local uncommitted changes
in your working directory.

By default, GPS only shows the first 2000 commits. If you want to see more, scroll to the bottom and click on the
Show more buttons to download more entries.

10.5.2 Graph of past history

Next to the list of commits is a graph showing their relationships. Most of the times, this history is fairly linear, with
each commit having one parent commit, and followed by another commit.

But with some VCS like git, people might choose to use a lot more branches. They create a new branch to work on a
specific feature, then merge it into the master branch when the feature is completed. It can become harder to follow
the history in such a case.

10.5. The History view 129

GPS User’s Guide, Release 2018

In this case, the graph becomes more useful, as shown in the screenshot above.

But using the local configuration menu, you can also choose to only show commits that are related to branches (either
because they are the beginning of a branch, or because they are a merge of two branches, or because they have a special
name (tag or branch name) associated with them. All commits with a single parent and single child are hidden.

130 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

When you are using git, commits that have not yet been pushed to the remote branch will be displayed with a filled
circle to help you find out whether you need to push.

10.5.3 Details on selected commits

Whenever you select one or more commits, GPS will download their details and show those at the bottom of the
Commits view.

10.5. The History view 131

GPS User’s Guide, Release 2018

These details are those provided by the VCS, and generally include the author and date of the commit, as well as the
full commit message and diff of what changes were made.

132 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

10.5. The History view 133

GPS User’s Guide, Release 2018

The diff is syntax highlighted to make it more readable.

10.6 The Branches view

The purpose of this view is to display various pieces of information that are specific to each VCS.

Most notably, it will let you interact with branches.

Various actions are possible in this view, all of which depends on the VCS and which specific section of the view you
interact with. Please check the tooltips that are shown when you leave the mouse over a line for a brief while to see
what actions are possible. The actions are done via one of the following means:

• double-clicking on a line. This is the same as using the corresponding toolbar button.

• a long click on a line (click and then leave the mouse pressed for a short while). This is the same as using the
rename toolbar button.

• clicking on the [+] button in the toolbar.

• clicking on the [-] button in the toolbar.

134 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

10.6. The Branches view 135

GPS User’s Guide, Release 2018

10.6.1 Git and the Branches view

136 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

The screenshot above is for git. In this case, GPS displays the following pieces of information:

• List of local branches

For each branch, GPS displays the number of commits that have not yet been pushed to the remote branch, and
conversely the number of changes that have been made in the remote branch but not yet applied to the local
branch.

Double-clicking on any of them will check it out and make it the current branch. If you have locally modified
files at that time, git might refuse to do the checkout, and the error message will be displayed in GPS’s Messages
view.

A long click on any of the branch names will let you rename the branch.

A click on [+] will create a new branch, starting from the selected one.

A click on [-] will remove the selected branch if it is not the current one.

• List of remote branches

These are the branches that exist in the git repository, that you can checkout locally by double-clicking on them.
The branches are grouped by the name of the remote repository that contains this branch, since git is a distributed
system.

You can also delete a remote branch by clicking on [-].

• List of Gerrit reviews

If you are doing code reviews via Gerrit, GPS is able to download the list of patches pending review, as well as
their current scores.

Double-clicking on any of the patch will open the Gerrit page in a web browser.

Clicking on [+] will cherry pick the patch and apply it to the local working directory.

If you are not using Gerrit, this category will not be displayed.

• List of stashes

In git, stashes are a way to temporary move away local changes to get back to a pristine working directory,
without losing your current work.

GPS displays the list of all stashes, and lets you create new stashes by clicking on [+] when the STASHES line
is selected.

Clicking on [-] will drop the selected stash, and you will lose the corresponding changes.

Double-clicking on a stash will reapply it to the current working directory. It will not drop it though, so that you
can also apply it to another branch.

• List of tags

All tags that have been applied in your repository are also listed. You can create new tags by selecting the TAGS
line and clicking on [+] line.

You can remove tags by clicking on [-].

10.6. The Branches view 137

GPS User’s Guide, Release 2018

10.6.2 CVS and the Branches view

The screenshot above is for CVS. GPS displays far fewer information than for git, and only shows the tags.

Double-clicking on any of the tag will check it out in the working directory.

Clicking on [-] deletes the selected tag.

Clicking on [+] while the TAGS line is selected will create a new tag.

10.6.3 Subversion and the Branches view

GPS assumes a standard organization of the subversion repository, namely that there are three top-level directories:

<repository>/trunk/project/
<repository>/tags/project/
<repository>/branches/project/

If this is the organization you are also using, GPS is able to show the list of tags and branches in the Branches view.

138 Chapter 10. Version Control System

GPS User’s Guide, Release 2018

You can checkout a specific tag or branch by double-clicking on it.

10.7 The Diff View

This view shows a simple color highlighted diff. The screenshot shows the changes currently done to this document...)

This view is opened either by long clicking on a file name in the Commits view (The Commits view), or by selecting
the menu VCS → Show all local changes.

10.7. The Diff View 139

GPS User’s Guide, Release 2018

140 Chapter 10. Version Control System

CHAPTER

ELEVEN

TOOLS

11.1 Coding Standard

Use the Coding Standard menu to edit your coding standard file and run it against your code to verify its compliance
with the coding standard. This file is the input to the gnatcheck tool. You can also use the contextual menu to check
the conformance of a particular project or source file against a coding standard.

Access the Coding standard editor using the Analyze → Coding Standard → Edit Rules File menu. Select either an
existing coding standard file or create a new one. The editor adapts itself to the version of gnatcheck on your local
machine.

GPS summarizes the rules currently in use at the bottom of the editor. Once all rules are defined, check the box Open
rules file after exit to manually verify the created file. Once you have created the coding standard file, set it as the
default coding standard file for a project by going to the project editor, selecting the Switches tab, and specifying this
file in the Gnatcheck section.

11.2 Visual Comparison

The visual comparison, available either from the VCS menus or the Tools menu, provides a way to graphically display
differences between two or three files or two different versions of the same file.

The 2-file comparison tool uses the standard tool diff, available on all Unix systems. Under Windows, a default im-
plementation is provided with GPS, called gnudiff.exe, but you may want to provide an alternate implementation,
for example by installing a set of Unix tools such as Cygwin (http://www.cygwin.com). The 3-file comparison tool is
based on the text tool diff3, available on all Unix systems. Under Windows, this tool is not provided with GPS, but
is available as part of Cygwin.

GPS displays visual comparisons in either Side-by-Side or Unified mode. In Side-by-Side mode, GPS displays editors
for the files involved in the comparison side by side. By default, GPS places the reference file on the left. In Unified
mode, GPS does not open a new editor, but shows all the changes in the original editor. Unified mode is used only
when comparing two files; when comparing three files, only Side-by-Side mode is available.

Lines in the file editors are highlighted with various colors. In side-by-side mode, only the right editor (for the modified
file) has different colors. Each highlight color indicates a different type of line:

gray

All the lines in the reference (left) file.

yellow

Lines modified from the reference file. Small differences within one line are shown in a brighter yellow.

green

141

http://www.cygwin.com

GPS User’s Guide, Release 2018

Lines not originally in the reference file but added to the modified file.

red

Lines present in the reference file but deleted from the modified file.

You can configure these colors in the preferences dialog.

Like all highlighted lines in GPS, the visual differences highlights are visible in the Speed Column at the left of the
editors.

GPS adds blank lines in one editor in places corresponding to existing lines in the other editors and synchronizes
vertical and horizontal scrolling between the editors involved in a visual comparison. If you close one of those editors,
GPS removes the highlighting, blank lines, and scrolling in the other editors.

When you create a visual comparison, GPS populates the Locations view with the entries for each chunk of differences;
use them to navigate between differences.

Editors involved in a visual comparison have a contextual menu Visual diff containing the following entries:

• Recompute

Regenerate the visual comparison. Use this when you have modified one of the files in an editor by hand while
it is involved in a visual comparison.

• Hide

Remove the highlighting corresponding to the visual comparison from all involved editors.

• Close editors

Closes all editors involved in this visual comparison

• Use this editor as reference

Make this editor the reference (this is only present when displaying a visual comparison involving 3 files).

142 Chapter 11. Tools

GPS User’s Guide, Release 2018

11.3 Code Fixing

GPS provides an interactive mechanism to correct or improve your source code based on error and warning messages
generated by the GNAT compiler. This capability is integrated with the Locations view (see The Locations View):
when GPS can make use of a compiler message, it adds an icon on the left of the line.

If a wrench icon is displayed and you left-click on it, the code is fixed automatically, and you will see the change in the
corresponding source editor. This occurs when a simple fix, such as the addition of a missing semicolon, is sufficient
to resolve the error.

Right-click on the icon to display a contextual menu with text explaining the action that would be performed on a
left-click. Displaying a contextual menu anywhere else on the message line provides an option called Auto Fix, giving
you access to the same information. For the previous example of a missing semicolon, the menu contains an entry
labeled Add expected string ”;”. You can choose to Apply to this occurrence or Apply to all similar errors. The latter
option applies the same simple fix to all errors that are the same, based on parsing the error message. The wrench icon
is removed once the code change has been made.

For more complex errors where more than one change is possible, GPS displays a wrench icon with a blue plus
sign. Clicking the icon displays a contextual menu listing the possible fixes. For example, this is displayed when an
ambiguity in resolving an entity is reported by the compiler.

Right-clicking on a message with a fix opens a contextual menu with an entry Auto Fix. Fixes that can be applied by
clicking on the wrench are also available through that menu. In addition, if GPS considers one of the fixes to be safe,
it provides additional menu entries to apply fixes at multiple locations:

Fix all simple style errors and warnings

Offered only when the selected message is a style warning or error. Fixes all other style warnings and
errors for which a unique simple fix is available.

Fix all simple errors

Fixes all errors messages for which a unique simple fix is available

11.4 Documentation Generation

GPS uses the GNATdoc tool to generate documentation from source files. See GNATdoc User’s Guide for more
information about this tool, including comment formatting and possibilities for customization.

Invoke the documentation generator from the Analyze -> Documentation menu:

Generate Project

Generate documentation for all files in the loaded project.

Generate Projects & Subprojects

Generate documentation for all files in the loaded project and its subprojects.

Generate current file

Generate documentation for the current file.

11.5 Working With Unit Tests

GPS uses gnattest, a tool that creates unit-test stubs as well as a test driver infrastructure (harness). It can generate
harnesses for a project hierarchy, a single project or a package. Launch harness generation process from the Analyze
→ GNATtest menu or a contextual menu.

11.3. Code Fixing 143

GPS User’s Guide, Release 2018

After a harness project has been generated, GPS switches to it, allowing you to implement tests, compile and run the
harness. You can exit the harness project and return to original project at any point.

11.5.1 The GNATtest Menu

The GNATtest submenu is found in the Tools global menu and contains the following entries:

Generate unit test setup

Generate harness for the root project.

Generate unit test setup recursive

Generate harness for the root project and subprojects.

Show not implemented tests

Find tests that have have never been modified and list them in the Locations view. This menu is only
active in the harness project.

Exit from harness project

Return from harness to original project.

11.5.2 The Contextual Menu

When relevant to the context, right-clicking displays GNATtest-related contextual menu entries. The contextual menu
for a source file containing a library package declaration has a GNATtest → Generate unit test setup for <file> menu
that generates the harness for that package. The contextual menu for a project, (see The Project view), has a GNATtest
→ Generate unit test setup for <project> menu that generates the harness for the entire project. The GNATtest →
Generate unit test setup for <project> recursive menu generates a harness for whole hierarchy of projects. If a harness
project already exists, the GNATtest → Open harness project menu opens the harness project.

While a harness project is open, you can simply navigate between the tested routine and its test code. Clicking on the
name of a tested routine produces the GNATtest → Go to test case, GNATtest → Go to test setup, and GNATtest → Go
to test teardown menus . The contextual menu for source files of test cases or setup and teardown code has a GNATtest
→ Go to <routine> menu to go to the code being tested.

11.5.3 Project Properties

You configure GNATtest’s behavior through the GNATtest page in The Project Properties Editor.

11.6 Metrics

GPS provides an interface to the GNAT software metrics generation tool gnatmetric. Metrics can be computed for
one source file, the current project, or the current project and all its imported subprojects

Invoke the metrics generator from the Analyze → Metrics menu or the contextual menu.

11.6.1 The Metrics Menu

The Metrics submenu is available from the Tools global menu and contains:

Compute metrics for current file

144 Chapter 11. Tools

GPS User’s Guide, Release 2018

Generate metrics for the current source file.

Compute metrics for current project

Generate metrics for all files in the current project.

Compute metrics for current project and subprojects

Generate metrics for all files in the current project and subprojects.

11.6.2 The Contextual Menu

When relevant to the context, right-clicking displays metrics-related contextual menu entries. The contextual menu
for a source file has an entry Metrics for file that generates the metrics for the current file. The contextual menu for a
project (see The Project view) has an entry Metrics for project that generates the metrics for all files in the project.

After computing the requested metrics, GPS displays a new window in the left area showing the computed metrics
in a hierarchical tree form, arranged first by files and then by scopes inside the files. Double-clicking any of the files
or scopes opens the corresponding source location in the editor. GPS displays any errors encountered during metrics
computation in the Locations view.

11.7 Code Coverage

GPS is integrated with gcov, the GNU code coverage utility. Within GPS, you can compute, load, and visualize code
coverage information. You can do this for individual files, for each file of the current project, for individual projects
in a hierarchy, or for the entire project hierarchy currently loaded by GPS.

Once computed and loaded, GPS summarizes the coverage information in a graphical report, formatted as a tree-
view with percentage bars for each item, and uses it to decorate source code through line highlighting and coverage
annotations.

You will find all coverage related operations in the Analyze → Coverage menu. Before GPS can load coverage
information, it must be computed, for example by using the Analyze → Coverage → Gcov → Compute coverage files
menu. After each coverage computation, GPS tries to load the needed information and reports errors for missing or
corrupted .gcov files.

To produce coverage information from gcov, your project must be compiled in gcov build mode.

11.7.1 Coverage Menu

The Analyze → Coverage menu has a number of entries, depending on the context:

• Gcov → Compute coverage files

Generate the .gcov files for loaded projects that have been compiled and executed.

• Gcov → Remove coverage files

Delete all the .gcov file for loaded projects.

• Show report

Open a new window summarizing the coverage information currently loaded in GPS.

• Load data for all projects

Load (or reload) coverage information for every project and subproject.

11.7. Code Coverage 145

GPS User’s Guide, Release 2018

• Load data for project ‘XXX‘

Load or re-load coverage information for the project XXX.

• Load data for xxxxxxxx.xxx

Load (or reload) coverage information for the specified source file.

• Clear coverage from memory

Remove all coverage information loaded in GPS.

11.7.2 The Contextual Menu

When clicking on a project, file or subprogram entity (including the entities listed in the coverage report), you will see
a Coverage submenu containing the following options, depending on the type of entity selected. For example, if you
click on a file, the options are:

• Show coverage information

Display an annotation column on the left side of the current source editor to indicate which lines are covered
and which are not. Lines that are not covered are also listed in the Locations view. See The Locations View.

• Hide coverage information

Remove the annotation column from the current source editor and clear coverage information from the Locations
view.

• Load data for xxxxxxxx.xxx

Load (or reload) coverage information for the specified source file.

• Remove data of ‘xxxxxxxx.xxx

Delete coverage information from the specified source file.

• Show Coverage report

Open a new window summarizing the coverage information. (This entry appears only if the contextual menu
has been created from outside the Coverage Report.)

11.7.3 The Coverage Report

Once GPS loads coverage information, it displays a graphical coverage report containing a tree of Projects, Files and
Subprograms with corresponding coverage information for each shown in a column on the side.

146 Chapter 11. Tools

GPS User’s Guide, Release 2018

The contextual menus generated for this report contain, in addition to the regular entries, some specific Coverage
Report options allowing you to expand or fold the tree, or to display flat lists of files or subprograms instead of a tree.
A flat list of files looks like:

11.7. Code Coverage 147

GPS User’s Guide, Release 2018

GPS and gcov both support many different programming languages, so code coverage features are available in GPS
for many languages. But subprogram coverage details are not available for every supported language. If you change
the current main project in GPS, using the File → Open Project menu, for example, GPS deletes all loaded coverage
information for the loaded project.

11.8 Stack Analysis

GPS provides an interface to GNATstack, the static stack analysis tool. This interface is only available if you have
the gnatstack executable installed and available on your path. GPS computes, loads, and visually displays stack
usage information for the entire project hierarchy. You can enter stack usage information for unknown and unbounded
calls within GPS.

Once computed and loaded, GPS summarizes the stack usage information in a report and uses it to annotate source
code with stack usage annotations. The largest stack usage path is loaded into the Locations view. See The Locations
View.

Specify stack usage information for undefined subprograms by adding one or more .ci files to the set of GNATStack
switches in the Switches attribute of the Stack package of your root project. For example:

project P is
package Stack is

for Switches use ("my.ci");
end Stack;

end P;

You can also specify this information by using the GNATStack page of the Switches section in the The Project Proper-

148 Chapter 11. Tools

GPS User’s Guide, Release 2018

ties Editor. Use The Stack Usage Editor to edit stack usage information for undefined subprograms.

11.8.1 The Stack Analysis Menu

Access all the stack analysis operations via the Analyze → Stack Analysis menu:

Analyze stack usage

Generate stack usage information for the root project.

Open undefined subprograms editor

Open the undefined subprograms editor.

Load last stack usage

Load (or reload) the latest stack usage information for the root project.

Clear stack usage data

Remove stack analysis data loaded in GPS and any associated information such as annotations in source
editors.

11.8.2 The Contextual Menu

The contextual menu for a project, file, or subprogram entity (including the entities listed in the coverage report) has
a Stack Analysis submenu containing the following options, depending on the type of entity selected:

Show stack usage

Show stack usage information for every subprogram in the currently selected file.

Hide stack usage

Hide stack usage information for every subprogram in the currently selected file.

Call tree for xxx

Open the Call Tree view for the currently selected subprogram.

11.8.3 The Stack Usage Report

Once GPS has loaded the stack usage information, it displays a report containing a summary of the stack analysis.

11.8.4 The Stack Usage Editor

The Stack Usage Editor allows you to specify the stack usage of undefined subprograms so these values can be used
to refine results of future analysis.

11.8. Stack Analysis 149

GPS User’s Guide, Release 2018

The Stack Usage Editor contains two main areas. The notebook on the top allows you to select the file to edit. It
displays the contents of the file and allows you to enter or change the stack usage of subprograms in it. The table in
the bottom area displays all subprograms whose stack usage information is not specified and allows you to set them.

Specify the stack usage information for subprograms by clicking in the stack usage column to the right of the subpro-
gram’s name. When you specify a value in the bottom table, the subprogram is moved to the top table of the currently
selected file. When a negative value is specified, the subprogram is moved to the bottom table.

GPS saves all changes when the stack usage editor window is closed.

150 Chapter 11. Tools

CHAPTER

TWELVE

WORKING IN A CROSS ENVIRONMENT

This chapter explains how to adapt your project and configure GPS when working in a cross environment.

12.1 Customizing your Projects

This section describes some possible ways to customize your projects when working in a cross environment. For more
details on the project capabilities, see Project Handling.

Two areas of the project editor to modify the project’s properties are particularly relevant to cross environments: the
Toolchain page, and the Embedded page.

In the Toolchains page, the toolchains that have been found by GPS while scanning your host are displayed: you can
select the one corresponding to your cross environment, or use the + button and manually select the desired cross
environment.

If needed, you can also manually modify some of the tools defined in this toolchain in the Tools section of the
Toolchains page.

For example, assume you have an Ada project using a Powerpc VxWorks configuration. You should see the
toolchain powerpc-wrs-vxworks appear in the Toolchains section. Selecting this toolchain changes the Tools
section, displaying the relevant tools (e.g., changing Gnatls to powerpc-wrs-vxworks-gnatls and Debugger
to powerpc-wrs-vxworks-gdb).

You can modify the list of toolchains that can be selected when using the + button and their default values via a custom
XML file. See Customizing and Extending GPS and in particular Customizing Toolchains for further information.

The Runtimes section allows you to choose a particular runtime for your project. The runtimes that have been found
by GPS for the selected toolchain are directly displayed in the combobox. If you want to use a custom runtime (e.g: a
runtime which is not packaged with the selected toolchain), specify its path in the combobox’s entry.

To modify your project to support configurations such as multiple targets or multiple hosts, create scenario variables
and modify the setting of the Toolchains parameters based on the value of these variables. See Scenarios and Config-
uration Variables for more information on these variables.

For example, you may want to create a variable called Target to handle the different kind of targets handled in your
project:

Target

Native, Embedded

Target

Native, PowerPC, M68K

151

GPS User’s Guide, Release 2018

Similarly, you may define a Board variable listing the different boards used in your environment and change the
Program host and Protocol settings accordingly.

In some cases, you may want to provide a different body file for a specific package (e.g., to handle target-specific
differences). A possible approach in this case is to use a configuration variable (e.g. called TARGET) and specify a
different naming scheme for this body file (in the project properties Naming tab) based on the value of TARGET.

12.2 Debugger Issues

This section describes debugger issues specific to cross environments. You will find more information on debugging
at Debugging.

To automatically connect to the correct remote debug agent when starting a debugging session (using the menu Debug
→ Initialize), be sure to specify the Program host and Protocol project properties, which can be found in the Embedded
page. You can also connect (or reconnect) to the remote agent at any time via the Debug → Debug → Connect to
Board... menu.

For example, if you are using the Tornado environment, with a target server called target_ppc, set the Protocol to
wtx and the Program host to target_ppc.

GPS waits for a certain amount of time when trying to connect to a target: if GDB does not asnwer during this time
period, GPS interupts the current debugger command and assumes that we failed to connect to the target. You can set
this time period with the Debugger → Connection timeout preference.

To load a new module on the target, select the Debug → Debug → Load File... menu.

If a module has been loaded on the target and is not known to the current debug session, use the Debug → Debug →
Add Symbols... menu to load the symbol tables in the current debugger.

For bare-metal development, all these steps can be done at once using the Flash to Board and Debug on Board toolbar
buttons. These buttons allow you to build, flash and/or debug your software on the board, spawning the remote debug
agent set in the Connection tool project property from the Embedded page. GPS currently supports OpenOCD, st-util
and py-ocd as connection tools. You can leave the Connection tool attribute empty if you are using a connection tool
that is not supported by GPS: in that case, GPS will still try to connect to the board and everything should work fine if
your connection tool has been spawned correctly.

152 Chapter 12. Working in a Cross Environment

CHAPTER

THIRTEEN

USING GPS FOR REMOTE DEVELOPMENT

It is common for programmers in a networked environment to use a desktop computer that is not itself suitable for their
development tasks. For example, each developer may have a desktop PC running Windows or GNU/Linux as their
access to a company network and do all their development work on shared networked servers. These remote servers
may be running an operating system different from the one on their desktop machine.

One common way of operating in such an environment is to access the server through a remote windowing system such
as X Window System. GPS can be used in such way, but it is not necessarily the most efficient configuration because
running GPS remotely on a shared server increases the workload of the server as well as traffic on the network. When
the network is slow, user interactions can become uncomfortably sluggish. This is unfortunate because the desktop
used to access the network is often a powerful PC that remains idle most of the time. To address this situation,
GPS offers the option of running natively on the desktop, with compilation, execution, and/or debugging activities
performed transparently on one or more remote servers.

13.1 Requirements

In order to compile, run, or debug on a host remote from GPS, your configuration must meet the following conditions:

• Have a remote connection to the host using rsh, ssh, or telnet. GPS can handle passwords for such
connections.

• Have either a Network Filesystem (i.e. NFS, SMB, or equivalent) sharing the project files between the host and
the target or have rsync installed on both client and server. (rsync can be found at http://www.samba.org/
rsync/ for Unix, and is part of Cygwin under Windows: http://www.cygwin.com.

• Either subprojects must be ‘withed’ by the main project using relative paths or the absolute paths must be the
same on both the desktop and the server.

You perform the full remote development setup in two steps:

• Setup the remote servers configuration.

• Setup a remote project.

13.2 Setup the remote servers

13.2.1 The remote configuration dialog

Open the remote configuration dialog using the View->Remote menu to configure remote servers. You can also set
a predefined configuration when installing GPS by using XML files. (See Defining a remote server, and Defining a

153

http://www.samba.org/rsync/
http://www.samba.org/rsync/
http://www.cygwin.com

GPS User’s Guide, Release 2018

remote path translation, for more information.)

Once you have opened the Remote view, click on Settings to open the servers configuration dialog.

This dialog consists of two parts:

• The left part dialog contains the list of configured servers, each identified by a nickname. Three buttons allow
you to create, reinitialize, or delete a server.

• The right part contains the selected server’s configuration.

To set up a remote server, first create a new server by clicking on the Add Server button on the bottom left of the
dialog. Enter a unique nickname identifying the server (not necessarily the network name of the server). This server
is automatically selected and the right part of the dialog shows its configuration, which is initially mostly empty.

13.2.2 Connection settings

For each server, you first need to complete the section describing how GPS should connect to that server. All mandatory
fields are identified by an asterisk:

154 Chapter 13. Using GPS for Remote Development

GPS User’s Guide, Release 2018

• Network Name

The name used to connect to the server via your network. It can be either an IP address, a host name on your
local network, or a fully qualified name with domain.

• Remote Access Tool

A drop-down list specifying the tool used to connect to the server. GPS contains built in support for the following
tools

– ssh

– rsh

– telnet

– plink (Windows tool) in ssh, rsh, or telnet mode

See Defining a remote connection tool if you need to add a different tool. If a tool is not in your path (for
example, because it is not installed), it won’t appear in the tools list. Some tools incompatible with GPS are not
displayed either, such as the Microsoft telnet client.

• Shell

Which shell runs on the remote server. GPS supports the following Unix shells:

– sh

– bash

– csh

– tcsh

GPS also support the Windows shell (cmd.exe). See Limitations, for Cygwin’s shell usage on Windows: it is
preferable to use cmd.exe as a remote shell on Windows servers.

You may need to specify other fields, but they are not mandatory. Most are accessible through the advanced configu-
ration pane.

• The Remote Sync Tool is used to synchronize remote and local filesystems, if these are not shared filesystems.
Only rsync is supported by GPS.

• The Extra Init Commands lists initialization commands that GPS sends to the server when it connects to the
remote machine, the chosen shell is launched, and your default initialization files are read (i.e. .bashrc file for
the bash shell). GPS sends these extra commands, allowing you to, for example, specify a compilation toolchain.

• The User Name specifies the name used to connect to the server. The default is your current login name on your
local machine.

• The Timeout value determines when a connection to a remote host is considered dead. All elementary operations
performed on the remote host (i.e., those operations that normally complete almost immediately) use this timeout
value. The default is 10 seconds. If you have a very slow network connection or a very overloaded server, set
this to a higher value.

• The Maximum Number of Connections is the maximum number of simultaneous connections GPS is allowed to
make to this server. If you want to compile, debug, and execute at the same time on the machine, GPS needs
more than one connection to do this. The default is 3.

• Depending on the kind of server and the remote access tool used, commands sent to the server may require a
specific line terminator, typically either the LF character or CR/LF characters. Usually GPS can automatically
detect which is needed (the ‘auto’ mode), but you can force the choice to CR/LF (cr/lf handling set to ‘on’) or
LF (cr/lf handling set to ‘off’).

13.2. Setup the remote servers 155

GPS User’s Guide, Release 2018

• The Debug Console allows you to easily debug a remote connection. If checked, it opens a console displaying
all exchanges between GPS and the selected server.

13.2.3 Path settings

The final section of the configuration defines the path translations between your local host and the remote server.

The remote path definitions allow GPS to translate your locally loaded project (that resides in your local filesystem) to
paths used on the remote server. This section also tells GPS how to keep those paths synchronized between the local
machine and the remote server.

All your project’s dependencies must reside in a path defined here. You retrieve those paths by using gnat list
-v -Pyour_project. To add a new path, click on the + button and enter the corresponding local and remote
paths.

You can easily select the desired paths by clicking on the icon next to the path’s entry. Remote browsing is allowed
only when the connection configuration is set (see Connection settings.) Clicking on Apply applies your connection
configuration and allows you to browse the remote host to select the remote paths.

You can set one of five types of path synchronization for each path:

• Never: no synchronization is required from GPS because the paths are shared using an OS mechanism like NFS.

• Manually: synchronization is needed, but is only performed manually using the remote view buttons.

• Always: Relevant to source and object paths of your project. They are kept synchronized by GPS before and
after every remote action (such as performing a build or run).

• Once to local/Once to remote: Relevant to project’s dependencies. They are synchronized once when a remote
project is loaded or when a local project is set remote. They can still be manually synchronized using the Remote
View (The remote view.)

The way those paths need to be configured depends on your network architecture:

• If your project is on a filesystem shared between your host and the remote host (using NFS or SMB filesystems,
for example), only the roots of those filesystems need to be specified, using each server’s native paths (on Win-
dows, the paths are specified using the “X:\my\mounted\directory\” syntax and on Unix, using the “/mnt/path/”
syntax).

• If the project’s files are synchronized using rsync, defining a too generic path translation leads to very slow
synchronization. In that is the case, define the paths as specifically as possible in order to speed up the synchro-
nization process.

Note that navigation to entities of the run-time is not supported in remote mode.

13.3 Setup a remote project

13.3.1 Remote operations

GPS defines four different categories of remote operation and corresponding servers: Build operations, Debug opera-
tions, Execution operations and Tools operations. All compiler-related operations are performed on the Build_Server.
The Tools_Server is explained below. The debugger runs on the Debug_Server and the project’s resulting programs
run on the Execution_Server. The GPS_Server (the local machine) is used for all other operations. These “servers”
may not (and are often not) different machines.

The Tools_Server handles all compiler related operations that do not depend on a specific compiler version. It is used
in dual compilation mode, for example, to determine whether the action can be safely run using a very recent compiler
toolchain (which the Tools_Server runs), or whether a specific, older baseline compiler version must be used.

156 Chapter 13. Using GPS for Remote Development

GPS User’s Guide, Release 2018

If the remote mode is activated and the dual compilation mode is not, all Tools_Server operations are executed on the
Build_Server. Otherwise, if the dual compilation mode is activated, all Tools_Server operations are always executed
on the local machine.

13.3.2 The remote view

Use the Remote view (View->Remote) to assign servers to categories of operations for the currently loaded project. You
can assign a different server to each operation category if you fully expand the Servers Assignment tab. Alternatively,
assign all categories to a single server in one step if the you have left the Servers Assignment tab collapsed.

When you select a server for a particular category, the change is not immediately effective, as indicated by the server’s
name appearing in red. This allows you to check the configuration before applying it, by pressing the Check button.
This button tests for a correct remote connection and verifies that the project path exists on the build server and has an
equivalent on the local machine.

Clicking the Apply button performs the following actions:

• Reads the default project paths on the Build_Server and translates them into local paths.

• Synchronizes those paths marked as Sync Always or Once to local from the build server.

• Loads the translated local project.

• Assigns the Build, Execution and Debug servers.

If one of those operations fails, GPS reports the errors in the Messages view and retains the previous project settings.
Once a remote server is assigned, the remote configuration is automatically loaded each time the project is loaded.

Use the two buttons on the right of each server to manually perform a synchronization from the server to your local
machine (left button) or from your local machine to the server (right button).

13.3.3 Loading a remote project

If the project you want to use is already on a remote server, you can directly load it on your local GPS by using the
File → Open Project From Host menu and selecting the server’s nickname. This shows you its file tree. Navigate to
your project and select it. The project is loaded as described above with all remote operations categories assigned to
the selected server by default.

13.3. Setup a remote project 157

GPS User’s Guide, Release 2018

You can reload your project from local files on your machine. The remote configuration is automatically reapplied.

13.4 Limitations

The GPS remote mode imposes some limitations:

• Execution: you cannot use an external terminal to remotely execute your application. The Use external terminal
checkbox of the run dialog has no effect if the program is run remotely.

• Debugging: you cannot use a separate execution window. The Use separate execution window option is ignored
for remote debugging sessions.

• Cygwin on remote host: the GNAT compilation toolchain does not understand Cygwin’s mounted directories.
To use GPS with a remote Windows server using Cygwin’s bash, you must use directories that are the same on
Windows and Cygwin (absolute paths). For example, a project using “C:\my_project” is accepted if Cygwin’s
path is /my_project, but not if /cygdrive/c/my_project is specified.

Even if you use Cygwin’s sshd on such a server, you can still access it using cmd.exe (Connection settings.)

158 Chapter 13. Using GPS for Remote Development

CHAPTER

FOURTEEN

CUSTOMIZING AND EXTENDING GPS

GPS provides several levels of customization, from simple preference dialogs to powerful scripting capability through
the Python language. This chapters describes each of these capabilities.

14.1 Color Themes

The Color Theme window shows a list of color themes to choose from, presented in the form of a list of screenshots.
Clicking on the button underneath a screenshot applies the given color theme to GPS.

Applying a color theme modifies the corresponding GPS preferences. It is therefore possible to customize the colors
after a theme has been applied, through the preferences dialog.

GPS supports importing themes which use the TextMate (.tmTheme) format: at startup, GPS will look in the direc-
tory GPS_HOME/.gps/themes/ and will include all the .tmTheme found at the first level of this subdirectory.
You can also import your themes in the INSTALL/share/gps/color_themes/themes/ directory if you want
to share themes accross your team.

14.2 Custom Fonts

In addition to the system fonts, GPS will load the fonts located under share/gps/fonts) in the GPS installation
directory. The supported formats are .otf, .ttf and .ttc.

This mechanism works only on UNIX/Linux systems; under Windows, fonts need to be added at the system level.
Fonts that are added directly in this directory may not show up in the list of fonts in the preferences dialog, but it is
still possible to use them by entering the font name manually.

159

GPS User’s Guide, Release 2018

14.3 The Key Shortcuts Editor

This editor is started through the Edit → Preferences menu, then by selecting the Preferences page. It provides a
convenient way to edit the keyboard shortcuts that are available throughout GPS.

All keyboard shortcuts are associated with actions, which are either predefined in GPS, or defined in your customiza-
tion python files, as documented in Customizing through XML and Python files. The main part of the editor is a list
showing all actions that are defined in GPS, grouped into categories.

There are literally hundreds of such actions, and finding the one you should use might be difficult. To simplify the
search, you can use the filter field at the top-right corner of the editor. Typing any text in this field will restrict the list
of actions to those that contain the text either in their name, their description, their keyboard shortcut, or the menus the
action is bound to. Entering keyboard shortcut is in fact easier done via the Grab button next to the filter field. Click
on it, then type the shortcut you are looking for.

By using the local configuration menu (click on the top-right button of the editor), you can further restrict what is
displayed in the editor:

• Shortcuts only will only display the actions that have an actual shortcut, and hide all the others.

• Show categories can be unset if you just want to display a flat list of all the actions.

• All menus in GPS are themselves bound to actions. In general, it is better to associate a key shortcut to the
action itself, as opposed to the menu. For this reason, GPS by default does not list all the menus in the keyboard

160 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

shortcuts editor. However, historically, GPS used to show all menus there and you can get this behavior back by
enabling the Show all menus configuration.

When you select an action, GPS will display its documentation in the bottom part of the editor. This documentation
also includes a pointer to the python file that defines the action (or whether it is built-in in GPS), as well as the list of
menus that will execute this action when selected.

Finally, the editor includes a set of buttons on its right side, which are grouped into two logical sets:

• The top three buttons allow you to control Key themes. These are sets of keyboard shortcuts that are either
provided as part of GPS (for instance GPS provides an Emacs key theme which attempts to emulate some of the
Emacs key bindings) or created by the user.

The first box lists all known themes, and lets you alternate between them simply by selecting their name. This
will unset all existing key bindings except the ones you have set manually, and replace them with the shortcuts
loaded from the key theme. This also updates all the menus to reflect the new shortcuts.

The Reset button will discard all the key bindings you have manually overridden, and revert to the theme’s
default key bindings.

The Create lets you create a new key theme by copying all the current shortcuts (those from the theme and the
ones you have set manually) into a new theme. In effect, this creates a new XML file in the directory $HOME/
.gps/key_themes. Removing a custom key theme is done by deleting the file from that directory, no GUI
is provided for this at the moment.

• The second group of buttons lets you edit the shortcut for the currently selected action either by removing a
shortcut, or by overriding the ones that are currently set.

When you click on the Add button, GPS waits for you to press any keyboard shortcut you wish to associate with
the action. This shortcut can include multiple keys, so for instance to get an Emacs-like binding you could for
instance press Ctrl-x and then press Ctrl-k. After pressing the last key in the sequence, wait for a short
delay and GPS will associate the resulting shortcut to the action and update the menus, when relevant, to show
the new binding. Note that multi-key shortcuts cannot be displayed in menus due to technical limitations of the
GUI toolkit.

Any change to the shortcuts is immediately and automatically saved, so that they become instantly usable in GPS, and
will be restored properly when GPS is restarted.

14.4 Editing Plugins

You can extensively customize GPS through external plugins, either ones you write (see Customization files and
plugins) or using one of the plugins in GPS’s own collection.

Some plugins are loaded by default when GPS starts (such as support for the CVS version management system and
support for highlighting in various programming languages) and others are available but not loaded automatically,
such as Emacs emulation mode.

Some plugins provided with GPS are:

• Makefile support

A plugin that parses a Makefile and creates menus for each of its targets so you can easily start a make
command.

• Cross-references enhancements

Some plugins take advantage of GPS’s cross-references information to create additional menus for navigation
such as jumping to the primitive operations of Ada tagged types and to the body of Ada separate entities.

14.4. Editing Plugins 161

GPS User’s Guide, Release 2018

• Text manipulation

Several plugins provide support for advanced text manipulation in the editors, for example to align a set of lines
based on various criteria or to manipulate a rectangular selection of text.

You can graphically choose which plugins are loaded on startup by opening the preferences editor dialog (Edit →
Preferences... menu), under the Plugins section. This section lists all the known plugins on the left. By selecting one
particular plugin, the corresponding preferences page is opened on the right. Each plugin page comes with the same
layout:

• A General group

This group indicates the exact location of the plugin file. Moreover, this group contains a toggle button (Loaded
at startup) which allows you to decide if this plugin should be loaded or not in the next GPS session.

As described in Customization files and plugins, GPS searches for plugins in various directories and, based on
these directories, decides whether to automatically load the plugin on startup.

• An optional Preferences group

This group lists all the preferences related to the selected plugin, allowing you to customize the plugin behavior.
Note that this group is displayed only if preferences have been registered for this plugin.

• A Documentation frame

This frame displays the plugin file documentation. By convention, each plugin starts with a comment indicating
the purpose of this plugin and more detailed documentation on its usage.

If you have modified the list of plugins that should be loaded at startup, you will need to restart GPS, since it cannot
unload a module due to such an action having too many possible effects on GPS: then, a dialog is displayed asking
you whether you would like to exit GPS when closing the preferences editor dialog.

All the changes explicitly set by the user in the list of plugins to load at startup are saved in HOME/.gps/startup.
xml.

14.5 Customizing through XML and Python files

14.5.1 Customization files and plugins

You can customize many capabilities in GPS using files it loads at startup. For example, you can add items to the menu
and tool bars as well as defining new key bindings, languages, and tools. Using Python as a programming language,
you can also add new facilities and integrate your own tools into the GPS platform.

GPS searches for these customization files at startup in several different directories. Depending on where they are
found, they are either automatically loaded by GPS (and thus can immediately modify things in GPS) or may only be
made visible in the Plugins section of the preferences editor dialog (see Editing Plugins).

GPS searches these directories in the order given below. Any script loaded later can override operations performed by
previously loaded scripts. For example, they can override a key shortcut, remove a menu, or redefine a GPS action.

In each directory name below, INSTALL is the name of the directory in which you have installed GPS. HOME is your
home directory, either by default or as overridden by the GPS_HOME environment variable. In each directory, only
files with .xml or .py extensions are used. Other files are ignored, although for compatibility with future versions
of GPS you should not have keep other files in these directories.

• Automatically-loaded, global modules

The INSTALL/share/gps/plug-ins directory contains the files GPS automatically loads by default (un-
less overridden by the user via the Plugins section of the preferences editor dialog). These plugins are visible to

162 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

any user on the system using the same GPS installation. Reserve this directory for critical plugins that almost
everyone will use.

• Not automatically-loaded, global modules

The INSTALL/share/gps/library directory contain files GPS displays in the Plugins section of the
preferences editor dialog but does not load automatically. Typically, these files add optional capabilities to GPS
that many of users generally will not use.

• GPS_CUSTOM_PATH

Set this environment variable before launching GPS to be a list of directories, separated by semicolons (‘;’) on
Windows systems and colons (‘:’) on Unix systems. All files in these directories with the appropriate extensions
are automatically loaded by default by GPS, unless overridden by the user through the Plugins section of the
preferences editor dialog.

This is a convenient way to have project-specific customization files. You can, for example, create scripts that
set the appropriate value for the variable and then start GPS. Depending on your project, this allows you to load
specific aliases which do not make sense for other projects.

These directories are also used to search for icons referenced in your plug-ins.

• Automatically loaded user directory

The directory HOME/.gps/plug-ins is searched last. Any script in it is loaded automatically unless over-
ridden via the Plugins section of the preferences editor dialog.

This is a convenient way for you to create your own plugins or test them before you make them available to all
GPS users by copying them to one of the other directories.

• Automatically loaded together with the project

When GPS loads the project file called <your_project>.gpr, it will automatically look for a python
file called <your_project>.ide.py. In this file, you are expected to define two parameterless subpro-
grams, called initialize_project_plugin and finalize_project_plugin; GPS will call the first one when the project
is loaded, and call the second one if/when another project is loaded.

This method is convenient for providing project-specific behaviors, and means that the GPS plugin can be
checked under version control together with the project file.

This feature is implemented via a the GPS plugin auto_load.py.

Any script loaded by GPS can contain customization for various aspects of GPS, such as aliases, new languages or
menus, in a single file.

Python files

You can format the Python plugin in any way you want (as long as it can be executed by Python, of course), the
following formatting is suggested. These plugins are visible in the Plugins section of the preferences editor dialog, so
having a common format makes it easier for users to understand each plugin:

• Comment

Your script should start with a comment on its goal and usage. This comment should use Python’s triple-quote
convention, rather than the start-of-line hash (‘#’) signs. The first line of the comment should be a one line
explanation of the goal of the script, separated by a blank line from the rest of the comment.

• Implementation

Separate the implementation from the initial comment by a form-feed (control-L); the startup scripts editor only
displays the first page of the script in the first page of the editor.

14.5. Customizing through XML and Python files 163

GPS User’s Guide, Release 2018

If possible, scripts should avoid executing code when they are loaded. This gives the user a chance to change
the value of global variables or override functions before the script is actually launched. Instead, you should to
connect to the "gps_started" hook, as in:

^L
###
No user customization below this line
###

import GPS

def on_gps_started (hook_name):
... launch the script

GPS.Hook ("gps_started").add (on_gps_started)

XML files

XML files must be UTF8-encoded by default. In addition, you can specify any specific encoding through the standard
command:<?xml encoding=”...” ?> declaration, as in the following example:

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- general description -->
<submenu>

<title>encoded text</title>
</submenu>

These files must be valid XML files, i.e. must start with the <?xml?> tag and contain a single root XML node, the
name of which is arbitrary. The format is therefore:

<?xml version="1.0" ?>
<root_node>

...
</root_node>

The first line after the <?xml?> tag should contain a comment describing the purpose and usage of the script. This
comment is made visible in the the preferences page associated with this plugin, under Plugins section of the prefer-
ences editor dialog. The list of valid XML nodes that you can specify under <root> is described in later sections. It
includes:

• <action>

• <key>

• <submenu>

• <pref>

• <preference>

• <alias>

• <language>

• <button>

• <entry>

• <vsearch-pattern>

• <tool>

164 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• <filter>

• <contextual>

• <case_exceptions>

• <documentation_file>

• <doc_path>

• <project_attribute>

• <remote_machine_descriptor>

• <remote_path_config>

• <remote_connection_config>

• <rsync_configuration>

14.5.2 Defining Actions

This mechanism links actions to their associated menus or key bindings. Actions can take several forms: external
commands, shell commands and predefined commands, each explained in more detail below.

Define new actions using the <action> tag. This tag accepts the following attributes:

• name (required)

The name by which the action is referenced elsewhere in the customization files, for example when it is as-
sociated with a menu or toolbar button. It can contain any character, although you should avoid XML special
characters and it cannot start with a ‘/’.

• output (optional)

Where the output of the commands are sent by default. You can override this for each command using the same
attribute for <shell> and <external> tags. See Redirecting the command output.

• show-command (optional, default true)

Whether the text of the command itself should be displayed in the same place as its output. Neither are displayed
if the output is hidden. The default shows the command along with its output. You can override this attribute
for each command.

• show-task-manager (optional, default false)

Whether an entry is in the tasks view to show this command. The progress bar indication is associated with this
entry so if you hide the entry, no progress bar is shown. Alternatively, several progress bars may displayed for
your action if this is enabled, which might be an issue depending on the context. You can override this attribute
for each external command.

• category (optional, default General)

The category in the key bindings editor (Edit → Preferences menu) in which the action is displayed. If you
specify an empty string, the action is considered part of the implementation and not displayed in the editor and
the user will not be able to assign it a key binding through the graphical user interface (although this can still be
done via XML commands).

If you define the same action multiple times, the last definition is used. However, items such as menus and buttons that
reference the action keep their existing semantics: the new definition is only used for items created after it is defined.

The <action> tag can have one or several children, all of which specify a command to execute. All commands are
executed sequentially unless one fails, in which case the following commands are ignored.

The valid children of <action> are the following XML tags:

14.5. Customizing through XML and Python files 165

GPS User’s Guide, Release 2018

• <external>

Defines a system command (i.e. a standard Unix or Windows command).

– server (optional)

Execute the external command on a remote server. The values are gps_server (default),
build_server, execution_server, debug_server, and tools_server. See Remote op-
erations for information on what each of these servers are.

– check-password (optional)

Tell GPS to check for and handle password prompts from the external command. The values are false
(default) and true.

– show-command (optional)

– output (optional)

Override the value of the attribute of the same name specified in the <action> tag.

– progress-regexp (optional)

– progress-current (optional, default 1)

– progress-final (optional, default 2)

progress-regexp is a regular expression that GPS matches the output of the command against. When
the regular expression matches, it must provide two subexpressions whose numeric values represent the
current and total number of steps to perform, which are used to display the progress indicators at the
bottom-right corner of the GPS window. progress-current is the ordinal of the subexpression con-
taining the current step, and progress-final is the ordinal of the subexpression containing the total
number of steps, which grows as needed. For example, gnatmake outputs the number of the file it is
currently compiling and the total number of files to be compiled. However, that last number may increase,
since compiling a new file may cause additional files to be compiled.

The name of the action is printed in the progress bar while the action is executing. Here is an example:

<?xml version="1.0" ?>
<progress_action>

<action name="progress" >
<external
progress-regexp="(\\d+) out of (\\d+).*$"
progress-current="1"
progress-final="2"
progress-hide="true">gnatmake foo.adb

</external>
</action>

</progress_action>

– progress-hide (optional, default true)

If true, all lines matching progress-regexp and are used to compute the progress are not displayed in
the output console. Otherwise, those lines are displayed with the rest of the output.

– show-task-manager (optional, default inherited from <action>)

Whether an entry is created in the tasks view to show this command. The progress bar indicator is asso-
ciated with this entry, so if you hide the entry, no progress is shown. Alternatively, several progress bars
may be displayed for your action if this is enabled, which might be an issue depending on the context.

If set a value for progress-regexp, this attribute is automatically set to true so the progress bar is displayed
in the tasks view.

166 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Note for Windows users: like Unix, scripts can be called from a custom menu. To allow that, you need to write
your script in a .bat or .cmd file and call this file. So the external tag would look like:

<?xml version="1.0" ?>
<external_example>
<action name="my_command">

<external>c:\\.gps\\my_scripts\\my_cmd.cmd</external>
</action>

</external_example>

• on-failure

Specifies a command or group of commands to be executed if the previous external command fails. Typically,
this is used to parse the output of the command and fill the Locations view appropriately (see Processing the
tool output).

For example, the following action spawns an external tool and parses its output to the Locations view. It calls
the automatic fixing tool if the external tool fails.

You can use the %... and $... macros in this group of commands (see Macro arguments):

<?xml version="1.0" ?>
<action_launch_to_location>
<action name="launch tool to location" >

<external>tool-path</external>
<on-failure>
<shell>Locations.parse "%1" category<shell>
<external>echo the error message is "%2"</external>

</on-failure>
<external>echo the tool succeeded with message %1</external>

</action>
</action_launch_to_location>

• shell

You can use custom menu items to invoke GPS commands using the shell tag. These are written in one of the
shell scripts supported by GPS.

This tag supports the same show-command and output attributes as the <action> tag.

The following example shows how to create two actions to invoke the help interactive command and open the
file main.c:

<?xml version="1.0" ?>
<help>
<action name="help">
<shell>help</shell>

</action>
<action name="edit">

<shell>edit main.c</shell>
</action>

</help>

By default, commands are written in the GPS shell language. However, you can specify the language through
the lang attribute, whose default value is “shell”. You can also specify “python”.

When programming with the GPS shell, execute multiple commands by separating them with semicolons.
Therefore, the following example adds a menu that lists all the files used by the current file in a Project browser:

14.5. Customizing through XML and Python files 167

GPS User’s Guide, Release 2018

<?xml version="1.0" ?>
<current_file_uses>
<action name="current file uses">

<shell lang="shell">File %f</shell>
<shell lang="shell">File.uses %1</shell>

</action>
</current_file_uses>

• <description>

A description of the command, which is used in the graphical editor for the key manager. See The Key Shortcuts
Editor.

• <filter>, <filter_and>, <filter_or>

The context in which the action can be executed. See Filtering actions.

You can mix both shell commands and external commands. For example, the following command opens an :pro-
gram‘xterm‘ (on Unix systems only) in the current directory, which depends on the context:

<?xml version="1.0" ?>
<xterm_directory>

<action name="xterm in current directory">
<shell lang="shell">cd %d</shell>
<external>xterm</external>

</action>
</xterm_directory>

As you can see in some of the examples above, some special strings are expanded by GPS just prior to executing the
command, for example “%f” and “%d”. See below for a full list.

More information on chaining commands is provided in Chaining commands.

Some actions are also predefined in GPS itself. This includes, for example, aliases expansion and manipulating MDI
windows. You can display all known actions (both predefined and the ones you defined in your own customization
files) by opening the key shortcut editor using the Edit → Preferences... menu.

14.5.3 Macro arguments

You use macro arguments to pass parameters to shell or external commands in any actions you define. Macro argu-
ments are special parameters that are transformed every time the command is executed. The macro arguments below
are provided by GPS. The equivalent Python code is given for some arguments. This code is useful when you are
writing a full python script.

• %a

If the user clicked inside the Locations view, name of the current line’s category.

• %builder

Replaced by the default builder configured in GPS. This can be gnatmake if your project contains only Ada
code, or gprbuild for non-Ada or multi-language projects. This macro is only available in commands defined
in the Build Manager and Build Launcher dialogs.

• %c

The column number on which the user clicked. Python equivalent:

GPS.current_context().column()

168 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• %d

Current directory. Python equivalent:

GPS.current_context().directory()

• %dk

Krunched name of the current directory.

• %e

Name of the entity the user clicked on. Python equivalent:

GPS.current_context().entity().name()

• %ef

Name of the entity the user clicked on, possibly followed by “(best guess)” if there is an ambiguity, which may,
for example, be due to cross-reference information not being up-to-date.

• %E

Full path to the executable name corresponding to the target.

• %ek

Krunched name of the entity the user clicked on. Like %e, except long names are shorted as in %fk.

• %eL

Either an empty string or -eL, depending on whether the Fast Project Loading preference if set. -eL is used
by GNAT tools to specify whether symbolic links should be followed when parsing projects. This macro is only
available in commands defined in the Build Manager and the Build Launcher dialogs.

• %external

Command line specified in the External Commands → Execute command preference.

• %f

Base name of the currently selected file. Python equivalent:

import os.path
os.path.basename (GPS.current_context().file().name())

• %F

Absolute name of the currently opened file. Python equivalent:

GPS.current_context().file().name()

• %fd

Absolute path for the directory that contains the current file.

• %fk

Krunched base name of the currently selected file. This is the same as %f except that long names are shortened
with some letters replaced by “[...]”. Use this in menu labels to keep the menus narrow.

• %fp

Base name of the currently selected file. If the file is not part of the project tree or no file is selected, generate an
error in the Messages view. This macro is only available in commands defined in the Build Manager and Build
Launcher dialogs.

14.5. Customizing through XML and Python files 169

GPS User’s Guide, Release 2018

• %gnatmake

The gnatmake executable configured in your project file.

• %gprbuild

The gprbuild command line configured in your project file.

• %gprclean

Default cleaner configured in GPS. This can be, for example, gnat clean or gprclean. This macro is only
available in commands defined in the Build Manager and Build Launcher dialogs.

• %GPS

GPS’s home directory (i.e., the .gps directory in which GPS stores its configuration files).

• %i

If the user clicked inside the Project view, name of the parent project, i.e., the one that is importing the one
clicked on. With this definition of parent project, a given project may have multiple parents, but the one here is
the one from the Project view..

• %l

Number of the line in which the user clicked. Python equivalent:

GPS.current_context().line()

• %o

Object directory of the current project.

• %O

Object directory of the root project.

• %system_bin_dir

The directory containing the GPS executable.

• %p

Name of the current project (not the project file). The .gpr extension is not included and the casing is the one
in the project file not that of the file name itself. If the current context is an editor, the name of the project to
which the source file belongs. Python equivalent:

GPS.current_context().project().name()

• %P

Name of root project. Python equivalent:

GPS.Project.root().name()

• %Pb

Basename of the root project file.

• %Pl

Name of the root project converted to lower case.

• %pp

Current project file pathname. If a file is selected, the project file to which the source file belongs. Python
equivalent:

170 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

GPS.current_context().project().file().name()

• %PP

Root project pathname. Python equivalent:

GPS.Project.root().file().name()

• %pps

Similar to %pp, except it returns the project name prepended with -P or an empty string if there is no project
file selected and the current source file does not belong to any project. This is intended mostly for use with the
GNAT command line tools. GPS quotes the project name if it contains spaces. Python equivalent:

if GPS.current_context().project():
return "-P" & GPS.current_context().project().file().name()

• %PPs

Similar to :;file:%PP, except it returns the project name prepended with -P, or an empty string if the root project
is the default project. This is intended mostly for use with the GNAT command line tools.

• %(p|P)[r](d|s)[f]

Replaced by the list of sources or directories of a project. This list is space-separated with all names surrounded
by double quotes for proper handling of spaces in directories or file names. The first letter specifies the project
and successive letters which files are in the list and related options:

– P

root project.

– p

The selected project or the root project if project is selected.

– r

Recurse through the projects, including all subprojects.

– d

List source directories. Python equivalent:

GPS.current_context().project().source_dirs()

– s

List source files. Python equivalent:

GPS.current_context().project().sources()

– f

Write the list into a file and replace the parameter with the name of the file. This file is never deleted by
GPS; you must do so manually in the plugin when you no longer need it.

Examples:

– %Ps

List of source files in the root project.

14.5. Customizing through XML and Python files 171

GPS User’s Guide, Release 2018

– %prs

List of files in the current project and all imported sub projects, recursively.

– %prdf

Name of a file containing a list of source directories in the current project and all imported sub projects,
recursively.

• %s

Text selected by the user, if a single line was selected. If multiple lines are selected, returns the empty string

• %S

Text selected by the user or the current entity if no selection. If the entity is part of an expression (“A.B.C”), the
whole expression is returned instead of the entity name.

• %switches(tool)

Value of IDE'Default_Switches (tool). If you have a tool whose switches are defined via an XML
file in GPS, they are stored as Default_Switches (xxx) in the IDE package, and you can retrieve them using this
macro. The result is a list of switches, or an empty list if none.

This macro is only available in the commands defined in the Build Manager and Build Launcher dialogs.

• %T

Subtarget being considered for building. Depending on the context, this can correspond to such things as the
base filename of a main source or makefile targets. This macro is only available in the commands defined in
the Build Manager and Build Launcher dialogs.

• %TT

Like %TT, but the full path to main sources rather than the base filename.

• %TP

Similar to %TT%, but returns the name of the project to which the main belongs.

• %python(cmd)

Executes the python command cmd. It should return either a string (which is inserted as is in the command line),
a list of strings (which are each passed as a separate argument), or a boolean. If it returns False, then the target
is not executed at all.

The cmd itself can include other macros, which will be expanded. Not all macros are expanded though. For
instance, a %python() cannot include another %(python), nor any other function-like macros, like %vars() for
instance.

The python function should have no side effect if possible, since it might be called more than once (for instance
as part of showing what the command line will be when GPS display the dialog to let you edit that command
line prior to actual execution).

Due to the way command-line parsing works, it is recommended to put triple quotes around the whole argument,
as in:

-foo """%python(func("%TT", 1))""" -bar
-foo """%python("-one" if Choice else "-two")"""

to make sure the python argument is not split on spaces for instance. The closing parenthesis must be the last
character before the closing triple quotes.

• %attr(Package'Name[,default])

172 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Project attribute Package'Name`L: the attribute :file:`Name from the package Package.
You can omit Package' if Name is a top level attribute (e.g. Object_Dir). If the attribute is not defined in
the project, an optional default value is returned, or an empty string if none is specified.

This macro is only available in the commands defined in the Build Manager and Build Launcher dialogs and
only supports attributes that return a single string, not those returning lists.

• %dirattr(Package'Name[,default])

Like %attr, but the directory part of an attribute value.

• %baseattr(Package'Name[,default])

Like %attr, but the base name an attribute value.

• %vars

List of switches of the form variable=value, where variable is the name of a scenario variable and
value its current value, as configured in the Scenario view. All scenario variables defined in the current project
tree are listed. You can also use %vars(-D) to generate a list of switches of the form -Dvariable=value.
This macro is only available in the commands defined in the Build Manager and Build Launcher dialogs.

• %X

List of switches of the form -Xvariable=value, where variable is the name of a scenario variable and
value its current value, as configured in the Scenario view. All the scenario variables defined in the current
project tree are listed. This macro is only available in the commands defined in the Build Manager and Build
Launcher dialogs.

• %target

The string --target=t where t is the build target, as determined by the current toolchain.

• %%

The literal % character.

• %ts

The short name for the current window (‘Search’, ‘Project’, ‘Outline’, or the base name for the current file).

• %tl

The long name for the current window (‘Search’, ‘Project’, ‘Outline’ or the absolute path name for the current
file).

• %rbl

The name of the Remote Build server (defaults to ‘localhost’ when no such server is configured, hence the final
‘l’ in the name of the macro).

• %(env:VAR)

Value of an environment variable with name VAR.

Another type of macros are expanded before commands are executed: they start with the $ character and represent
parameters passed to the action by its caller. Depending on the context, GPS passes zero, one or many arguments to
an action. You will commonly use these macros when you define your own VCS system. Also see the shell function
execute_action, which executes an action and passes it arguments.

These macros are the following

• $1, $2, ... $n

Where n is a number. These are the argument with the corresponding number that was passed to the action.

14.5. Customizing through XML and Python files 173

GPS User’s Guide, Release 2018

• $1-, $2-, ... $n-*

Likewise, but a string concatenating the specified argument and all subsequent arguments.

• $*

String concatenating all arguments passed to the action.

• $repeat

Number of times the action has been consecutively executed. This is 1 (the first execution of the action) unless
the user invoked the Repeat Next action.

By default, when Repeat Next is invoked by the user, it repeats the following action the number of times the user
specified. However, in some cases, either for efficiency reasons or for other technical reasons, you may want to
handle the repeat yourself. Do this with the following action declaration:

<action name="my_action">
<shell lang="python">if $repeat==1: my_function($remaining + 1)</shell>

</action>

def my_function (count):
"""Perform an action count times"""
...

The idea here is to do something only the first time the action is called (the if statement), but pass your shell
function the number of times it should repeat (the $remaining parameter).

• $remaining

Like $repeat, but indicates the number of times the action remains to be executed. This is 0 unless the user
invoked the Repeat Next action.

14.5.4 Filtering actions

By default, an action can execute in any context in GPS. When the user selects the menu or key, GPS executes the
action. You can restrict when an action is permitted. If the current context does not permit the action, GPS displays an
error message.

You can use one of several types of restrictions:

• Using macro arguments (see Macro arguments).

If an action uses one of the macro arguments defined in the previous section, GPS checks that the information
is available. If not, it will not run any of the shell commands or external commands for that action.

For example, if you specified %F as a parameter to a command, GPS checks there is a current file such as a
currently selected file editor or a file node selected inside the Project view. This filtering is automatic: you do
not have to do anything else.

However, the current context may contain more information than you expect. For example, if a user clicks on a
file name in the Project view, the current context contains a file (and hence satisfies %F) and also a project (and
hence satisfies %p and similar macros).

• Defining explicit filters

You can also specify explicit restrictions in the customization files by using the <filter>, <filter_and>
and <filter_or> tags. Use these tags to further restrict when the command is valid. For example, you can
use them to specify that the command only applies to Ada files, or only if a source editor is currently selected.

174 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

The filters tags

You can define filters in one of two places in the customization files:

• At the top level.

You can define named filters at the same level as other tags such as <action>, <menu> or <button> tags.
These are global filters that can be referenced elsewhere.

• As a child of the <action> tag.

These filters are anonymous, although they provide exactly the same capabilities as the ones above. These are
intended for simple filters or filters that you use only once.

There are three different kinds of tags representing filters:

• <filter>

A simple filter. This tag has no child tag.

• <filter_and>

All the children of this tag are merged to form a compound filter. they are each evaluated in turn and if one
of them fails, the whole filter fails. Children of this tag can be of type <filter>, <filter_and> or :file:
<filter_or>.

• <filter_or>

Like <filter_and>, but as soon as one child filter succeeds, the whole filter succeeds.

If several filter tags are found under an <action> tag, they act as if they were all under a single <filter_or> tag.

The <filter>, <filter_and>, and <filter_or> tags all accept the following common attributes:

• name (optional)

Used to create named filters that can be reused, via the id attribute, elsewhere in actions or compound filters.
The name can have any form.

• error (optional)

Error message GPS will display if the filter does not match and hence the action cannot be executed. If you are
using the <filter_and> or <filter_or> tag, GPS will only display the error message of that filter.

In addition, the <filter> tag has the following specific attributes:

• id (optional)

If this attribute is specified, all other attributes are ignored. Use this to reference a named filter previously
defined. Here is how you can make an action depend on a named filter:

<?xml version="1.0" ?>
<test_filter>
<filter name="Test filter" language="ada" />
<action name="Test action" >

<filter id="Test filter" />
<shell>pwd</shell>

</action>
</test_filter>

GPS contains a number of predefined filters:

– Source editor

Match if the currently selected window in GPS is an editor.

14.5. Customizing through XML and Python files 175

GPS User’s Guide, Release 2018

– Explorer_Project_Node

Match if clicking on a project node in the Project view.

– Explorer_Directory_Node

Match if clicking on a directory node in the Project view.

– Explorer_File_Node

Match if clicking on a file node in the Project view.

– Explorer_Entity_Node

Match if clicking on an entity node in the Project view.

– File

Match if the current context contains a file (for example the focus is on a source editor or the focus is on
the Project view and the currently selected line contains file information).

• language (optional)

Name of the language that must be associated with the current file in order for the filter to match. For example, if
you specify ada, the user must have an Ada file selected for the action to execute. GPS determines the language
for a file by using several methods such as looking at file extensions in conjunction with the naming scheme
defined in the project files.

• shell_cmd (optional)

Shell command to execute. The output of this command is used to find if the filter matches: if it returns “1” or
“true”, the filter matches. In any other case, the filter fails.

Macro arguments (such as %f and %p) may be used in the text of the command to execute.

• shell_lang (optional)

Which language the command in shell_cmd is written. The default if that the command is written for the
GPS shell.

• module (optional)

The filter only matches if the current window was created by this specific GPS module. For example, if you
specify Source_Editor, the filter only matches if the active window is a source editor.

You can obtain the list of module names by typing lsmod in the shell console at the bottom of the GPS window.

This attribute is useful mostly when creating new contextual menus.

When several attributes are specified for a <filter> node (which cannot be combined with id), they must all match
for the action to be executed:

<?xml version="1.0" ?>
<!-- The following filter only matches if the currently selected

window is a text editor editing an Ada source file -->
<ada_editor>

<filter_and name="Source editor in Ada" >
<filter language="ada" />
<filter id="Source editor" />

</filter_and>

<!-- The following action is only executed for such an editor -->

<action name="Test Ada action" >
<filter id="Source editor in Ada" />
<shell>pwd</shell>

176 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

</action>

<!-- An action with an anonymous filter. it is executed if the
selected file is in Ada even if the file was selected through
the project view -->

<action name="Test for Ada files" >
<filter language="ada" />
<shell>pwd</shell>

</action>
</ada_editor>

14.5.5 Adding new menus

Actions can be associated with menus, tool bar buttons, and keys, all using similar syntax.

Each menu item has an associated path, which it behaves like a UNIX path, except it references menus, starting from
the menu bar itself. The first character of this path must be /. The last part is the name of the menu item. For example,
specifying /Parent1/Parent2/Item as a menu path is a reference to a Parent1 → Parent2 -> Item menu. If you
are creating a new menu item, GPS creates any parent menus that do not already exist.

You bind a menu item to an action through the <menu> and <submenu> tags. The <menu> tag can have the
following attributes:

• action (required)

Action to execute when the item is selected by the user. If no action by this name is defined, GPS does not add
a new menu. If the action name starts with a ‘/’, it represents the absolute path to an action.

Omit this attribute only when no title is specified for the menu. Doing that makes it a separator (see below).

If you associate a filter with the action via the <filter> tag, the menu is grayed out when the filter does not
match.

• before (optional)

Name of another menu item before which the new menu should be inserted. If that item has not been previously
created, the new menu is inserted at the end. Use this attribute to control precisely where the item menu is
displayed.

• after (optional)

Like before, but with a lower priority. If specified and there is no before attribute, it specifies an item after
which the new item should be inserted.

The <menu> tag should have one XML child called <title>, which specifies the label of the menu. This label is
actually a path to a menu, so you can define submenus.

You can define the accelerator keys for your menus using underscores in the title to designate the accelerator key. For
example, if you want an accelerator on the first letter in a menu named File, set its title to _File.

The <submenu> tag accepts several children, such as <title> (which can present at most once), <submenu> (for
nested menus), and <menu>.

<submenu> does not accept the action attribute. Use <menu> for clickable items that result in an action and
<submenu> to define several menus with the same path.

Specify which menu the new item is added to in one of two ways:

• Specify a path in the title attribute of <menu>

14.5. Customizing through XML and Python files 177

GPS User’s Guide, Release 2018

• Put the <menu> as a child of a <submenu> node. This requires more typing, but allows you to specify the
exact location, at each level, of the parent menu.

For example, this adds an item named mymenu to the standard Edit menu:

<?xml version="1.0" ?>
<test>

<submenu>
<title>Edit</title>
<menu action="current file uses">

<title>mymenu</title>
</menu>

</submenu>
</test>

The following has exactly the same effect:

<?xml version="1.0" ?>
<test>

<menu action="current file uses">
<title>Edit/mymenu</title>

</menu>
</test>

The following adds a new item stats to the unit testing submenu in my_tools:

<?xml version="1.0" ?>
<test>

<menu action="execute my stats">
<title>/My_Tools/unit testing/stats</title>

</menu>
</test>

The previous method is shorter but less flexible than the following, where we also create the My_Tools menu, if it
does not already exist, to appear after the File menu. This cannot be done by using only <menu> tags. We also insert
several items in that new menu:

<?xml version="1.0" ?>
<test>

<submenu>
<title>My_Tools</title>
<menu action="execute my stats">

<title>unit testing/stats</title>
</menu>
<menu action="execute my stats2">

<title>unit testing/stats2</title>
</menu>

</submenu>
</test>

If you add an item with an empty title or no title at all, GPS inserts a menu separator. For example, the following
example will insert a separator followed by a File → Custom menu:

<?xml version="1.0" ?>
<menus>

<action name="execute my stats" />
<submenu>

<title>File</title>
<menu><title/></menu>

178 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

<menu action="execute my stats">
<title>Custom</title>

</menu>
</submenu>

</menus>

14.5.6 Adding contextual menus

You can also add actions as new items in contextual menus anywhere in GPS. Contextual menus are displayed when
the user right clicks and only show actions relevant to the current context.

Add an item using the <contextual> tag, which takes the following attributes:

• action (required)

Name of action to execute, which must be defined elsewhere in one of the customization files.

If set to an empty string, a separator is inserted in the contextual menu. If you specify an item using the before
or after attribute, the separator is displayed only when the specified item is.

• before (optional)

Name of another contextual menu item before which the new item should appear. You can find the list of names
of predefined contextual menus by looking at the output of Contextual.list in the GPS shell console. The
name of your contextual menu item is the value of the <title> child.

There is no guarantee the new menu item will appear just before the specified item. For example, it will not if
the new item is created before the specified menu item or if a later contextual menu item also specified it must
be displayed before the same item.

• after (optional)

Like before, except it indicates the new menu item should appear after the specified item.

If you specify both after and before, only the latter is honored.

• group (optional, default 0)

Allows you to create groups of contextual menus that are put next to each other. Items with the same group
number appear before all items with a larger group number.

The <contextual> tag accepts one child tag, <Title>, which specifies the name of the menu item. If not
specified, the menu item uses the name of the action. The title is the full path to the new menu item, like in the
<menu> tag. You can create submenus by using a title of the form Parent1/Parent2/Menu. You can use macro
arguments in the title, which are expended based on the current context. See Macro arguments.

GPS only displays the new contextual menu item if the filters associated with the action match the current context.

For example, the following example inserts a new contextual menu item that displays the name of the current file in
the GPS console. This contextual menu is only displayed in source editors. This contextual menu entry is followed by
a separator line, displayed when the menu item is:

<?xml version="1.0" ?>
<print>

<action name="print current file name" >
<filter module="Source_Editor" />
<shell>echo %f</shell>

</action>

<contextual action="print current file name" >
<Title>Print Current File Name</Title>

14.5. Customizing through XML and Python files 179

GPS User’s Guide, Release 2018

</contextual>
<contextual action="" after="Print Current File Name" />

</print>

14.5.7 Adding tool bar buttons

As an alternative to creating new menu items, you can create new buttons on the tool bar, by using the <button>
tag. Like the <menu> tag, it requires an action attribute, which specifies what should be done when the button is
pressed. The button is not created if the action action does not exist.

This tag accepts one optional attribute, iconname which you can use to override the default image registered for the
action or set one if the action no image. See Adding custom icons for more information on icons.

The following example defines a new button:

<?xml version="1.0" ?>
<stats>

<button action="undo" /> <!-- use default icon -->
<button action="execute my stats" iconname='my-image' />

</stats>

Use the <button> tag to create a simple button that the user can press to start an action. GPS also supports another
type of button, a combo box, from which the user can choose among a list of choices. Create a combo box with the
<entry> tag, which accepts the following attributes:

• id (required)

Unique id for this combo box, used later on to refer it, specifically from the scripting languages. It can be any
string.

• label (default)

Text of a label to display on the left of the combo box. If not specified, no text is displayed

• on-changed (default)

Name of a GPS action to execute whenever the user selects a new value in the combo box. This action is called
with two parameters: the unique id of the combo box and the newly selected text.

It also accepts any number of <choice> tags, each of which defines one value the user can choose from. These tags
accept one optional attribute, on-selected, which is the name of a GPS action to call when that value is selected:

<action name="animal_changed">
<shell>echo A new animal was selected in combo $1: animal is $2</shell>

</action>
<action name="gnu-selected">

<shell>echo Congratulations on choosing a Gnu</shell>
</action>
<entry id="foo" label="Animal" on-changed="animal_changed">

<choice>Elephant</choice>
<choice on-selected="gnu-selected">Gnu</choice>

</entry>

GPS provides a more convenient interface for Python, the GPS.Toolbar class, which provides the same flexibility
as above, but also gives you dynamic control over the entry and allows placement of buttons at arbitrary positions in
the toolbar. See the Python documentation.

180 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

14.5.8 Binding actions to keys

All actions can be bound to specific key shortcuts through the <key> tag. This tag has two different forms:

• <key load=’file.xml’/> tells GPS to load the given key theme (either from the GPS predefined directory or from
the user’s own directory.

• <key action=’name’ exclusive=’true’>shortcut</key> It requires one action attribute to specify what to do
when the key is pressed. The name of the action can start with a ‘/’ to indicate that a menu should be executed
instead of a user-defined action (although it is preferred to bind to an actual action). If the action is specified as
an empty string, the key is no longer bound to any action.

This tag does not contain any child tags. Instead, its text contents specifies the keyboard shortcut. The name of
the key can be prefixed by any combination of the following:

– control- is the control key on the keyboard;

– alt- is the alt key on the keyboard (left or right) or the option key on OSX;

– shift- is the shift key. It should not be necessary if you want to point to symbols for which shift would
be necessary, so for instance on an US keyboard, shift-% and % are the same);

– cmd- is the command key on OSX, or the alt key on other keyboards;

– primary- is the command key on OSX, or the control key on other keyboards.

You can also define multi-key bindings similar to Emacs’ by separating them by a space. For example,
control-x control-k means the user should press Ctrl-x, followed by a Ctrl-k to activate the corre-
sponding action. This only works if the first key is not already bound to an action. If it is, you must first unbind
it by passing an empty action to <key>.

This XML node has one optional attribute exclusive. When this is set to true, the shortcut will no longer
be used for any action that might be already using it. If you set it to false, multiple actions will be bound to the
same shortcut. The first one for which the filter applies (i.e. the current context is right for the action) will be
executed.

Use an empty string as the key binding if you wish to deactivate a preexisting binding. The second example below
deactivates the standard binding:

<?xml version="1.0" ?>
<keys>

<key action="expand alias">control-o</key>
<key action="Jump to matching delimiter" />

<!-- Bind a key to a menu -->
<key action="/Window/Close">control-x control-w</key>

</key>

If you bind multiple actions to the same key binding, they are executed sequentially, followed by any menu for which
this key is an accelerator.

When GPS processes a <key> tag, it does the following:

• Removes all actions bound to that key if exclusive is true. This ensures that any action previously associated
with it, either by default in GPS or in some other XML file, is no longer executed. This removal is not done
when loading key themes (i.e. XML files from $HOME/.gps/key_themes directory), so it is possible to
bind an action to multiple key bindings as part of a key theme.

• Adds the new key to the list of shortcuts that can execute the action. Any existing shortcut for the action is
preserved, allowing multiple shortcuts for the action.

14.5. Customizing through XML and Python files 181

GPS User’s Guide, Release 2018

14.5.9 Configuring preferences

Creating new preferences

GPS contains a number of predefined preferences to configure its behavior and appearance, which are all customizable
through the Edit → Preferences... menu.

You can add preferences for your extension modules through the usual GPS customization files. Preferences are
different from project attributes (see Defining project attributes); the latter varies depending on which project is loaded
by the user, while preferences are always set to the same value independent of what project is loaded.

You create your own preferences with the <preference> tag, which accepts the following attributes:

• name (required)

Name of the preference, used both when the preference is saved by GPS in the $HOME/.gps/preferences
file and to query the value of a preference interactively through the GPS.Preference class in the GPS shell
or Python. These names cannot contain spaces or underscore characters: use minus signs instead of the latter.

• page (optional, default General)

Name of the page in the preferences editor where the preference are edited. If the page does not already exist,
GPS automatically creates it. If this is the empty string, the preference is not editable interactively. Use this to
save a value from one session of GPS to the next without allowing the user to change it. Subpages are referenced
by separating pages name with slashes (/).

• default (optional, default depends on type of the preference)

Default value of the preference. If not specified, this is 0 for integer preferences, the empty string for string
preferences, True for boolean preferences, and the first possible choice for choice preferences.

• tip (optional)

Text of the tooltip that appears in the preferences editor dialog.

• label (required)

Name of the preference as it appears in the preferences editor dialog

• minimum (optional, default 0), maximum (default 10)

Minimum and maximum values for integer preferences.

• type (required)

Type of the preference. Must be one of:

– boolean

– integer

– string

– font

– color

A color name, in the format of a named color such as “yellow”, or a string like “#RRGGBB”, where RR
is the red component, GG is the green component, and BB is the blue component.

– choices

The preference is a string whose value is chosen among a static list of possible values, each of which is
defined in by a <choice> child of the <preference> node.

Here is an example that defines a few new preferences:

182 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

<?xml version="1.0"?>
<custom>

<preference name="my-int"
page="Editor"
label="My Integer"
default="30"
minimum="20"
maximum="35"
page="Manu"
type="integer" />

<preference name="my-enum"
page="Editor:Fonts & Colors"
label="My Enum"
default="1"
type="choices" >

<choice>Choice1</choice>
<choice>Choice2</choice> <!-- The default choice -->
<choice>Choice3</choice>

</preference>
</custom>

The values of the above preferences can be queried in the scripting languages:

• GPS shell:

Preference "my-enum"
Preference.get %1

• Python:

val = GPS.Preference ("my-enum").get ()
val2 = GPS.Preference ("my-int").get ()

Setting preferences values

You can force specific default values for the preferences in the customization files through the <pref> tag. This is
the same tag used by GPS itself when it saves the preferences edited via the preferences dialog.

This tag requires one attribute, name, the name of the preference for which you are setting a default value. These
names are defined when the preference is registered in GPS. You can find them by looking at the $HOME/.gps/
preferences file for each user or by looking at one of the predefined GPS themes.

It accepts no child tags, but the value of the <pref> tag defines the default value of the preference, which is used
unless the user has overridden it in his own preferences file.

Any setting you defined in the customization files is overridden by a specification of that preference in the user’s
preferences file.

The <pref> tag is mostly intended for use in themes (see Creating themes).

14.5.10 Creating themes

You can create your own themes and share them between users and then selectively choose which themes each user
want to activate through the preferences dialog.

You create new themes in the customization files using the <theme> tag.

14.5. Customizing through XML and Python files 183

GPS User’s Guide, Release 2018

This tag accepts the following attributes:

• name (required)

Name of the theme as it appears in the preferences dialog

• description (optional)

This text should explain what the theme does. It appears in the preferences dialog when the user selects that
theme.

• category (optional, default General)

Name of the category in which the theme should be presented in the preferences dialog. Categories are currently
only used to organize themes graphically. GPS creates a category automatically if you choose one that has not
previously been created.

This tag accepts any other customization tags including setting preferences (<pref>), defining key bindings (<key),
and defining menus (<menu>).

If you define the same theme in multiple locations (either multiple times in the same customization file or in different
files), the customizations in each are merged. The first definition of the theme seen by GPS sets the description and
category for the theme.

All child tags of the theme are executed when the user activates the theme in the preferences dialog. There is no strict
ordering of the child tags. The default order is the same as for the customization files themselves: first the predefined
themes of GPS, then the ones defined in customization files found through the GPS_CUSTOM_PATH directories, and
finally the ones defined in files found in the user’s own GPS directory.

Here is an example of a theme:

<?xml version="1.0" ?>
<my-plugin>

<theme name="my theme" description="Create a new menu">
<menu action="my action"><title>/Edit/My Theme Menu</title></menu>

</theme>
</my-plugin>

14.5.11 Defining new search patterns

The search dialog contains a number of predefined search patterns for Ada, C, and C++. These are generally complex
regular expressions, presented in the dialog with a more descriptive name. For example, Ada assignment.

Define your own search patterns in the customization files using the <vsearch-pattern> tag. This tag can have
the following child tags:

• <name>

String displayed in the search dialog to represent the new pattern. This is the text the user sees (instead of the
often hard-to-understand regular expression)

• <regexp>

Regular expression to use when the pattern is selected by the user. Be careful to protect reserved XML characters
such as < and replace them by their equivalent expansion (< in that case).

This tag accepts one optional attribute, case-sensitive a boolean that specifies whether the search should
distinguish lower case and upper case letters. The default is false.

• <string>

184 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

A constant string that should be searched. Provide either <regexp> or <string>, but not both. If
both are provided, the first <regexp> child found is used. The tag accepts the same optional attribute
case-sensitive as above.

Here is a short example, showing how the Ada assignment pattern is defined:

<?xml version="1.0" ?>
<search>

<vsearch-pattern>
<name>Ada: assignment</name>
<regexp case-sensitive="false">\\b(\\w+)\\s*:=</regexp>

</vsearch-pattern>
</search>

14.5.12 Defining custom highlighters

The mechanism here described allows any user to add syntax highlighting to GPS for any language in a declarative
domain specific language.

Tutorial: Add support for python highlighting in GPS

In this short tutorial, we will walk through the steps needed to create a small plugin for GPS that will allow it to
highlight python code.

The idea of the whole API is for the user to declare matchings in a declarative way, specifying the matcher via a classic
regular expression syntax, and taking the appropriate action depending on the kind of the matcher. There are basically
two types of matches:

• Simple matchers will just apply a tag to the matched text region. This will be useful to highlight keywords or
number expressions in source, for example.

• Region matchers will change the set of matchers to the one specified in the region definition. That way, you can
do more complex highlighters in which some simple matchers will work only in some context.

In addition to that, you have a set of helpers that will simplify common patterns based on those two primitives, or
make some additional things possible. See the full API doc below for more details.

IMPORTANT NOTE: As you will see, the way you register an highlighter is by specifying the language it applies
to in the call to register_highlighter. If you want to highlight a language that is not yet known to GPS, you have to
register a new language. The way to do that is detailled in the Adding support for new languages section.

First step, creating a dumb highlighter

As a first step, we will just create an highlighter that highlights the self symbol in python, as a simple hello world.:

from highlighter.common import *

register_highlighter(
language="python",
spec=(

Match self
simple("self", tag=tag_keyword),

)
)

14.5. Customizing through XML and Python files 185

GPS User’s Guide, Release 2018

As we can see, the first step to register a new highlighter is to call the register_highlighter() function, giving
the name of the language and the spec of the language as parameters.

The spec parameter is a tuple of matchers. In this case we have only one, a simple matcher, as described above, which
will match the “self” regexp, and apply the “keyword” tag everytime it matches.

The tag parameter is the name of the tag that will be used to highlight matches . GPS has a number of built-in tags for
highlighting, that are all defined in the highlighter.common module. They may not be sufficient, so the user has
the possibility of creating new styles, a capability that we will talk about later on.

Second step, discovering our first helper

Highlighting just self is a good first step, but we would like to be a little more pervasive in our highlighting of keywords.
Fortunately for us, python has a way to dynamically get all the language’s keywords, by doing:

from keywords import kwlist

By combining that with the words() helper, we can easily create a matcher for every python keyword:

register_highlighter(
language="python",
spec=(

Match keywords
words(kwlist, tag="keyword"),

)
)

The words() helper just creates a simple matcher for a list of words. words(["a", "b", "c"],
tag="foo") is equivalent to simple("a|b|c", tag="foo").

Third step, highlighting strings literals in a clever way

Next, we’re gonna want to highlight some literals. Let’s start by strings, because they are hard and interresting. A
string is a literal that starts with a ” or a ‘ character, and ends with the same character, but one needs to be careful
because there are several corner cases:

• If an escaped string delimiter occurs in the string (” in a ” string for example), it should not end the string !

• In python, strings delimited by ” or ‘ are single line strings. It means that the match needs to be terminated at
the end of the line

• BUT, if the last character of the line is a backslash, the string actually continues on the next line !

Additionally, some editors are nice enough to highlight escaped chars in a specific colors inside string literals. Since
we want our highlighter to be cutting edge, we will add this requirement to the list. Here is the region declaration for
this problem, for the case of single quoted strings:

string_region = region(
r"'", r"'|[^\]$", tag="string",
highlighter=(

simple(r"\.", tag=tag_string_escapes),
)

)

Here are the important points:

• The first parameter is the regular expression delimiting the beginning of the region, in this case a simple quote.

186 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• The second parameter is the regular expression delimiting the end of the region, in this case, either a simple
quote, either an end of line anchor ($). This way, a string will be terminated after a new line.

• The way both line continuations and escaped quotes are handled is actually very simple: The simple matcher
declared inside the region’s highlighter will match any character preceded by a backslash, including newlines.
An important point to understand is that, when inside a region, the matcher for ending the region has the lowest
priority of all. In this case, it means the simple matcher will consume both quotes and new lines if they are
preceded by a backslash, and so they won’t be available for the ending matcher anymore.

Creating custom style tags

If the style tags predefined in the highlighter.common module are not enough, you can define new ones with
the new_style() function.

When you define a new style via this function, a corresponding preference will be created in the GPS preferences, so
that the user can change the color later.

The tag_string_escapes common tag is defined with this function this way:

tag_string_escapes = new_style(lang="General", name="string_escapes",
foreground_colors=('#875162', '#DA7495'))

The first parameter is the name of the language for which this applies, or “General” if this can potentially apply to
several languages. This will be used by GPS to choose which preference category will be used for the corresponding
preference.

The second parameter is the name of the style.

The third parameter is the colors that will be used by default for this style. The first color is the one used for light
themes, the second color is the one used for dark themes.

Going further

All the details of the engine are not yet documented, but if while creating your highlighter you find yourself stuck,
don’t hesitate to look at the C or Python highlighters, in the c_highlighter and python_highlighter modules that are
shipped with your version of GPS. Those are complete real world examples that are used by GPS to highlight files in
those languages.

API Documentation

highlighter.interface.existing_style(pref_name, name=’‘, prio=-1)
Creates a new style to apply when a matcher succeeds, using an existing style as a basis. This probably should
not be used directly, but one should use one of the existing styles declared in Highlighter.common()

Parameters

• pref_name (string) – The name of the preference to bind to the style

• name (string) – The name of the style, used for the underlying gtk tag

• prio (int) – The priority of the style compared to others. Higher priority styles will
take precedence over lower priority ones. -1 means default priority: tags added last have
precedence.

Return type highlighter.engine.Style

14.5. Customizing through XML and Python files 187

GPS User’s Guide, Release 2018

highlighter.interface.new_style(lang, name, label, doc, foreground_colors, back-
ground_colors=(‘#ffffff’, ‘#ffffff ’), font_style=’default’,
prio=-1)

Creates a new style to apply when a matcher successfully matches a portion of text. A style is the conflation of

•An editor tag with corresponding text style

•A user preference that will be added to the corresponding language page

Parameters

• lang (string) – The language for which this style will be applicable . This is used to
automatically store the preference associated with this style in the right preferences subcat-
egory.

• name (string) – The name of the style, used to identify it.

• label (string) – The label that will be shown in the preferences dialog for this style.

• doc (string) – The documentation that will be shown in the preferences dialog for this
style.

• foreground_colors (string, string) – The foreground colors of the style, ex-
pressed as a tuple of two CSS-like strings, for example (“#224488”, “#FF6677”). The first
color is used for light themes, the second is used for dark themes

• background_colors (string, string) – The background colors of the style.

• font_style (string) – : The style of the font, one of “default”, “normal”, “bold”,
“italic” or “bold_italic”

• prio – The priority of the style. This determines which style will prevail if two styles
are applied to the same portion of text. See Highlighter.region() -1 means default
priority: tags added last have precedence.

Return type highlighter.engine.Style

highlighter.interface.region(start_re, end_re, tag=None, name=’‘, highlighter=(),
matchall=True, igncase=False)

Return a matcher for a region, which can contain a whole specific highlighter

Parameters

• start_re (string) – The regexp used to match the start of the region

• end_re (string) – The regexp used to match the end of the region

• tag (highlighter.engine.Style) – The Tag which will be used to highlight the
whole region. Beware, if you plan to apply other tags to elements inside the region, they
must have an higher priority than this one !

Return type RegionMatcher

highlighter.interface.region_ref(name)
Used to reference a region that already exists. The main and only use for this is to define recursive regions, eg.
region that can occur inside themselves or inside their own sub regions. See the tutorial for a concrete use case.

The returned region reference will behave exactly the same as the original region inside the highlighter.

Parameters name – The name of the region.

Return type RegionRef

188 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

highlighter.interface.region_template(*args, **kwargs)
Used to partially construct a region, if you want to define for example, several regions having the same sub
highlighter and tag, but not the same start and end regular expressions.

Parameters

• args – Positional params to pass to region

• kwargs – Keyword params to pass to region

Returns A partially constructed region

highlighter.interface.register_highlighter(language, spec, igncase=False)
Used to register the declaration of an highlighter. See the tutorial for more information

Parameters

• language (string) – The language to be used as a filter for the highlighter.

• spec (tuple) – The spec of the highlighter.

highlighter.interface.search_for_capturing_groups(regexp_string)
Return a list of matches for capturing groups in a regular expression.

Parameters regexp_string (str) – The regular expression we want to analyze.

highlighter.interface.simple(regexp_string, tag)
Return a simple matcher for a regexp string. Raises an exception if capturing groups are present in the regular
expression (not supported by the engine).

Parameters regexp_string (str) – The regular expression for this matcher

Return type SimpleMatcher

highlighter.interface.words(words_list, **kwargs)
Return a matcher for a list of words

Parameters words_list (str|list[str]) – The list of words, either as a string of “|” sepa-
rated words, or as a list of strings.

Return type SimpleMatcher

14.5.13 Adding support for new languages

You have two ways of defining a new language in GPS:

• Basic support from registering languages in Python is provided.

• If the support provided in Python is not enough, more extensive support is provided via the XML interface. With
time all capabilities will be provided in the Python interface, and the XML facility will be deprecated.

Adding support for a new language via the Python interface

You can register a new language in Python via the class GPS.Language. The first step is to define a new subclass
of GPS.Language, the second is to register it via a call to GPS.Language.register. Here is an example

class JavaLang(GPS.Language):
def __init__(self):

pass

GPS.Language.register(JavaLang(), "java", ".java", "", "", INDENTATION_SIMPLE)

14.5. Customizing through XML and Python files 189

GPS User’s Guide, Release 2018

The class is provided to provide the possibility of future further user customization for a specific language.

For the moment, the support is rudimentary. This is mostly useful if you want to then register an highlighter for the
language in question via the new highlighters API, see Defining custom highlighters.

Adding support for a new language via the XML interface

Define new languages in a custom file by using the <Language> tag. Defining languages gives GPS the ability to
perform language-specific operations such as highlighting the syntax of a file, exploring a file using the Project view,
and finding files associated with that language.

NOTE: The highlighting of syntax via the mechanisms described here are deprecated. See Defining custom high-
lighters for the current way to highlight custom languages.

The following child tags are available:

• <Name>

Short string giving the name of the language.

• <Parent>

Optional name of language that provides default values for all properties not explicitly set.

• <Spec_Suffix>

String identifying the filetype (including the ‘.’ character) of spec (definition) files for this language. If the
language does not have the notion of spec or definition file, you should use the <Extension> tag instead.
Only one such tag is permitted for each language.

• <Body_Suffix>

String identifying the filetype of body (implementation) files for this language. Only one such tag is permitted
for each language.

• <Obj_Suffix>

String identifying the extension for object files for this language. For example, it is .o for C or Ada and .pyc
for Python. The default is -, which indicates there are no object files.

• <Extension>

String identifying one of the valid filetypes for this language. You can specify several such children.

• <Keywords>

Regular expression for recognizing and highlighting keywords. You can specify multiple such tags, which will
all be concatenated into a single regular expression. If the regular expression needs to match characters other
than letters and underscore, you must also edit the <Wordchars> tag. If you specified a parent language, you
can append to the parent <Keywords> by providing a mode attribute set to append (the default for mode is
override, where the <Keywords> definition replaces the one from the parent).

You can find the full grammar for regular expression in the spec of the file g-regpat.ads in the GNAT run
time.

• <Wordchars>

Most languages have keywords that only contain letters, digits, and underscore characters. If you want to also
include other special characters (for example < and > in XML), use this tag. The value of this tag is a string
consisting of all the special characters that may be present in keywords. You need not include letters, digits or
underscores.

190 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• <Context>

Information that GPS uses to determine the syntax of a file for highlighting purposes. The following child tags
are defined:

– <Comment_Start>, <Comment End>

Strings that determine the start and end of a multiple-line comment.

– <New_Line_Comment_Start>

A regular expression defining the beginning of a single line comment that ends at the next end of line.
This regular expression may contain multiple possibilities, such as ;|# for comments starting after a
semicolon or after the pound sign. If you specified a parent language, you can append to the parent’s
<New_Line_Comment_Start> by including a mode attribute with a value of append (the default is
override, meaning the <New_Line_Comment_Start> definition replaces the one in the parent).

– <String_Delimiter>

Character defining the string delimiter.

– <Quote_Character>

Character defining the quote (also called escape) character, used to include the string delimited inside a
string (\ in C).

– <Constant_Character>

Character defining the beginning of a character literal, in languages that support such literals (e.g., C).

– <Can_Indent>

Boolean indicating whether indentation is enabled. The indentation mechanism is the same for all lan-
guages: the number of spaces at the beginning of the current line is used when indenting the next line.

– <Syntax_Highlighting>

Boolean indicating whether the language syntax should be highlighted and colorized.

– <Case_Sensitive>

Boolean indicating whether the language (in particular the identifiers and keywords) is case sensitive.

– <Accurate_Xref>

Boolean indicating whether cross reference information for this language is fully accurate or whether it is
either an approximation or not present). Default is False.

– <Use_Semicolon>

Boolean indicating whether semicolons are expected in sources and can be used as a delimiter for syntax
highlighting purposes. Default is False.

• <Categories>

Optional tag to describe the categories supported by the Project view. This tag contains a list of <Category>
tags, each describing the characteristics of a single category, with the following child tags:

– <Name>

Name of the category, either one of the predefined categories or a new name, in which case GPS will create
a new category.

The predefined categories are package, namespace, procedure, function, task,
method, constructor, destructor, protected, entry, class, structure, union,
type, subtype, variable, local_variable, representation_clause, with, use,

14.5. Customizing through XML and Python files 191

GPS User’s Guide, Release 2018

include, loop_statement, case_statement, if_statement, select_statement,
accept_statement, declare_block, simple_block, and exception_handler.

– <Pattern>

Regular expression to select a language category. Like <Keywords> tags, if you specify multiple
<Pattern> tags, GPS will concatenate them into a single regular expression.

– <Index>

Index of the subexpression in the pattern that extracts the name of the entity in this category.

– <End_Index>

Optional tag providing the index of the subexpression used to start the next search. The default is the end
of the pattern.

• <Project_Field>

Information about the tools used to support this language. The name of these tools is stored in the project files
so you can specify only a limited number of tools. This tag is currently only used by the project properties and
wizard and not by other components of GPS.

This tag two attributes:

– Name

Name of the attribute in the project file. Currently, you can only specify compiler_command.

– Index

If present, specifies the index to use for the attribute in the project file. The line defining this attribute looks
like:

for Name ("Index") use "value";

e.g:

for Compiler_Command ("my_language") use "my_compiler";

The value of the index should be either the empty string or the name of the language.

The value of this attribute is the string to use in the project properties editor when editing this project field.

here is an example of a language definition for the GPS project files:

<?xml version="1.0"?>
<Custom>

<Language>
<Name>Project File</Name>
<Spec_Suffix>.gpr</Spec_Suffix>
<Keywords>^(case|e(nd|xte(nds|rnal))|for|is|</Keywords>
<Keywords>limited|null|others|</Keywords>
<Keywords>p(ackage|roject)|renames|type|use|w(hen|ith))\\b</Keywords>

<Context>
<New_Line_Comment_Start>--</New_Line_Comment_Start>
<String_Delimiter>"</String_Delimiter>
<Constant_Character>'</Constant_Character>
<Can_Indent>True</Can_Indent>
<Syntax_Highlighting>True</Syntax_Highlighting>
<Case_Sensitive>False</Case_Sensitive>

</Context>

192 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

<Categories>
<Category>

<Name>package</Name>
<Pattern>^[\\t]*package[\\t]+((\\w|\\.)+)</Pattern>
<Index>1</Index>

</Category>
<Category>

<Name>type</Name>
<Pattern>^[\\t]*type[\\t]+(\\w+)</Pattern>
<Index>1</Index>

</Category>
</Categories>

</Language>
</Custom>

14.5.14 Defining text aliases

GPS provides a mechanism known as “aliases”. The user can define these using the Code->Aliases menu.

Each alias has a name, generally a short string of characters. When you type that string in any textual entry in GPS
(usually a source editor, but also entry fields anywhere, such as in a file selector) and press the special activation key
(by default Ctrl-o, but controlled by a preference), GPS replaces the string by the text you have associated with it.

Alias names can contain any character except newline but must start with a letter. GPS looks backward to the start of
the word before the current cursor position, and if the characters between there and the cursor position is an alias name
(using a case insensitive comparison), it expands the alias.

The alias editor is divided into three main parts. The left shows the list of currently defined aliases. Clicking on any of
them displays its replacement text. If you click a second time, GPS displays a text entry allowing you to rename that

14.5. Customizing through XML and Python files 193

GPS User’s Guide, Release 2018

alias. A checkbox at the bottom determines whether the editor displays read-only aliases (i.e., system-wide aliases).

The second part displays the expansion text for the alias, at the bottom right corner. This text can span multiple
lines and contain macros, which are displayed in a different color. You can insert these macros either by typing their
symbols (as shown below) or by right-clicking in the editor and selecting the entity in the contextual menu.

The alias editor supports the following macros:

• %_

Position in the replacement text where the cursor is placed.

• %name

Name of a parameter. name can contain any characters except closing parenthesis. See below for more infor-
mation on parameters.

• %D

Current date, in ISO format. The year is displayed first, then the month and day.

• %H

Current time (hour, minutes, and seconds).

• %O

For recursive aliases expansion. This macro expands the text before it in the current replacement of the pa-
rameters and possibly other recursive expansions. This is similar to pressing Ctrl-o in the expansion of the
alias.

You cannot expand an alias recursively when already expanding that alias. If the alias expansion for, e.g.,
procedure contains procedure%O, the inner procedure is not expanded.

• %%

A percent sign.

The remaining macros are only expanded if the alias is being expanded in a source editor:

• %l

Line on which the cursor is when pressing Ctrl-o.

• %c

Like %l, except the current column.

• %f

Name of current file (its base name only, not including directory).

• %d

Directory containing current file.

• %p

Base name of the project file referencing the current file.

• %P

Like %p, but the full name of the project file (directory and base name).

GPS preserves the indentation of the alias when it is expanded. All lines are indented the same as the alias name.
You can override this default behavior by selecting the checkbox Indent source editor after expansion. In that case,
GPS replaces the name of the alias by its expansion and then recomputes the position of each line with its internal
indentation engine as if the text had been inserted manually.

194 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

The third part of the alias editor, the top right corner, lists the parameters for the currently selected alias. Whenever you
insert a %name string in the expansion text, GPS detects new, changed, or deleted parameter references and updates
the list of parameters to show the current list.

Each parameter has three attributes:

• name

The name you use in the expansion text of the alias in the %name macro.

• Environment

Whether the default value of the parameter comes from the list of environment variables set before GPS was
started.

• default value

Instead of getting the default value from the environment variable, you can also specify a fixed value. Clicking
on the initial value of the currently selected variable opens a text entry which you can use to edit this default
value.

When an alias that contains parameters is expanded, GPS first displays a dialog to ask for the value of the parameters.
You can interactively enter this value, which replaces all corresponding %name entities in the expanded text.

14.5.15 Alias files

Customization files can also contain alias definitions that can be used to create project or system- wide aliases. All
customization files are parsed to look for aliases definitions. All customization files are treated as read-only by GPS
and therefore cannot be edited through its graphical interface. You can override some of the aliases in your own custom
files. The system files are loaded first and aliases defined there can be overridden by the user-defined file. There is
one specific files which must contain only aliases definitions: $HOME/.gps/aliases. Whenever you edit aliases
graphically or create new ones, they are stored in this file, which is the only one GPS ever modifies automatically.

These files are standard XML customization files. The XML tag to use is <alias>, one per new alias. The following
example contains a standalone customization file, though you may wish to merge the <alias> tag into any other
customization file.

The following child tags are supported:

• <alias>

Indicates the start of a new alias. It has one mandatory attribute, name, the text to type before pressing Ctrl-o,
and one optional attribute, indent, which, if set to true tells GPS to recompute the indentation of the newly
inserted paragraph after the expansion.

• <param>

One per alias parameter. It has one mandatory attribute, name, the name in %{name) in the alias expansion
text, and two optional attributes: environment, indicating whether or not the default value must be read from
the environment variables and description, a string that is displayed when asking the parameter’s value
while expanding the alias.

• <text>

Replacement text, possibly multiple lines.

Here is an example of an alias definition in a configuration file:

<?xml version="1.0"?>
<Aliases>

<alias name="proc" >
<param name="p" >Proc1</param>

14.5. Customizing through XML and Python files 195

GPS User’s Guide, Release 2018

<param environment="true" name="env" />
<text>procedure %(p) is

%(env)%_
end %(p);</text>
</alias>

</Aliases>

14.5.16 Defining project attributes

Project files are required by GPS and store various pieces of information related to the current set of source files,
including how to find the source files and how the files should be compile or manipulated through various tools.

The default set of attributes used by GPS in a project file is limited to those attributes used by tools packaged with
GPS or GNAT. If you are delivering your own tools, you may want to store similar information in the project files,
since they are a very convenient location to associate specific settings with a given set of source files.

GPS lets you manipulate the contents of projects through XML customization files and script commands. You can
add your own typed attributes into the projects and have them saved automatically when the user saves the project and
reloaded automatically when GPS reloads the project.

Declaring the new attributes

You can declare new project attributes in two ways: either using the advanced XML tags below or the <tool> tag
(see Defining tool switches).

The customization files support the file:<project_attribute> tag, used to declare attributes GPS should support in a
project file. Attributes that are not supported by GPS are not accessible through the GPS scripting languages and
generate warnings in the Messages window.

Each project attributes has a type typed and can either have a single value or have a set of values (a list). Each value
can be a free-form string, a file name, a directory name, or a value extracted from a list of preset values.

Attributes declared in these customization files are also graphically editable through the project properties dialog or
the project wizard. When you define an attribute, you need to specify how it is presented to the GPS user.

The <project_attribute> tag accepts the following attributes:

• package (string)

Package in the project file containing the attribute. Good practice suggests that one such package should be used
for each tool. These packages provide namespaces so that attributes with the same name but for different tools
do not conflict with each other.

• name (string, required)

Name of the attribute. A string with no space that represents a valid Ada identifier (typically starting with a
letter and be followed by a set of letters, digits or underscores). This is an internal name used when saving the
attribute in a project file.

• editor_page (string, default General)

Name of the page in the Project Properties editor dialog in which the attribute is presented. If no such page
exists, GPS creates one. If the page already exists, the attribute is appended to the bottom of those already on
the page.

• editor_section (string)

Name of the section, if any, inside the editor page where the attribute is displayed. These sections are surrounded
by frames, the title of which is given by the this attribute. If not present, the attribute is put in an untitled section.

196 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• label (string, default: name of the attribute)

Textual label displayed to the left of the attribute in the graphical editor used to identify the attribute. However,
it can be set to the empty string if the attribute is in a named section of its own, since the title of the section may
be good enough.

• description (string)

Help message describing the role of the attribute, displayed as a tooltip if the user hovers over the attribute.

• list (boolean, default false)

If true, the project attribute contains a list of values, as opposed to a single value. An example is the list of
source directories in standard projects.

• ordered (boolean, default false)

Only relevant if the project attribute contains a list of values, when it indicates whether the order of the values
is relevant. In most cases, it is not. However, the order of source directories, for example, matters since it also
indicates where GPS searches for the source files, and it stops at the first match.

• omit_if_default (boolean, default true)

Whether the project attribute should be set explicitly in the project if the user left it with its default value. Enable
this to keep the project files as simple as possible if all the tools using this attribute know about the default value.
Otherwise, set it false to always emit the definition of the project attribute.

• base_name_only (boolean, default false)

If the case of attributes that are a file or directory name, whether the base name (true) or the full path (false)
is stored. In most cases, the full path is best. However, since GPS looks for source files in the list of directories
the list of source files, for example, should only contain base names. This also increases the portability of project
files.

• case_sensitive_index (true, false (default), or file)

Only relevant for project attributes that are indexed on another attribute (see below for more information on
indexed attributes). It indicates whether two indexes that differ only by their casing are considered the same.
For example, if the index is the name of one of the languages supported by GPS, the index is case insensitive
since “Ada” is the same as “C”.

The value file indicates that the case sensitivity is the same as the filesystem of the local host. Use that value
when the index is a filename.

• hide_in (string)

Context in which GPS will not allow graphical editing of this attribute. GPS provides three such contexts
(wizard, library_wizard, and properties corresponding to the project creation wizards and the
project properties editor). If any of those contexts are specified, GPS will not display the widget to edit this
attribute. Use this to keep the graphical interface simple.

• disable_if_not_set (boolean, default false)

If true, the field to edit this attribute is grayed out if the attribute is not explicitly set in the project. In most
cases, you will not specify this, since the default value of the attribute can populate that field. However, when
the value of the attribute is automatically computed depending on other attributes, you cannot specify the default
value in the XML file, and it might be simpler to gray out the field. A checkbox is displayed next to the attribute
so the user can choose to enable the field and add the attribute to the project.

• disable (space-separated list of attribute names)

List of attribute whose fields should be grayed out if this attribute is specified. This only works if both the
current attribute and the referenced attributes all have their disable_if_not_set attribute set true. Use
this to create mutually exclusive attributes.

14.5. Customizing through XML and Python files 197

GPS User’s Guide, Release 2018

Declaring the type of the new attributes

The type of the project attribute is specified by child tags of <project_attribute>. The following tags are
recognized:

• <string>

Attribute is composed of a single string or a list of strings. This tag accepts the following XML attributes:

– default (string)

Default value of the attribute. If the attribute’s type is a file or directory, the default value is normalized:
an absolute path is generated based on the project’s location, with "." representing the project’s directory.
As a special case, if default is surrounded by parenthesis, no normalization is done so you can on test
whether the user is still using the default value.

Another special case is when you specify project source files, which is replaced by the known
list of source files for the project. However, this does not work from the project wizard, since the list of
source files has not been computed yet.

– type (empty string (default), file, directory, or unit)

What the string represents. In the default case, any value is valid. For file, it should be a file name,
although no check is done to ensure the file actually exists. Similarly, directory tells GPS to expect a
directory. For units, GPS should expect the name of one of the project’s units.

– filter (none, project, extending_project, all_projects)

Ignored for all types except file, where it further specifies what type of files should be specified by this
attribute. If none, any file is valid. If all_projects, files from all projects in the project tree are
valid. If project, only files from the selected project are valid. If extended_project, only the files
from the project extended by the current project can be specified. This attribute is not shown if the current
project is not an extension project.

– allow_empty (boolean, default True)

Whether the value for this attribute can be an empty string. If not and the user does not specify a value,
GPS will display an error message in the project properties editor and project wizard.

• <choice>

One of the valid values for the attribute. Use multiple occurrences of this tag to provide a static list of such
values. If combined with a <string> tag, indicates that the attribute can be any string, although a set of
possible values is provided to the user. This tag accepts one optional XML attribute, default, a boolean
which indicates whether this value is the default. If several details attributes are present the default value of
the attribute is a list, as opposed to a single value.

• <shell>

GPS scripting command to execute to get a list of valid values for the attribute. Like the <choice> tag, this
can be combined with a <string> tag to indicate that the list of values returned by the scripting command is
only a set of possible values, but that any valid is valid.

The <shell> tag accepts two attributes:

– lang (string, default shell)

Scripting language in which the command is written. The only other possible value is python.

– default (string)

Default value of the attribute if the user has not specified one.

198 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Sometimes either the type of the project attribute or its default value depends on what the attribute applies to. The
project file supports this in the form of indexed project attributes. This, for example, is used to specify the name of
the executable generated when compiling each of the main files in the project (e.g., the executable for gps.adb is
gps.exe and the one for main.c is myapp.exe).

You can also declare such attributes in XML files. In such cases, the <project_attribute> tag should have one
<index> child, and zero or more <specialized_index> children. Each of these two tags in turn accepts one
of the already mentioned <string>, <choice>, or <shell> tags as children.

The <index> tag specifies what other project attribute is used to index the current one. In the example given above
for the executable names, the index is the attribute containing the list of main files for the project.

It accepts the following XML attributes:

• attribute (string, required)

Name of the other attribute, which must be declared elsewhere in the customization files and whose type must
be a list of values.

• package (string)

Package in which the index project attribute is defined. This is used to uniquely identify attributes with the same
name.

Use the <specialized_index> tag to override the default type of the attribute for specific values of the index.
For example, project files contain an attribute specifying the name of the compiler for each language, which is indexed
on the project attribute specifying the language used for each source file. Its default value depends on the language
(gnatmake for Ada, gcc for C, etc.). This attribute requires one XML attribute, value, which is the value of the
attribute for which the type is overridden.

Almost all the standard project attributes are defined through an XML file, projects.xml, which is part of the GPS
installation. Examine this file for advanced examples on declaring project attributes.

Examples

The following declares three attributes, each with a single string as their value. This string represents a file in the first
case and a directory in the last two:

<?xml version="1.0"?>
<custom>

<project_attribute

name="Single1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Any string">

<string default="Default value" />
</project_attribute>

<project_attribute
name="File1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Any file" >

<string type="file" default="/my/file" />
</project_attribute>

14.5. Customizing through XML and Python files 199

GPS User’s Guide, Release 2018

<project_attribute
name="Directory1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Any directory" >

<string type="directory" default="/my/directory/" />
</project_attribute>

</custom>

The following declares an attribute whose value is a string. However, it provides list of predefined possible values
as an help for the user. If the <string> tag was not specified, the attribute’s value could only be one of the three
possible choices:

<?xml version="1.0" ?>
<custom>

<project_attribute
name="Static2"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Choice from static list (or any string)" >

<choice>Choice1</choice>
<choice default="true" >Choice2</choice>
<choice>Choice3</choice>
<string />

</project_attribute>
</custom>

The following declares an attribute whose value is one of the languages currently supported by GPS. Since this list of
languages is only known when GPS is executed, the example uses a script command to query this list:

<?xml version="1.0" ?>
<custom>
<project_attribute

name="Dynamic1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Choice from dynamic list" >

<shell default="C" >supported_languages</shell>
</project_attribute>

</custom>

The following declares an attribute whose value is a set of file names. The order of files in this list matters to the tools
using this attribute:

<?xml version="1.0" ?>
<custom>
<project_attribute

name="File_List1"
package="Test"
editor_page="Tests list"
editor_section="Lists"

200 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

list="true"
ordered="true"
description="List of any file" >

<string type="file" default="Default file" />
</project_attribute>

</custom>

The following declares an attribute whose value is a set of predefined values. By default, two such values are selected,
unless the user overrides the default:

<?xml version="1.0" ?>
<custom>

<project_attribute
name="Static_List1"
package="Test"
editor_page="Tests list"
editor_section="Lists"
list="true"
description="Any set of values from a static list" >

<choice>Choice1</choice>
<choice default="true">Choice2</choice>
<choice default="true">Choice3</choice>

</project_attribute>
</custom>

The following declares an attribute whose value is a string. However, the value is specific to each language (it could,
for example, be the name of a compiler to use for that language). This is an indexed attribute, with two default values,
one for Ada and one for C. All other languages have no default value:

<?xml version="1.0" ?>
<custom>

<project_attribute
name="Compiler_Name"
package="Test"
editor_page="Tests indexed"
editor_section="Single">

<index attribute="languages" package="">
<string default="" />

</index>
<specialized_index value="Ada" >

<string default="gnatmake" />
</specialized_index>
<specialized_index value="C" >

<string default="gcc" />
</specialized_index>

</project_attribute>
</custom>

Accessing project attributes

Attributes you define are accessible from the GPS scripting languages like all the standard attributes, see Querying
project switches.

For example, you can access the Compiler_Name attribute we created above with a python command similar to:

14.5. Customizing through XML and Python files 201

GPS User’s Guide, Release 2018

GPS.Project.root().get_attribute_as_string ("Compiler_Name", "Test", "Ada")

You can also access the list of main files for the project, for example, by calling:

GPS.Project.root().get_attribute_as_list ("main")

14.5.17 Adding casing exceptions

You can use the customization files to declare a set of case exceptions by using the <case_exceptions> tag.
Put each exception in child tag of <word> or <substring>. GPS uses these exceptions to determine the case of
identifiers and keywords when editing case insensitive languages (except if corresponding case is set to Unchanged).
Here is an example:

<?xml version="1.0" ?>
<exceptions>

<case_exceptions>
<word>GNAT</word>
<word>OS_Lib</word>
<substring>IO</substring>

</case_exceptions>
</exceptions>

14.5.18 Adding documentation

You can add new documentation to GPS in various ways. You can create a new menu, through a <menu> tag in a
configuration file, associated with an action that either spawns an external web browser or calls the function GPS.
Help.browse(). However, this will not show the documentation in the Help → Contents menu, which is where
people expect to find it. To do both, use the <documentation_file> tag. These tags are usually found in a
gps_index.xml file, but are permitted in any customization file.

Your documentation files can contain the usual HTML links. In addition, GPS treats links starting with ‘%’ specially
and considers them as script commands to execute instead of files to display. The following examples show how to
insert a link that, which clicked by the user, opens a file in GPS:

Open runtime file

The first token after ‘%’ is the name of the language; the command to execute is after the ‘:’ character.

The <documentation_file> tag accepts the following child tags:

• <name>

Name of the file, either an absolute filename or a filename relative to one of the directories in GPS_DOC_PATH.
If this child is omitted, you must specify a <shell> child. The name can contain a reference to a specific
anchor in the HTML file, using the standard HTML syntax:

<name>file#anchor</name>

• <shell>

Name of a shell command to execute to get the name of the HTML file. This command could create the HTML
file dynamically or download it locally using some special mechanism. This child accepts one attribute, lang,
the name of the language in which the command is written

202 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• <descr>

Description for this help file, which appears as a tool tip for the menu item.

• <category>

Used in the Help → Contents menu to organize all documentation files.

• <menu>

Full path to the menu. See Adding new menus. If not set, GPS does not display a menu item for this file, although
it still appears in the Help->Contents menu

This tag accepts two attributes, before and after, that control the position of the menu item. If the new
menu is inserted in a submenu, the attribute controls the deeper nesting. Parent menus are created as needed,
but if you wish to control their display order, create them first with a <submenu> tag.

The following example creates a new entry item in the Help menu, that displays file.html (searched for in the
GPS_DOC_PATH path):

<?xml version="1.0"?>
<index>

<documentation_file>
<name>file.html</name>
<descr>Tooltip text</descr>
<category>name</category>
<menu>/Help/item</menu>

</documentation_file>
</index>

The directories given by the GPS_DOC_PATH environment variable are searched for the HTML documentation files.
However, you can also use the <doc_path> XML node to define additional directories to search. Such a directory
is relative to the installation directory of GPS. For example:

<?xml version="1.0"?>
<GPS>

<doc_path>doc/application/</doc_path>
</GPS>

adds the directory <prefix>/doc/application to the search path for documentation.

You can also add such a directory via Python, as in:

GPS.HTML.add_doc_directory ('doc/application')

14.5.19 Adding custom icons

You can also provide custom icons to be used throughout GPS in places such as buttons, menus and toolbars.

Images must be either in the PNG or SVG format. The latter (scalable vector graphic) is preferred, since the image
will always display sharply whatever size is used on the screen. GPS itself always uses SVG icons.

The images are searched in multiple base directories:

• Any directory mentioned in the environment variable GPS_CUSTOM_PATH.

• HOME/.gps/icons

• <gps_install>/share/gps/icons

14.5. Customizing through XML and Python files 203

GPS User’s Guide, Release 2018

In all these cases, icons can be in either the directory itself, or in subdirectories named hicolor/48x48/apps,
with the following conventions:

• hicolor is the name of the icon theme. The default is ‘hicolor’, and that cannot be changed from GPS itself.

• 48x48 is the size of the icon. This is only relevant to PNG images, in case you want to provide multiple sizes
for the image. The directory name should match the size of the icon, and GPS will automatically select the most
appropriate format when it needs to display the image. For SVG images, can you instead choose a subdirectory
named hicolor/scalable/16x16, where the final size does not matter since these images can always be
resized to any size.

Icons are referenced with the basename of the file (no directory info) with no extension. gtk+ will automatically try a
number of variants like name.svg, name.png, name-rtl.svg, name-symbolic.svg, ...

If you name your icon name-symbolic.svg, GPS will automatically change the foreground and background colors
to match the selected color theme by the user (dark or light). But these icons are only displayed in grayscale.

As shown in the example above, you should prefix the icon with a unique name, here my-vcs-, to make sure prede-
fined icons do not get overridden by your icons.

So for instance, if you have put a file mylogo.png in /dir/plug-ins/, then you should do the following:

• set GPS_CUSTOM_PATH to include ‘/dir/plug-ins/’

• use iconname=”mylogo” in your plug-in

Further information about icons could be found in a separate document - Icon Theme Specification.

14.5.20 Customizing Remote Programming

There are two parts to specifying the configuration of remote programming functionality: the configuration of the tools
(remote connection tools, shells, and rsync parameters) and the servers.

The first part (see Defining a remote connection tool, Defining a shell, and Configuring rsync usage) is performed by
a pre-installed file in the plugins directory called protocols.xml.

The second part (see Defining a remote server and Defining a remote path translation) creates a remote.xml file in
the user’s gps directory when the user has configured them (see Setup the remote servers). System-wide servers can
be also installed.

Defining a remote connection tool

A remote connection tool is responsible for making a connection to a remote machine. GPS already defines
several remote access tools: ssh, rsh, telnet, and plink. You can add support other tools using the tag
<remote_connection_config>, which requires a name attribute giving the name of the tool. This name need
not necessarily correspond to the command used to launch the tool.

The following child tags are defined:

• <start_command> (required)

The command used to launch the tool. This tag supports the use_pipes attribute, which selects on Windows
the manner in which GPS launches the remote tools and accepts the following values:

– true

Use pipes to launch the tool.

– false (default)

Use a tty emulation, a bit slower but allows password prompt retrieval with some tools.

204 Chapter 14. Customizing and Extending GPS

http://www.freedesktop.org/wiki/Specifications/icon-theme-spec/

GPS User’s Guide, Release 2018

• <start_command_common_arg>

Arguments provided to the tool. This string can contain the following macros, which are replaced by the fol-
lowing strings:

– %C: Command executed on the remote host (normally the shell command).

– %h: Remote host name.

– %U: Value of <fstart_command_user_args>, if specified.

– %u: User name.

If you have not included either %u or %U in the string and the user specifies a username in the remote connection
configuration, GPS places the value of <start_command_user_args> at the beginning of the arguments.

• <start_command_user_args>

Arguments used to define a specific user during connection. %u is replaced by the user name.

• <send_interrupt>

Character sequence to send to the connection tool to interrupt the remote application. If not specified, an
Interrupt signal is sent directly to the tool.

• <user_prompt_ptrn>, <password_prompt_ptrn>, <passphrase_prompt_ptrn>

Regular expressions to detect username, password, and passphrase prompts, respectively, sent by the connection
tool. If not specified, appropriate defaults are used.

• <extra_ptrn>

Used to handle prompts from the connection tool other than for username, password or passphrase. The
auto_answer attribute selects whether GPS provides an answer to this prompt or asks the user. If true,
a <answer> child is required. Its value is the answer to be supplied by GPS. If false, a <question> child
is required. Its value is used by GPS to ask the user a question. Provide this child once for every prompt that
must be handled.

Defining a shell

GPS already defines several shells: sh, bash, csh, tcsh, and, on Windows, cmd.exe). You can add other shells
by using the <remote_shell_config> tag which has one required attribute, name, denoting the name of the
shell. This name need not be same as the command used to launch the shell.

The following child tags are defined:

• <start_command> (require)

Command used to launch the shell. Put any required arguments here, separated by spaces.

• <generic_prompt> (optional)

Regular expression used to identify a prompt after the initial connection. If not set, a default value is used.

• <gps_prompt> (required)

Regular expression used to identify a prompt after the initial setup is performed. If not set, a default value is
used.

• <filesystem> (required)

Either unix or windows, representing the filesystem used by the shell.

• <init_commands> (optional)

Contains <cmd> children, each containing a command to initialize a new session.

14.5. Customizing through XML and Python files 205

GPS User’s Guide, Release 2018

• <exit_commands> (optional)

Like <init_commands>, but each <cmd> child contains a command to exit a session.

• <no_echo_command> (optional)

Command used to tell the remote shell to suppress echo.

• <cd_command> (require)

Command to change directories. %d is replaced by the directory’s full name.

• <get_status_command> (required)

Command used to retrieve the status of the last command launched.

• <get_status_ptrn> (mandatory)

Regular expression used to retrieve the status returned by <get_status_command>. You must include a
single pair of parentheses; that subexpression identifies the status.

Configuring rsync usage

GPS includes native support for the rsync tool to synchronize paths during remote programming operations.

By default, GPS uses the --rsh=ssh option if ssh is the connection tool used for the server. It also uses the -L
switch when transferring files to a Windows local host.

You can define additional arguments to rsync by using the <rsync_configuration> tag, which accepts
<arguments> tags as children, each containing additional arguments to pass to rsync.

Defining a remote server

Users can define remote servers, as described in Setup the remote servers. Doing this creates a remote.xml file in
the user’s gps directory, which can be installed in any plugins directory to set the values system-wide. The tag used
in this file is <remote_machine_descriptor> for each remote server. You can also write this tag manually. Its
attributes are:

• nickname (required)

Uniquely identifies the server.

• network_name (required)

Server’s network name or IP address.

• remote_access (required)

Name of the remote access tool used to access the server. These tools are defined in Defining a remote connection
tool.

• remote_shell (required)

Name of the shell used to access the server. See Defining a shell.

• remote_sync (required)

Remote file synchronization tool used to synchronize files between the local host and the server. Must be
rsync.

• debug_console (optional)

Boolean that indicates whether GPS displays a debug console during the connection with a remote host. Default
is false.

206 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

The optionally child tags for this tag are:

• <extra_init_commands>

Contains <cmd> children whose values are used to set server-specific initialization commands.

• max_nb_connections

Positive number representing the maximum number of simultaneous connections GPS is permitted to launch.

• timeout

Positive number representing a timeout value (in ms) for every action performed on the remote host.

Defining a remote path translation

The user can also define a remote path translation, as described in Setup the remote servers. Each remote paths
translations corresponds to one <remote_path_config> tag, which has one required attribute, server_name,
the server name that uses this path translation, and contains child <remote_path_config> tags, that have the
following required attributes:

• local_path

Absolute local path, written using local filesystem syntax.

• remote_path

Absolute remote path, written using remote filesystem syntax.

• sync

Synchronization mechanism used for the paths (see Path settings). Must be one of NEVER, ONCE_TO_LOCAL,
ONCE_TO_REMOTE, or ALWAYS.

14.5.21 Customizing Build Targets and Models

You can customize the information displayed in The Target Configuration Editor and in the Mode selection via the
XML configuration files.

Defining new Target Models

Define a model with a target-model tag, which has one attribute, name, containing the name of the model, and
which supports the following child tags:

• <iconname> (required)

Name of the icon associated by default with targets of this model. See Adding custom icons.

• <description> (required)

One-line description of what the model supports.

• <server> (default Build Server)

Server used for launching targets of this model. See Remote operations.

• <is-run> (default False)

Whether targets of this model correspond to the launching of an executable instead of performing a build. GPS
launches such targets using an interactive console and does not parse their output for errors.

14.5. Customizing through XML and Python files 207

GPS User’s Guide, Release 2018

• <uses-shell> (default False)

Whether GPS should launch targets of this model with the shell pointed to by the SHELL environment variable.

• <uses-python> (default False)

When this is set to :command‘True‘, launch a Python command rather than an external process. In this case, the
arguments in the command line are first process using the macro replacement mechanism, and then concatenated
to form the string which is interpreted. For instance the following:

<command-line>
<arg>GPS.Console("Messages").write("</arg>
<arg>%PP</arg>
<arg>")</arg>

</command-line>

Is interpreted as:

GPS.Console("Messages").write("<full path to the project>")

• <command-line> (required)

Contains <arg> child tags, each containing an argument of the default command line for this model, beginning
with the executable name.

• <persistent-history> (default True)

Whether GPS should keep command line history over GPS sessions. If set to False, GPS provide history of
command lines during current session only and will reset command line to default value after restart.

• <switches>

Description of the switches. (See Defining tool switches):

<?xml version="1.0" ?>
<my_model>
<target-model name="gprclean" category="">

<description>Clean compilation artifacts with gprclean</description>
<command-line>

<arg>gprclean</arg>
<arg>-P%PP</arg>
<arg>%X</arg>

</command-line>
<icon>gps-clean</icon>
<switches command="%(tool_name)s" columns="1">

<check label="Clean recursively" switch="-r"
tip="Clean all projects recursively" />

</switches>
</target-model>

</my_model>

Additionally, switches defined for target models accept a filter attribute, allowing you to define when a
switch is relevant or not (e.g: switch only defined for newer versions of the executable to launch).

The filter attribute accepts any named filter: predefined ones or custom filters defined in XML via the
<filter> tag.

Here is a simple example showing how to define filters for target model switches:

<GPS>
<!-- filter checking that the tool's version supports the switch

by calling a python function that actually verifies it -->

208 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

<filter name="Is_My_Tool_Version_Supported" shell_lang="python"
shell_cmd="check_my_tool_version(GPS.current_context())"/>

<my_model>
<target-model name="my_tool" category="">

<description>Model for targets based on 'my_tool'</description>
<command-line>

<arg>my_tool</arg>
</command-line>
<switches command="%(tool_name)s" columns="1">

<check label="version specific switch"
switch="--version-specific-switch"
tip="This switch is only supported by newer versions"
filter="Is_My_Tool_Version_Supported"/>

</switches>
</target-model>

</my_model>
</GPS>

Defining new Targets

Define targets with a <target> tag, which has three attributes:

• name

Name of the target. It must be a unique name. Underscores are interpreted as menu mnemonics. If you want an
actual underscore, use a double underscore.

• category

Category containing the target for purposes of ordering the tree in the Target Configuration Dialog and Build
menus. Underscores are interpreted as menu mnemonics. If you want an actual underscore, use a double
underscore. If the string begins and ends with an underscore, GPS places the menu for the target in the top level
Build menu.

• messages_category

Name of category to organize messages in the Locations view.

• model

Name of the initial model that this target inherits.

This tag accepts the following child tags:

• <iconname>

Name of the icon associated by default with targets of this model. See Adding custom icons.

• <in-toolbar> (default False)

Whether the target has an associated icon in the toolbar.

• file:<in-menu> (default True)

Whether the target has an associated entry in the Build menu.

• <in-contextual-menus-for-projects> (default False)

Whether the target has an associated entry in the contextual menu for projects.

14.5. Customizing through XML and Python files 209

GPS User’s Guide, Release 2018

• <in-contextual-menus-for-files>

Likewise, but for files.

• <visible> (default True)

Whether the target is initially visible in GPS.

• <read-only> (default False)

Whether the user can remove the target.

• <target-type>

If present, a string indicating whether the target represents a simple target (empty) or a family of targets. The
name is a parameter passed to the compute_build_targets hook. If set to main, a new subtarget is
created for each main source defined in the project.

• <launch-mode> (default MANUALLY)

How GPS should launch the target. Possible values are MANUALLY, MANUALLY_WITH_DIALOG,
MANUALLY_WITH_NO_DIALOG, and ON_FILE_SAVE.

• <server> (default Build_Server)

Server used for launching Target. See Remote operations.

• <command-line>

Contains a number of <arg> nodes, each with an argument of the default command line for this target, beginning
with the name of the executable:

<?xml version="1.0" ?>
<my_target>

<target model="gprclean" category="C_lean" name="Clean _All">
<in-toolbar>TRUE</in-toolbar>
<icon>gps-clean</icon>
<launch-mode>MANUALLY_WITH_DIALOG</launch-mode>
<read-only>TRUE</read-only>
<command-line>

<arg>%gprclean</arg>
<arg>-r</arg>
<arg>%eL</arg>
<arg>-P%PP</arg>
<arg>%X</arg>

</command-line>
</target>

</my_target>

• <output-parsers>

Optional list of output filters. See Processing Target’s Output for details.

Processing Target’s Output

You can filter output produced by a target’s run by using custom code. The list of filters already provided by GPS is
shown below. By default, each is executed during each run of a target.

• output_chopper

Breaks output stream to pieces. Each of the piece contains one or more line of output and an end of line.

210 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• utf_converter

Converts the stream to UTF-8 encoding if output is not in UTF-8.

• progress_parser

Drives GPS’s progress bar by looking for progress messages in the output stream. It excludes such messages
from the stream.

• console_writer

Populates the GPS console with output from the stream.

• location_parser

Looks for special patterns in output to extract messages associated with processed files and locations and sends
such messages to Location view (see The Locations View).

• text_splitter

Splits output into separate lines to simplify further processing.

• output_collector

Aggregates output and associates it with the build target. As result, the output is available for scripting (see
GPS.get_build_output()) after the build completes:

text = GPS.get_build_output(<name of your target>)

• elaboration_cycles

Detects the gnatbind report about circles in elaboration dependencies and draws them in the Elaboration
Circularities browser (see The Elaboration Circularities browser).

• end_of_build

Cleans up internal data after a build run.

See GPS.OutputParserWrapper for examples of writing custom filter.

Defining new Modes

Define modes with a <builder-mode> tag which has one attribute, name, containing the name of the model. It
supports the following child tags:

• <description>

One-line description of what the mode does

• <subdir>

Optional base name of the subdirectory to create for this mode. GPS will substitute the macro arguments
%subdir in the <extra-args> tags with this value.

• <supported-model>

Name of a model supported by this mode. You can provide multiple tags, each corresponding to a supported
model and optionally specify a filter attribute corresponding to the switches used for this mode. By default,
all switches are considered. GPS passes the <extra-args> of the mode matching filter to commands of
the supported models.

• <extra-args>

14.5. Customizing through XML and Python files 211

GPS User’s Guide, Release 2018

• sections

Optional attribute sections contains space-separated list of switches delimiting a section of a command line
(such as -bargs -cargs -largs). See more details in Defining tool switches.

List of <arg> tags, each containing one extra argument to append to the command line when launching targets
while this mode is active. Optional attribute section sets section of given argument. Macros are supported in
the <arg> nodes:

<my_mode>
<builder-mode name="optimization">
<description>Build with code optimization activated</description>
<subdir>optimized_objects</subdir>
<supported-model>builder</supported-model>
<supported-model>gnatmake</supported-model>
<supported-model filter="--subdirs=">gprclean</supported-model>
<extra-args sections="-cargs">

<arg>--subdirs=%subdir</arg>
<arg section="-cargs">-O2</arg>

</extra-args>
</builder-mode>
</my_mode>

14.5.22 Customizing Toolchains

You can customize the list of toolchains and their values presented in the project editor (see The Project Wizard) with
the XML configuration files. GPS’s default list is contained in toolchains.xml. You can add your own toolchain
by providing an XML description with the following tags:

• <toolchain_default>

Default names for the different tools used by all toolchains. The final name used is
toolchain_name-default_name.

• <toolchain>

Defines a toolchain, with an attribute, name, giving the name of the toolchain, which overrides the default
values defined in <toolchain_default>.

Each of the above tags can have the following child tags:

• <gnat_driver>

GNAT driver to use.

• <gnat_list>

GNAT list tool to use.

• <debugger>

Debugger to use.

• <cpp_filt>

Reserved.

• <compiler>

Requires a lang attribute naming an language and defines the compiler to use to compile that language.

You can override (including by setting the value to null) any value in the <toolchain_default> tag by providing
the same tag withing a toolchain tag.

212 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

14.6 Adding support for new tools

GPS has built-in support for many external tools. This list of tools is frequently enhanced, so if you are planning to
use the external tool support in GPS, check the latest GPS version available.

You can use this feature to support additional tools (in particular, different compilers). You need to do following to
successfully use a tool:

• Specify its command line switches.

• Pass it the appropriate arguments depending on the current context and on user input.

• Spawn the tool.

• Optionally parse its result and act accordingly.

Each of these is discussed below. In all cases most of the work can be done statically through XML customization
files. These files have the same format as other XML customization files (Customizing through XML and Python files).
Tool descriptions are found in <tool> tags, which accept the following attributes:

• name (required)

Name of the tool. This is purely descriptive and appears throughout the GPS interface whenever this tool is
referenced, for example the tabs of the switch editor.

• package (default ide)

Which package is used in the project to store information about this tool, including its switches. You should use
the default value unless you are using one of the predefined packages.

See also Defining project attributes for more information on defining your own project attributes. Using the
XML package, attribute, or index attributes of <tool> implicitly creates new project attributes as
needed.

If ide is specified, switches cannot be set for a specific file, but only at the project level. Support for file-specific
switches currently requires modification of the GPS sources themselves.

• attribute (default default_switches)

Name of the attribute in the project used to store the switches for the tool.

• index (default is the tool name)

What index is used in the project. This is mostly for internal use by GPS and indicates which index of the project
attribute GPS uses to store the switches for the tool.

• override (default False)*

Whether the tool definition can be redefined. If the tool is defined several times GPS will display a warning.

This tag supports the following child tags, each described in a separate section:

• <switches>

• <language>

• <initial-cmd-line>

14.6.1 Defining supported languages

A tool supports one or more languages. If you do not specify any language, the tool applies to all languages and the
switches editor page is displayed for all languages. If at least one language is specified, the switches editor page will
only be displayed if that language is supported by the project.

14.6. Adding support for new tools 213

GPS User’s Guide, Release 2018

Specify the languages that the tool supports using the <tool> tag:

<my_tool>
<tool name="My Tool" >
<language>Ada</language>
<language>C</language>

</tool>
</my_tool>

14.6.2 Defining the default command line

You can define the command line to be used for a tool when the user is using the default project and has not overridden
the command line in the project. Do this with the <initial-cmd-line> tag, as a child of the <tool> tag. Its
value is the command line to be passed to the tool. This command line is parsed in the usual manner and quotes are
used to avoid splitting switches each time a space is encountered:

<?xml version="1.0" ?>
<my_tool>

<tool name="My tool" >
<initial-cmd-line>-a -b -c</initial-cmd-line>

</tool>
</my_tool>

14.6.3 Defining tool switches

The user must be able to specify which switches are passed to the tool. If the tool is only called through custom menus,
you can hard-code some or all of the switches. However, it is usually better to use the project properties editor so the
user can specify project-specific switches.

This is what GPS does by default for Ada, C, and C++. Look at the GPS installation directory to see how the switches
for these languages are defined in an XML file. These provide extended examples of the use of customization files.

The switches editor in the project properties editor provides a powerful interface to the command line, allowing the
user to edit the command line both as text and through GUI widgets.

In customization files, the switches are declared with the <switches> tag, which must be a child of a <tool> tag
as described above. Use this tag to produce the needed GUI widgets to allow a user to specify the desired switch value.

This tag accepts the following attributes:

• separator

Default character placed between a switch and its value, for example, = produces -a=1. Can override this
separately for each switch. If you want the separator to be a space, you must use the value instead of a
blank since XML parser will normalize the latter to the empty string when reading the XML file.

• use_scrolled_window (default False)

Whether boxes of the project editor are placed into scrolled window. This is particularly useful if the number of
displayed switches is large.

• show_command_line (default True)

If False, the command line is not displayed in the project properties editor. Use this, for example, if you only
want users to edit the command line through the buttons and other widgets but not directly as text.

• switch_char (Default -)

214 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Leading character of command line arguments that are considered to be switches. Arguments not starting with
this character remain unmodified and do not have graphical widgets associated with them.

• sections

Space-separated list of switches delimiting a section (such as -bargs -cargs -largs). A section of
switches is a set of switches that are grouped together and preceded by a particular switch. Sections are always
placed at the end of the command line, after regular switches.

The <switches> tag can have any number of child tags, listed below. Repeat them multiple times if you need
several check boxes. For consistency, most of these child tags accept the following attributes:

• line (default 1), column (default 1)

This indicates the row or column (respectively) of the frame to contain the switch. See the attributes of the same
name above.

• label (required)

Label displayed in the graphical interface.

• switch (required)

Text put in the command line if the switch is selected. This text might be modified, see the description of
<combo> and <spin> below. The value must not contain any spaces.

• switch-off

Defined in <check> tags, where it specified the switch used for deactivating the relevant feature. Use this for
features that are enabled by default but can be disabled.

• section

Switch section delimiter (such as -cargs). See the sections attribute of the <switches> tag for more
information.

• tip

Tooltip describing the switch more extensively. Tags accepting this attribute also accept a single child <tip>
whose value contains the text to be displayed. The advantage of the latter is that text formatting is retained.

• before (default false)

Whether the switch must always be inserted at the beginning of the command line.

• min (default 1), max (default 1)

Only supported for <spin> tags. Specifies the minimum or maximum (respectively) value allowed for the
switch.

• default (default 1)

Used for <check> and <spin> tags. See the description below.

• noswitch, nodigit

Only valid for <combo> tags and documented there.

• value (required)

Only valid for <combo-entry> tags and documented there.

• separator

Overrides the separator to use between the switch and its value. See the description of this attribute for
<switches>.

Here are the valid children for <switches>:

14.6. Adding support for new tools 215

GPS User’s Guide, Release 2018

• <title>

Accepts the line and column attributes and used to give a name to a specific frame. The value of the tag is
the title. You need not specify a name.

Use the line-span or column-span attribute to specify how many rows or columns (respectively) the
frame should span. The default for both is 1. If is set to 0, the frame is hidden from the user. See, for example,
the usage in the Ada or C switches editor.

• <check>

Creates a toggle button. When active, the text defined in the switch attribute is added to the command line. The
switch can also be activated by default (the default attribute is on or true), in which case, deactivating the
switch adds the value of switch-off to the command line.

Accepts the line, column, label, switch, switch-off, section, default, before, and tip
attributes, and you can specify an optional <tip> child.

• <spin>

Adds the contents of the switch attribute followed by the current numeric value of the widget to the command
line. One usage is to indicate indentation length. If the current value of the widget is equal to the default
attribute, nothing is added to the command line.

This tag accepts the line, column, label, switch, section, tip, min, max, separator, and
default attributes and you can specify an optional <tip> child.

• <radio>

Groups together any number of children, each of which is associated with its own switch, allowing only one of
the children can be selected at any given time.

This tag accepts the line, column , label, switch, section, before, and tip attributes. Specify an
empty value for the switch attribute to indicate the default switch to use in this group of radio buttons. Each
child must have the tag radio-entry or <tip>.

• <field>

Creates a text field, which can contain any text the user types and be editable by the user. This text is prefixed
by the value of the switch attribute and the separator character. If the user does not enter any text in the field,
nothing is added to the command line.

You can specify an optional <tip> child tag. This tag accepts the line, column, label, switch,
section, separator, before, and tip attributes, and the following additional attributes:

– as-directory

If true, an extra Browse button is displayed, allowing the user to easily select a directory.

– as-file

Like as-directory, but opens a dialog to select a file instead of a directory. If both attributes are
true, GPS displays a file selector.

• <combo>

GPS inserts the text from the switch attribute, concatenated with the text of the value attribute for the
currently selected entry, into the command line. If the value of the current entry is the same as that of the
nodigit attribute, only the text of the switch attribute is inserted into the command line. (This is used, for
example, to interpret the gcc switch -O as -O1.) If the value of the current entry is the same as that of the
noswitch attribute, nothing is added to the command line.

216 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

This tag accepts the line, column, label, switch, section, before, tip, noswitch, separator,
and nodigit attributes and any number of combo-entry child tags, each of which accepts the label and
value attribute. You can also include an optional <tip> child.

• <popup>

Displays a button that, when clicked, displays a dialog with some additional switches. This dialog, like the
switches editor itself, is organized into lines and columns of frames, the number of which is provided by the
lines and columns attributes.

This tag accepts those attributes as well as the label attribute and any number of child <switch> tags.

• <dependency>

Describes a relationship between two switches. For example, when the Debug Information switch is selected
for Make, we need to force it for the compiler as well.

This tag supports the following additional attributes:

– master-page, master-switch, master-section

Define the switch that can force a specific setting for a slave switch. In our example, they have the values
Make and -g. The switch referenced by these attributes must be of type <check> or <field>. If it
is part of a section, you must also specify the master-section attribute. If the user selects the check
button of the this switch, GPS forces the selection of the check button for the slave switch. Likewise, if
user sets the field to any value, GPS sets the slave switch to that same value.

– slave-page, slave-switch, :file:‘ slave-section‘

Likewise, but designates the slave switch. In our example, they have the values Ada and -g. The switch
referenced by these attributes must be of type <check> or <field>.

– master-status, slave-status

Which state of the master switch forces which state of the slave switch. In our example, they both have
the value on: when the user enables debug information for make, GPS also enables compiler debug
information. However, if the user does not enable debug information for make, nothing is changed for the
compiler debug information. If you specify off for master-status and the master switch is a field,
GPS changes the status of the slave when the user does not specify any value in the master switch’s field.

• <default-value-dependency>

Describes a relationship between two switches, which is slightly different from the <dependency> tag. This
relationship only affects the default values. For example, when the -gnatwa switch is selected for the Ada
compiler, other switches, such as -gnatwc and -gnatwd, are enabled by default. But the user can disable
them by specifying, e,g., -gnatwC and -gnatwD.

It supports the following additional attributes:

– master-switch

Switch that triggers the dependency. If that switch is present in the command line, GPS changes the default
status of slave-switch.

– slave-switch

Switch whose default value depends on master-switch. This must be a switch already defined in a
<switch> tag. The switch can match the switch or switch-off attributes. In the latter case, the
slave-switch default value is disabled if the user specifies the master-switch.

• <expansion>

Describe how switches are grouped together on the command line to keep it shorter. It also defines aliases
between switches.

14.6. Adding support for new tools 217

GPS User’s Guide, Release 2018

It is easier to explain the functioning of this tag with an example. Specifying the GNAT switch -gnatyy is
equivalent to specifying -gnaty3abcefhiklmnprst. This is a style check switch with a number of default
values. But it can also be decomposed it into several switches, such as -gnatya and -gnatyb. Knowing this,
GPS can keep the command line length as short as possible, making it more readable.

Specify the above details in the <expansion> tag, which supports two attributes: switch is mandatory and
alias is optional. In our example, alias contains the text -gnatyabcefhiklmnprst.

This tag works in two ways:

– If you do not specify the alias attribute, the switch attribute requests GPS to group all switches
starting with that prefix. For example, if you specify -gnatw as the value of the switch attribute, if
the user selects both the -gnatwa and -gnatw.b switches, GPS merges them on the command line as
-gnatwa.b.

– If you specify the alias, GPS views the switch attribute as a shorter way of writing the switch. For
example, if switch is -gnatyy and alias is “-gnaty3abcefhiklmnprst, then if the user types
-gnatyy, it means the whole set of options.

You can specify the same switch attribute can be used in multiple <expansion> tags nodes if you want to
combine their behavior.

For historical reasons, this tag supports <entry> child tags, but these are no longer used.

14.6.4 Executing external tools

Once the user specified the switches to use for the external tool, it can be spawned from a menu item or by pressing a
key. Both cases are described in an XML customization file, as described previously, and both execute what GPS calls
an action, a set of commands defined by an <action> tag.

Chaining commands

The <action> tag (see Defining Actions) executes one or more commands, either internal GPS commands (written
in any of the scripting language supported by GPS) or external commands provided by executables found on the PATH.

You can hard-code the command line for each of these commands in the customization file or it can be the result of
previous commands executed as part of the same action. As GPS executes each command from the action, it saves its
output on a stack. If a command line contains the construct %1, %2, etc., these constructs are replaced respectively
by the result the last command executed, the previous command, and so on. The replacement is done with the value
returned by the command, not by any output it might have made to some of the consoles in GPS. Each time GPS
executes a new command, it pushes the previous result on the stack, so that, for example, the value of %1 becomes the
value of %2.

The result of the previous commands is substituted exactly as is. However, if the output is surrounded by quotes, GPS
ignores them when a substitution is done, so you must put them back if needed. This is done because many scripting
languages systematically protect their output with quotes (simple or double) and these quotes are often undesired when
calling further external commands:

<?xml version="1.0" ?>
<quotes>

<action name="test quotes">
<shell lang="python">'-a -b -c'</shell>
<external> echo with quotes: "%1"</external>
<external> echo without quotes: %2</external>

</action>
</quotes>

218 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Saving open windows

Before launching the external tool, you may want to force GPS to save all open files. Do this using the same command
GPS uses before starting a compilation, MDI.save_all, which takes one optional boolean argument specifying
whether GPS displays an interactive dialog for the user.

This command fails when the user presses cancel, so you can put it in its own <shell> command, as in:

<?xml version="1.0" ?>
<save_children>

<action name="test save children">
<shell>MDI.save_all 0</shell>
<external>echo Run unless Cancel was pressed</external>

</action>
</save_children>

Querying project switches

You can use GPS shell commands to query the default switches set by the user in the project file.
These are get_tool_switches_as_string(), get_tool_switches_as_list(), or, more generally,
get_attribute_as_string() and get_attribute_as_list(). The first two require a unique parame-
ter, the name of the tool as specified in the <tool> tag. This name is case-sensitive. The last two commands are more
general and can be used to query the status of any attribute in the project. See their description by typing the following
in the GPS shell console window:

help Project.get_attribute_as_string
help Project.get_attribute_as_list

The following is a short example on how to query the switches for the tool Find from the project shown as Tool
example. It first creates an object representing the current project, then passes this object as the first argument of the
get_tool_switches_as_string() command. The last external command outputs these switches:

<?xml version="1.0" ?>
<find_switches>

<action name="Get switches for Find">
<shell>Project %p</shell>
<shell>Project.get_tool_switches_as_string %1 Find </shell>
<external>echo %1</external>

</action>
</find_switches>

The following example shows how something similar can be done from Python, in a simpler manner. This function
queries the Ada compiler switches for the current project and prints them in the Messages view:

<?xml version="1.0" ?>
<query_switches>

<action name="Query compiler switches">
<shell lang="python">GPS.Project("%p").get_attribute_as_list
(package="compiler",
attribute="default_switches",
index="ada")</shell>

<external>echo compiler switches= %1</external>
</action>

</query_switches>

14.6. Adding support for new tools 219

GPS User’s Guide, Release 2018

Querying switches interactively

You can also query the arguments for the tool by asking the user interactively. The scripting languages provides a
number of solutions for these, which generally have their own native way to read input, possibly by creating a dialog.
The simplest solution is to often use the predefined GPS commands:

• yes_no_dialog

This takes a single argument, a question to display, and presents two buttons to the user, Yes and No. The result
of this function is the button the user selected, as a boolean value.

• input_dialog

This function is more general. It takes a minimum of two arguments. The first argument is a message describing
what input is expected from the user. The second, third, and following arguments each correspond to an entry
line in the dialog, each querying one specific value (as a string). The result of this function is a list of strings,
each corresponding to these arguments.

From the GPS shell, it is only convenient to query one value at a time, since it does not have support for lists
and would return a concatenation of the values. However, this function is especially useful in other scripting
languages.

The following is a short example that queries the name of a directory and a file name and displays each in the Messages
view:

<?xml version="1.0" ?>
<query_file>

<action name="query file and dir">
<shell lang="python">list=GPS.MDI.input_dialog \\

("Please enter directory and file name", "Directory", "File")</shell>
<shell lang="python">print ("Dir=" + list[0], "File=" + list[1])</shell>
</shell>

</action>
</query_file>

Redirecting the command output

By default, GPS sends the output of external commands to the Messages view. However, you can exercise finer
control using the output attribute of the <external> and <shell> tags. You can also specify this attribute in
the <action> tag, where it defines the default value for all <shell> and <external> tags.

This attribute is a string. Specifying an empty string (to override a specification in the <action> tag)‘ produces the
default behavior. A value of none tells GPS to hide the output of the command as well as the text of the command
itself and not show it to the user. If you specify any other value, GPS creates a new window with the title given by the
attribute. If such a window already exists, it is cleared before any command in the chain is executed. The output of the
command, as well as the text of the command itself, are sent to this new window:

<?xml version="1.0" ?>
<ls>

<action name="ls current directory" output="default output" >
<shell output="Current directory" >pwd</shell>
<external output="Current directory contents" >/bin/ls</external>

</action>
</ls>

220 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Processing the tool output

Once the output of the tool has either been hidden or made visible to the user in one or more windows, you can do
several additional things with this output, for further integration of the tool in GPS.

• Parsing error messages

External tools usually display error messages for the user that are associated with specific locations in specific
files. For example, the GPS builder itself analyzes the output of make using this information.

You can do this done for your own tools using the shell command Locations.parse, which takes several
arguments so that you can specify your own regular expression to find the file name, line number and so on in
the error message. By default, it is configured to work with error message of the forms:

file:line: message
file:line:column: message

Please refer to the online help for this command to get more information (by typing help Locations.parse in the
GPS Shell).

Here is a short example showing how to run a make command and send the errors to the Locations view.

For languages that support it, it is recommended that you quote the argument with triple quotes (see The GPS
Shell), so that any special character such as newlines and quotes in the output of the tool are not specially
interpreted by GPS. You should also leave a space at the end, in case the output itself ends with a quote:

<?xml version="1.0" ?>
<make>
<action name="make example" >

<external>make</external>
<on-failure>

<shell>Locations.parse """%1 """ make_example</shell>
</on-failure>

</action>
</make>

• Auto-correcting errors

GPS supports automatically correcting errors for some of languages. You can get access to this auto-fixing
feature through the Codefix.parse() shell command, which takes the same arguments as Locations.
parse(). This automatically adds pixmaps to the relevant entries in the Locations view, so you should call
Locations.parse() before calling this command.

Errors can also be fixed automatically by calling the methods of the Codefix class. Several codefix sessions
can be active at the same time, each of which is associated with a specific category. The list of currently active
sessions can be retrieved through the Codefix.sessions() command.

If support for Python is enabled, you can also manipulate those errors that can be fixed for a given session. To do
so, first get a handle for that section, as shown in the example below. Then get the list of fixable errors through
the errors() command.

Each error is of the class CodefixError, which has one important method, fix(), allowing you to perform
an automatic correction of that error. The list of possible fixes is retrieved through possible_fixes():

print GPS.Codefix.sessions ()
session = GPS.Codefix ("category")
errors = session.errors ()
print errors [0].possible_fixes ()
errors [0].fix ()

14.6. Adding support for new tools 221

GPS User’s Guide, Release 2018

14.7 Customization examples

14.7.1 Menu example

This section provides a full example of a customization file. It creates a top-level menu named custom menu, that
contains a menu item named item 1, associated with the external command external-command 1 and a sub
menu named other menu:

<?xml version="1.0"?>
<menu-example>

<action name="action1">
<external>external-command 1</external>

</action>

<action name="action2">
<shell>edit %f</shell>

</action>

<submenu>
<title>custom menu</title>
<menu action="action1">

<title>item 1</title>
</menu>

<submenu>
<title>other menu</title>
<menu action="action2">
<title>item 2</title>

</menu>
</submenu>

</submenu>
</menu-example>

14.7.2 Tool example

This section provides an example of how you can define a new tool. This is only a short example, since Ada, C, and
C++ support themselves are provided through such a file, available in the GPS installation.

This example adds support for the find Unix utility, with a few switches. All the switches are editable through the
project properties editor. It also adds a new action and menu. The action associated with this menu gets the default
switches from the currently selected project, and asks the user interactively for the name of the file to search:

<?xml version="1.0" ?>
<toolexample>

<tool name="Find" >
<switches columns="2" >
<title column="1" >Filters</title>
<title column="2" >Actions</title>

<spin label="Modified less than n days ago" switch="-mtime-"
min="0" max="365" default="0" />

<check label="Follow symbolic links" switch="-follow" />

<check label="Print matching files" switch="-print" column="2" />
</switches>

222 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

</tool>

<action name="action find">
<shell>Project %p</shell>
<shell>Project.get_tool_switches_as_string %1 Find </shell>
<shell>MDI.input_dialog "Name of file to search" Filename</shell>
<external>find . -name %1 %2</external>

</action>

<Submenu>
<Title>External</Title>
<menu action="action find">
<Title>Launch find</Title>

</menu>
</Submenu>

</toolexample>

14.8 Scripting GPS

14.8.1 Scripts

Scripts are small programs that interact with GPS and allow you to perform complex tasks repetitively and easily.
GPS currently includes support for two scripting languages, although additional languages may be added in the future.
These two languages are described in the following section.

Support for scripting is currently a “work in progress” in GPS. As a result, not many commands are currently exported
by GPS, although their number is increasing daily. These commands are similar to what is available to those who
extend GPS directly in Ada, but with major advantages: they do not require recompilation of the GPS core and can be
tested and executed interactively. The goal of such scripts is to help automate processes such as builds and generation
of graphs.

These languages all have a separate console associated with them, which you can open from the Tools menu. In
each of these console, GPS displays a prompt, at which you can type interactive commands. These consoles provide
completion of the command names through the tab key.

For example, in the GPS shell console you can start typing:

GPS> File

then press the tab key, which lists all functions whose name starts with File.

A similar feature is available in the Python console, also providing completion for all the standard Python commands
and modules.

All the scripting languages share the same set of commands exported by GPS, because of an abstract interface defined
in the GPS core. As a result, GPS modules do not have to be modified when new scripting languages are added.

You can execute scripts immediately upon startup of GPS by using the command line switch --load. Specifying the
following command line:

gps --load=shell:mytest.gps

forces the GPS script mytest.gps to be executed immediately, before GPS starts responding to user’s requests. Do
this if you want to preform some initializations of the environment. It can also be used as a command line interface to
GPS, if your script’s last command is to exit GPS.

14.8. Scripting GPS 223

GPS User’s Guide, Release 2018

The name of the language is optional, and defaults to python:

gps --load=script.py

You can also specify in-line commands directly on the command line through --eval command line switch.

For example, if you want to analyze an entity in the entity browser from the command line, you would pass the
following command switches:

gps --eval=shell:'Entity entity_name file_name; Entity.show %1'

The language defaults to python, as for --load.

See the section Customizing through XML and Python files on how to bind key shortcuts to shell commands.

14.8.2 Scripts and GPS actions

There is a strong relationship between GPS actions, as defined in the customization files (Defining Actions), and script-
ing languages. You can bind actions to menus and keys through the customization files or the Edit → Preferences...
dialog. These actions can execute any script command (see Defining Actions) using the <shell> XML tag.

But the opposite is also true. From a script, you can execute any action registered in GPS. For example, you can
split windows or highlight lines in the editor when no equivalent shell function exists. You can use this to execute
external commands if the scripting language does not support this easily. Such calls are made through a call to
execute_action, as in the following example:

execute_action "Split horizontally"

GPS.execute_action (action="Split horizontally")

The list of actions known to GPS can be found through the Edit → preferences... dialog. Action names are case
sensitive.

Some shell commands take subprograms as parameters. If you are using the GPS shell, you to pass the name of a GPS
action. If you are using Python, you pass a subprogram. See Subprogram parameters.

14.8.3 The GPS Shell

Warning: The GPS Shell is deprecated, and only accessible through XML commands now, for backward com-
patibility. Don’t try to use it for any new development, and use the Python Shell instead.

The GPS shell is a very simple-minded, line-oriented language. It is not interactively accessible in GPS anymore.

14.8.4 The Python Interpreter

Python is an interpreted object-oriented language, created by Guido Van Rossum. It is similar in its capabilities to
languages such as Perl, Tcl or Lisp. This section is not a tutorial on python programming. See http://docs.python.org/
for documentation on the current version of python.

If Python support has been enabled, the Python shell is accessible through the Python window at the bottom of the
GPS window. You can also display it by using the View → Python menu. The full documentation on what GPS makes
visible through Python is available from the Help → GPS → Python extensions menu.

224 Chapter 14. Customizing and Extending GPS

http://docs.python.org/

GPS User’s Guide, Release 2018

The same example as shown for the GPS shell follows, now using Python. As you notice, the name of the commands
is similar, although they are not run exactly in the same way. Specifically, GPS uses the object-oriented aspects of
Python to create classes and instances of these classes.

In the first line, a new instance of the class Entity is created through the create_entity() function. Various
methods can then be applied to that instance, including find_all_refs(), which lists all references to that entity
in the Locations view:

>>> e=GPS.Entity ("entity_name", GPS.File ("file_name.adb"))
>>> e.find_all_refs()

The screen representation of the classes exported by GPS to Python has been modified, so most GPS functions return
an instance of a class but still display their output in a user-readable manner.

Python has extensive introspection capabilities. Continuing the previous example, you can find what class e is an
instance of with the following command:

>>> help(e)
Help on instance of Entity:

<GPS.Entity instance>

You can also to find all attributes and methods that can be applied to e, as in the following example:

>>> dir (e)
['__doc__', '__gps_data__', '__module__', 'called_by', 'calls',
'find_all_refs']

The list of methods may vary depending on what modules were loaded in GPS, since each module can add its own
methods to any class. In addition, the list of all existing modules and objects currently known in the interpreter can be
found with the following command:

>>> dir ()
['GPS', 'GPSStdout', '__builtins__', '__doc__', '__name__', 'e', 'sys']

You can also load and execute python scripts with the execfile() command, as in the following example:

>>> execfile ("test.py")

Python supports named parameters. Most functions exported by GPS define names for their parameters, so you can
use this Python feature to make your scripts more readable. (A notable exception are functions that allow a variable
number of parameters.) Using named parameters, you can specify the parameters in any order you wish, e.g:

>>> e=GPS.Entity (name="foo", file=GPS.File("file.adb"))

14.8.5 Python modules

GPS automatically imports (with Python’s import command) all files with the extension .py found in the directory
$HOME/.gps/plug-ins, the directory $prefix/share/gps/plugins or in the directories pointed to by
GPS_CUSTOM_PATH on startup. These files are loaded only after all standard GPS modules have been loaded, as
well as the custom files, and before the script file or batch commands specified on the command lines with the --eval
or --load switches.

As a result, you can use the usual GPS functions exported to Python in these startup scripts. Likewise, the script run
from the command line can use functions defined in the startup files.

14.8. Scripting GPS 225

GPS User’s Guide, Release 2018

Because GPS uses the import() command, functions defined in this modules are only accessible by prefixing their
name by the name of the file in which they are defined. For example, if a file mystartup.py is copied to the startup
directory and defines the function func(), the latter is accessible in GPS as mystartup.func().

Python’s own mechanism for loading files at startup (using environment variable PYTHONSTARTUP) is not suitable
for use within the context of GPS. When Python is loaded by GPS, the GPS module itself is not yet available and
thus any script that depends on that module will fail to load correctly. Instead, copy your script to one of the plugin
directories, as documented above.

If you are writing a set of Python scripts for other people to use, you need to provide the Python files themselves. This
is a set of .py files, which the user should install in the plugins directory.

To make the Python functions accessible through GPS, you can:

• Export the APIs directly through Python, under the form of Actions (the Action class), Menus (the
Contextual and Menu classes) or toolbar buttons (the ToolButton and Toolbar classes).

• Write an XML that creates a set of actions using the <action> tag (see Defining Actions and which is exported
to the user. This allows him to either create menus to execute these commands or to bind them to special key
shortcuts. The menus can be created directly in Python, with the GPS.Menu class. The same XML can be
directly embedded in the Python file itself and executed through GPS.parse_xml.

The following example defines a Python command that inserts a line full of dashes (‘-‘) at the current cursor location.
This command is associated with the key binding Ctrl-c n and can be distributed as a single Python file:

This code can be stored in a file test.py in $HOME/.gps/plug-ins
from GPS import *

def add_dashes_line():
Editor.replace_text (current_context().file().name(),

current_context().location().line(),
current_context().location().column(),
"--------------------------------", 0, 0)

GPS.parse_xml ("""
<action name="dashes line">

<shell lang="python">test.add_dashes_line()</shell>
<context>Source editor</context>

</action>
<key action="dashes line">control-c n</key>

""")

Several complex examples are provided in the GPS distribution, in the directory examples/python. These are
modules you might want to use, but more importantly that show how GPS can be extended from Python.

If your script does not do what you expect it to do, there are several ways to debug it. The easiest is probably to add
some print statements. Since some output of the scripts is sometimes hidden by GPS (for example, for interactive
commands), you might not see this output. In that case, you can reuse the tracing facility embedded in GPS itself.
Modify the file $HOME/.gps/traces.cfg, and add the following line:

PYTHON.OUT=yes

This include the Python traces as part of the general traces available in the file $HOME/.gps/log. Note that this
may slow down GPS if there is a lot of output to process.

14.8.6 Subprogram parameters

Some functions exported by GPS in the GPS shell or in Python expect a subprogram as a parameter.

This is handled in different ways depending on what language you are using:

226 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• GPS shell

You cannot define new functions in the GPS shell. However, this concept is similar to the GPS actions (see
Defining Actions), which allow you to execute a set of commands and launch external processes. A subprogram
parameter in the GPS shell is a string, the name of the action to execute.

For examle, the following code defines the action on_editing, which is called each time a new file is edited.
The action is defined in the shell itself, although this could be more conveniently done in a separate customiza-
tion file:

parse_xml """<action name="on_editing">
<shell>echo "File edited"</shell></action>"""

Hook "file_edited"
Hook.add %1 "on_editing"

• Python

Python, of course, has its own notion of subprogram, and GPS is fully compatible with it. As a result, the syntax
is much more natural than in the GPS shell. The following example has the same result as above:

import GPS
def on_editing(self, *arg):

print "File edited"
GPS.Hook("file_edited").add(on_editing)

The situation is slightly more complex if you want to pass methods as arguments. Python has three notions of
callable subprograms, detailed below. The following examples all create a combo box in the toolbar that calls a
subprogram whenever its value is changed. The documentation for the combo box indicates that the callback in
this case takes two parameters:

– The instance of the combo

– The current selection in the combo box

The first parameter is the instance of the combo box associated with the toolbar widget and, as always in Python,
you can store your own data in the instance, as shown in the examples below.

here is the description of the various subprograms:

– Global subprograms

These are standard subprograms, found outside class definitions. there is no implicit parameter in this case.
However, if you need to pass data to such a subprogram, you need to use global variables:

import GPS

my_var = "global data"

def on_changed(combo, choice):
global my_var
print ("on_changed called: " +

my_var + " " + combo.data + " " + choice)

combo = GPS.Combo(
"name", label="name", on_changed=on_changed)

GPS.Toolbar().append (combo)
combo.data = "My own data"

– Unbound methods

14.8. Scripting GPS 227

GPS User’s Guide, Release 2018

These are methods of a class. You do not specify, when you pass the method in parameter to the combo
box, what instance should be passed as its first parameter. Therefore, there is also no extra parameter.

However, whatever class the method is defined in, the first parameter is always an instance of the class
documented in the GPS documentation (in this case a GPS.Combo instance), not an instance of the current
class.

In this first example, since we do not have access to the instance of MyClass, we also need to store the
global data as a class component. This is a problem if multiple instances of the class can be created:

import GPS
class MyClass:

my_var = "global data"
def __init__(self):

self.combo = GPS.Combo(
"name", label="name", on_changed=MyClass.on_changed)

GPS.Toolbar().append (self.combo)
self.combo.data = "My own data"

def on_changed(combo, choice):
No direct access to the instance of MyClass.
print ("on_changed called: " +

MyClass.my_var + " " + combo.data + " " + choice)

MyClass()

As the example above illustrates, there is no direct access to MyClass when executing on_changed().
An easy workaround is the following, in which the global data is stored in the instance of MyClass and
therefore be different for each instance of MyClass:

import GPS
class MyClass:

def __init__(self):
self.combo = GPS.Combo(

"name", label="name", on_changed=MyClass.on_changed)
GPS.Toolbar().append (self.combo)
self.combo.data = "My own data"
self.combo.myclass = self ## Save the instance
self.my_var = "global data"

def on_changed(combo, choice):
print ("on_changed called: " +

combo.myclass.my_var + " " + combo.data + " " + choice)

MyClass()

– Bound methods

The last example works as expected, but is not convenient to use. You can make it more convenient by
using a bound method, which is a method for a specific instance of a class. Such a method always has
an extra first parameter, set implicitly by Python or GPS, which is the instance of the class the method is
defined in.

Note the way we pass the method in parameter to append(), and the extra third argument to
on_changed() in the example below:

import GPS
class MyClass:

def __init__(self):

228 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

self.combo = GPS.Combo(
"name", label="name", on_changed=self.on_changed)

GPS.Toolbar().append (self.combo)
self.combo.data = "My own data"
self.my_var = "global data"

def on_changed(self, combo, choice):
self is the instance of MyClass specified in call to append()
print ("on_changed called: " +

self.my_var + " " + combo.data + " " + choice)

MyClass()

You may find it convenient to use the object-oriented approach when writing Python scripts. If, for exam-
ple, you want to spawn an external process, GPS provides the GPS.Process class. When you create an
instance, you specify a callback to be called when some input is made available by the process. Matching
the above example, the code looks something like:

class MyClass:
def __init__(self):

self.process = GPS.Process(
"command_line", on_match=self.on_match)

def on_match (self, process, matched, unmatched):
print ("Process output: " + unmatched + matched + "\n")

A more natural approach, rather than having a class with a process() field, is to directly extend the
GPS.Process class, as in:

class MyClass(GPS.Process):
def __init__(self):

GPS.Process.__init__(
self, "command_line", on_match=self.on_match)

def on_match (self, matched, unmatched):
print ("Process output: " + unmatched + matched + "\n")

Any command that can be used on a process (such as send()) can then directly be used on instances of
MyClass.

There is one non-obvious improvement possible in the code above: the on_match() callback has
one less parameter. What happens is the following: as per the documentation of GPS.Process.
__init__(), GPS gives three arguments to its on_match() callback: the instance of the process
(process() in the first example above), the string that matched the regular expression, and the string
before that match.

In the first example above, we are passing self.on_match(), a bound method, as a callback. That
tells Python it should automatically and transparently add an extra first parameter, self(), when calling
MyClass.on_match(). This is why the first example has four parameters for on_match().

However, the second example only has three parameters, because GPS detected that self() (the instance
of MyClass) and the instance of GPS.Process() are the same in this case. So it need not ada an extra
parameter (self() and process() would have been the same).

14.8. Scripting GPS 229

GPS User’s Guide, Release 2018

14.8.7 Python FAQ

This section lists some problems that have been encountered while using Python inside GPS. This is not a general
Python discussion.

Hello World! in python

Writing a Python script to interact with GPS is very simple. Here we show how to create a new menu in GPS that
when clicked, displays a dialog saying the famous ‘Hello World!’.

Here is the code that you need to put in hello_world.py:

import GPS
import gps_utils

@gps_utils.interactive(menu='/Help/Hello World!')
def hello_world():

GPS.MDI.dialog("Hello World!")

To use this plugin, launch GPS with the following command line:

$ gps --load=python:hello_world.py

If want the plugin to be loaded every time you launch GPS without having to specify it on the command line, copy
hello_world.py to your $HOME/.gps/plug-ins/ directory (%USERPROFILE%\.gps\ on Windows). Al-
ternatively, you can add the directory containing your plugin to your GPS_CUSTOM_PATH environment variable. For
a description of the various environment variables used by GPS, see Environment Variables.

Spawning external processes

There are various mechanisms to spawn external processes from a script:

• Use the functionalities provided by the GPS.Process class.

• Execute a GPS action through GPS.execute_action().

The action should have an <external> XML node indicating how to launch the process.

• Create a pipe and execute the process with os.popen() calls.

This solution does not provide a full interaction with the process.

• Use a standard expect library in Python

The use of an expect library may be a good solution. There are various Python expect libraries that already
exist.

These libraries generally try to copy the parameters of the standard file class. They may fail doing so, since
GPS’s consoles do not fully emulate all the primitive functions of that class (there is no file descriptor, for
example).

When possible, we recommend using one of the methods above instead.

Redirecting the output of spawned processes

In general, you can redirect the output of any Python script to any GPS window (either an already existing one or one
GPS creates automatically) using the output attribute of XML configuration files.

230 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

However, there is a limitation in Python that the output of processes spawned through os.exec() or os.spawn()
is redirected to the standard output instead of the usual Python output that GPS has overridden.

There are two solutions for this:

• Execute the external process in through a pipe

The output of the pipe is then redirected to Python’s output, as in:

import os, sys
def my_external():

f = os.popen ('ls')
console = GPS.Console ("ls")
for l in f.readlines():

console.write (' ' + l)

This solution allows you, at the same time, to modify the output, for example to indent it as in the example
above.

• Execute the process through GPS

You can go through the process of defining an XML customization string for GPS and execute your process that
way, like:

GPS.parse_xml ("""
<action name="ls">

<external output="output of ls">ls</external>
</action>""")

def my_external():
GPS.execute_action ("ls")

This solution also allows you to send the output to a different window than the rest of your script. But you
cannot filter or modify the output as you can using the first solution.

Contextual menus on object directories only

The following filter can be used for actions that can only execute in the Project view and only when the user clicks on
an object directory. The contextual menu entry is not visible in other contexts:

<?xml version="1.0" ?>
<root>

<filter name="object directory"
shell_cmd="import os.path; os.path.samefile (GPS.current_context().

↪→project().object_dirs()[0],GPS.current_context().directory())"
shell_lang="python"
module="Explorer" />

<action name="Test on object directory">
<filter id="object directory" />
<shell>echo "Success"</shell>

</action>

<contextual action="Test on object directory" >
<Title>Test on object directory</Title>

</contextual>
</root>

14.8. Scripting GPS 231

GPS User’s Guide, Release 2018

Another example is a filter so that the contextual menu only appears when on a project node in the Project view.
Using %P in your command is not enough since the current context when you click on a file or directory also contains
information about the project the file or directory belongs to. Thus this implicit filter is not sufficient to hide your
contextual menu.

As a result, you need to do a slightly more complex test, where you check that the current context does not contains in-
formation on directories (which will disable the contextual menu for directories, files and entities). Since the command
uses %P, GPS guarantees that a project is available.

We will implement this contextual menu in a Python file, called filters.py:

import GPS
def on_project():

try:
GPS.current_context().directory()
return False

except:
return True

GPS.parse_xml ("""
<action name="test_filter">
<filter module="Explorer"

shell_lang="python"
shell_cmd="filters.on_project()" />

<shell>echo current project is %P</shell>
</action>
<contextual action="test_filter">
<title>Print current project</title>
</contextual>""")

The example above shows the flexibility of filters since you can pretty much do anything you wish through the shell
commands. However, it is complex to write the above for such a simple filter. GPS provides a predefined filter for just
that purpose, so you can write instead, in an XML file:

<action name="test_filter" >
<filter id="Explorer_Project_Node" />
<shell>echo current project is %P</shell>
</action>

Redirecting the output to specific windows

By default, GPS displays the output of all Python commands in the Python console. However, you might, in some
cases, want to create other windows in GPS for this output. This can be done in one of two ways:

• Define a new action

If the entire output of your script should be redirected to the same window or if the script is used interactively
through a menu or a key binding, the easiest way is to create a new XML action and redirect its output, as in:

<?xml version="1.0" ?>
<root>
<action name="redirect output" output="New Window">

<shell lang="python">print "a"</shell>
</action>

</root>

All the shell commands in your action can be output in a different window and this also applies for the output
of external commands.

232 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

• Explicit redirection

If, however, you want to control within your script where the output should be sent (for example if you cannot
know that statically when you write your commands), you can use the following code:

sys.stdin = sys.stdout = GPS.Console ("New window")
print "foo"
print (sys.stdin.read ())
sys.stdin = sys.stdout = GPS.Console ("Python")

The first line redirects all input and output to a new window, which is created if it does not yet exist. Note
however that the output of stderr() is not redirected: you need to explicitly do it for sys.stderr().

The last line restore the default Python console. You must do this at the end of your script or all scripts will
continue to use the new console.

You can alternatively create separate objects for the output and use them explicitly:

my_out = GPS.Console ("New Window")
my_out2 = GPS.Console ("New Window2")

sys.stdout=my_out
print "a"
sys.stdout=my_out2
print "b"
sys.stdout=GPS.Console ("Python")

The parameter to the constructor GPS.Console() indicates whether any output sent to that console should be
saved by GPS and reused for the %N parameters if the command is executed in a GPS action. It should normally
be 1, except for stderr() when it should be 0.

Reloading a Python file in GPS

After you have made modification to a Python file, you may want to reload it. This requires careful use of Python
commands. Let’s assume you have a Python file ("mymod.py") containing the following:

GPS.parse_xml ("""
<action name="my_action">

<shell lang="python">mymod.myfunc()</shell>
</action>""")

def myfunc():
print "In myfunc\\n"

This file defines an action my_action, that you can, for example, associate with a key binding through the Edit →
Preferences... menu.

If you copy this file into one of the plugins directories, GPS automatically loads it at startup. The function
myfunc() is in a separate namespace, with the name mymod, like the file. If you decide, during your GPS ses-
sion, to edit this file, for example to have the function print “In myfunc2” instead, you then to reload the file by typing
the following command in the Python console:

> execfile ("HOME/.gps/plug-ins/mymod.py", mymod.__dict__)

The first parameter is the full path to the file that you want to reload. The second argument is less obvious, but indicates
the file should be reloaded in the namespace mymod.

14.8. Scripting GPS 233

GPS User’s Guide, Release 2018

If you omit the optional second parameter, Python loads the file, but the function myfunc() is defined in the global
namespace, so the new definition is accessible through:

> myfunc()

Therefore, the key shortcut you previously set, which still execute mymod.myfunc(), will keep executing the old
definition.

GPS provides a contextual menu, Python → Reload module when you are editing a Python file to deal with all the
above details.

Printing the GPS Python documentation

The Python extension provided by GPS is fully documented in this manual and in a separate manual accessible through
the Help menu in GPS. However, this documentation is provided in HTML, and might not be the best format suitable
for printing. To generate your own documentation for any Python module, including GPS, and print the result:

import pydoc
pydoc.writedoc (GPS)

In the last command, “GPS” is the name of the module whose documentation you want to print.

These commands generate a .html file in the current directory.

Alternatively, you can generate a simple text file with:

e=file("./python_doc", "w")
e.write (pydoc.text.document (GPS))
e.flush()

This text file includes bold characters by default. Such bold characters are correctly interpreted by tools such as a2ps
which you can can use to convert the text file into a Postscript document.

Automatically loading python files at startup

At startup, GPS automatically loads all Python files found in the share/gps/plugins and $HOME/.gps/
plug-ins directories. In addition, Python files located under <prefix>/share/gps/python can be imported
(using the import command) by any Python script. You can also set the PYTHONPATH environment variable to add
other directories to the Python search path.

Hiding contextual menus

GPS provides access to most of its functionality through contextual menus, accessed by right clicking in various parts
of GPS. Due to the number of tools provided by GPS, these contextual menus can be large and you might want to
control what is displayed in them. There are several ways to do that:

• Define appropriate filters for your actions.

If you are creating your own contextual menus through customization files and XML, they are are usually
associated with actions (<action>) you have created. In that case, you need to define filters appropriately,
through the <filter> tag to decide when the action is relevant and hence when the contextual menu is displayed.

• Use shell commands to hide the menus

If you want to control the visibility of predefined contextual menus or for menus where you cannot easily modify
the associated filter, you can use shell and Python commands to hide the menu entry. To do this, you need to

234 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

find the name of the menu, which can be done by consulting the list returned by GPS.Contextual.list().
This name is also the value of the <title> tag for contextual menus you have created. Using this name, you
can disable the contextual menu by executing:

GPS.Contextual ("name").hide()

in the Python console.

Creating custom graphical interfaces

GPS is based on the Gtk+ graphical toolkit, which is available under many platforms and for many programming
languages.

In particular, GPS comes with pygobject, a Python binding to Gtk+. Using pygobject, you can create your own dialogs
and graphical windows using the Python capabilities provided by GPS.

See the Help → GPS → Python Extensions menu, specifically the documentation for GPS.MDI, for a sample of code
on how to create your own graphical interfaces and integrate them with GPS.

14.8.8 Hooks

A hook is a named set of commands to be executed on particular occasions as a result of user actions in GPS.

GPS and its various modules define a number of standard hooks, called, for example, when a new project is loaded, or
when a file is edited. You can define your own commands to be executed in such cases.

You can find the list of hooks that GPS currently supports by calling the Hook.list() function, which takes no
argument and returns a list of the names of all hooks. You can get more advanced description for each hook using the
Help → GPS → Python Extensions menu:

GPS> Hook.list
project_changed
open_file_action_hook
preferences_changed
[...]

Python> GPS.Hook.list()

The description of each hook includes a pointer to the type of the hook, which is what parameters the subprograms in
this hook receive.

You can find the list of all known hook types can be found using the Hook.list_types() function, which takes
no argument and returns a list of all known types of hooks. You can find more information for each of these type by
calling Hook.describe_type().

Adding commands to hooks

Add your own command to existing hooks by calling the Hook.add() function. Whenever the hook is executed by
GPS or another script, your command is also executed and is passed the parameters that were specified when the hook
is run. The first parameter is always the name of the hook being executed.

This function applies to an instance of the hook class and takes one parameter, the command to be executed. This is a
subprogram parameter (see Subprogram parameters).

14.8. Scripting GPS 235

GPS User’s Guide, Release 2018

• GPS shell

The command can be any GPS action (see Defining Actions). The arguments for the hook will be passed
to the action, and are available as %N. In the following example, the message “Just executed the hook:
project_changed” is printed in the Shell console. We are defining the action to be executed inline, but it could
be defined in a separate XML customization file:

GPS> parse_xml """<action name="my_action"><shell>echo "Just executed the hook"</
↪→shell></action_name>"""
GPS> Hook project_changed
GPS> Hook.add %1 "my_action"

• Python

The command must be a subprogram to execute. The arguments for the hook are passed to this subprogram.
In the following example, the message “The hook project_changed was executed by GPS” is displayed in the
Python console whenever the project changes:

def my_callback (name):
print "The hook " + name + " was executed by GPS"

GPS.Hook ("project_changed").add (my_callback)

The example above illustrates the simplest type of hook, which does not have any arguments. However, most hooks
receive several parameters. For example, the file_edited() hook receives the file name as a parameter.

• GPS shell

The following code prints the name of the hook (“file_edited”) and the name of the file in the shell console each
time a file is opened in GPS:

GPS> parse_xml """<action name="my_action"><shell>echo name=$1 file=$2</shell></
↪→action>"""
GPS> Hook "file_edited"
GPS> Hook.add %1 "my_action"

• Python

The following code prints the name of the file being edited by GPS in the Python console whenever a new file
is opened. The second argument is of type GPS.File:

def my_file_callback (name, file):
print "Editing " + file.name()

GPS.Hook ("file_edited").add (my_file_callback)

Action hooks

Hooks whose name ends with _action_hook are handled specially by GPS. As opposed to the standard hooks
described in the previous section, the execution of the action hooks stops if one of the subprograms returns a True
value (1 or true). The subprograms associated with that hook are executed sequentially. If any such subprogram
knows how to do the the action for that hook, it should do so and return “1”.

Other action hooks expect a string as a return value instead of a boolean. Execution stops when a subprogram returns
a non-empty string.

This mechanism is used extensively by GPS internally. For example, whenever a file needs to be opened in an editor,
GPS executes the open_file_action_hook(). Several modules are connected to that hook.

236 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

One of the first modules to be executed is the external editor module. If the user has chosen to use an
external editor, this module spawn the editor and returns 1. This immediately stops the execution of the
open_file_action_hook().

However, if user is not using an external editor, this module returns 0, which keep executing the hook, and in particular
executes the source editor module, which always takes an actions and open an editor internally in GPS.

This is a very flexible mechanism. In your own script, you could choose to have some special handling for files with
a .foo extension, for example. If the user wants to open such a file, you could, for example, spawn an external
command (say, my_editor) to edit this file, instead of opening it in GPS.

You can do this with code similar to the following:

from os.path import *
import os
def my_foo_handler(name, file, line, column,

column_end, enable_nav, new_file, reload):
if splitext(file.name())[1] == ".foo":

os.spawnv(
os.P_NOWAIT, "/usr/bin/emacs", ("emacs", file.name()))

return 1 ## Prevent further execution of the hook
return 0 ## Let other subprograms in the hook do their job

GPS.Hook("open_file_action_hook").add(my_foo_handler)

Running hooks

Each module in GPS is responsible for running hooks when appropriate. Most of the time the subprograms exported
by GPS to the scripting languages properly run the hook. But you might also need to run them in your own scripts.

As usual, this results in the execution of all the functions bound to that hook, whether they are defined in Ada or in
any of the scripting languages.

This is done by the Hook.run() function. It applies to an instance of the Hook class and has a variable number of
arguments, which must be in the right order and of the right type for that specific type of hook. If you are running an
action hook, the execution stops as usual as soon as one of the subprograms return a True value.

The following example shows how to run a simple hook with no parameter and a more complex hook with several
parameters. The latter requests the opening of an editor for the file in GPS and has an immediately visible effect on the
interface. The file is opened at line 100. See the description of the hook for more information on the other parameters:

GPS.Hook ("project_changed").run()
GPS.Hook ("open_file_action_hook").run(

GPS.File ("test.adb"), 100, 1, 0, 1, 1, 1)

Creating new hooks

The list of hooks known to GPS is fully dynamic. GPS itself declares a number of hooks, mostly for its internal use,
though you can also connect to them. But you can also create your own hooks to report events happening in your own
modules and programs. In this way, any other script or GPS module can react to these events.

Such hooks can either be of a type exported by GPS, which constraints the list of parameters for the callbacks, but make
such hooks more portable and secure, or they can be of a general type, which allows almost any kind of parameters.
In the latter case, GPS checks at runtime to ensure that the subprogram called as a result of running the hook has the
right number of parameters. If this is not the case, GPS complains and displays error messages. Such general hooks
do not pass their parameters to other scripting languages.

14.8. Scripting GPS 237

GPS User’s Guide, Release 2018

You create a new hook by calling Hook.register(). This function takes two arguments: the name of the hook
you are creating and , optionally, the type of the hook. The name of the hook is left to you. Any character is allowed
in that name, although using only alphanumerical characters is recommended.

When the hook type is omitted, it indicates that the hook is of the general type that allows any number of parameter,
of any type. Other scripts are able to connect to it but will not be executed when the hook is run if they do not expect
the same number of parameters passed to Hook.run(). Other scripts in other languages only receive the hook name
as a parameter, not the full list of parameters.

When specified, the type of the hook must be one of the values returned by Hook.list_types(): it indicates that
the hook is of one of the types exported by GPS itself. The advantage of using such explicit types instead of general
is that GPS is able to do more testing of the validity of the parameters. Such hooks can also be connected to from other
scripting languages.

A small trick worth noting: if the command bound to a hook does not have the correct number of parameters that this
hook provides, the command will not be executed and GPS reports an error. You can make sure that your command
is always executed by either giving default values for its parameter or by using Python’s syntax to indicate a variable
number of arguments.

This is especially useful if you are connecting to a general hook, since you do not know in advance how many
parameters the call of Hook.run() provides:

This callback can be connected to any type of hook
def trace (name, *args):

print "hook=" + name

This callback can be connected to hooks with one or two parameters
def trace2 (name, arg1, arg2=100):

print "hook=" + str (arg1) + str (arg2)

Hook.register ("my_custom_hook", "general")
Hook ("my_custom_hook").add (trace2)
Hook ("my_custom_hook").run (1, 2) ## Prints 1 2
Hook ("my_custom_hook").run (1) ## Prints 1 100

14.9 The Server Mode

To give access to the GPS capabilities from external processes (e.g. emacs), you can launch GPS in server mode.

The relevant command line switches are --server and --hide. --server opens a socket on the specified port,
allowing multiple clients to connect to a running GPS and send GPS shell or Python commands. --hide tells GPS
not to display its main window when starting. On Unix systems, you still need to have access to the current screen (as
determined by the DISPLAY environment variable) in this mode. Using both switches provides a way to launch GPS
as a background process with no initial user interface.

Clients connecting through a standard socket have access to a simple shell using GPS>> as the prompt between each
command. This is needed in order to determine when the output (result) of a command is completed. All GPS shell
commands (as defined in The GPS Shell) are available from this shell, but their use is discouraged, in favor of the use
of Python commands. Those are available through the use of the python prefix before a Python command.

For example, sending pwd through the socket sends the pwd command through the GPS shell and sends the result
to the socket; similarly, sending python GPS.pwd() will send the GPS.help() command through the python
interpreter (see The Python Interpreter for more details).

The socket shell provides also additional commands:

• logout

238 Chapter 14. Customizing and Extending GPS

GPS User’s Guide, Release 2018

Inform the GPS server that the connection should be closed.

• id <string>

Register the current session with a given string. This string can then be used within GPS itself (for example
via a .xml or Python plugin) to display extra information to the client via the socket, using the function GPS.
Socket().send().

For example, suppose we start GPS with the --server=1234 command: this brings up GPS as usual. Now, on a
separate terminal, create a simple client by typing the following:

telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GPS>> id test-1
id set to 'test-1'
GPS>> pwd
c:\\working-dir\\
GPS>>

Then in the GPS Python Console:

>>> GPS.Socket ("test-1").send ("hello, it is time to logout\\n");

At this point, the following is received on the client (telnet) side:

GPS>> hello, it is time to logout

We can then close the client:

logout
Connection closed by foreign host.

14.10 Adding project templates

The Project template wizard lists a selection of templates. GPS locates the default set in the share/gps/
templates directory of your GPS installation.

You can register new directories in which GPS looks for templates by using the Python function GPS.
ProjectTemplate.add_templates_{dir}().

To create a new project template, first create a subdirectory in the share/gps/templates/ directory or in one
of the directories you have registered with GPS.ProjectTemplate.add(). Then, in this directory, create one
template description file, which is a text file with the .gpt extension and the following syntax:

Name: <name>
Category: <category>
Project: <project file>
<optional_hook_line>

<variable_1>: <variable_1_default_value>: <variable_1_description>[:<optional_
↪→variable_1_choices>]
<variable_2>: <variable_2_default_value>: <variable_3_description>[:<optional_
↪→variable_3_choices>]
<etc>

14.10. Adding project templates 239

GPS User’s Guide, Release 2018

[Description]
<the description>

Where the following are specified:

• <name>

Name of the template as it appears in the template tree in the Project template wizard.

• <category>

Category in which the template is inserted in the template tree. There can be multiple levels of categories,
separated with /.

• <variable_1>

Name substituted in the template files when deploying the template; see below.

• <variable_1_default_value>

Default value for variable 1, which appears in the project template wizard.

• <variable_1_description>

Description of variable 1.

• <optional_variable_1_choices>

An optional semicolon-separated list of possible choices for the given variable. The different choices will then
be displayed in a combo box. Example:

:my_var:choice_1: A simple variable:choice_1;choice_2.

• <optional_hook_line>

Optional line of the form post_hook: <python_file> where <python_file> is the name of a
Python file present in the same directory as the template description file. This Python file is run by GPS once,
immediately after it deploys the project template.

• <description>

Short paragraph describing the project template. This paragraph is displayed in the Project template wizard
when the user selects the template in the tree.

When deploying templates, GPS copies all files and directories present in the directory containing the template de-
scription file (except the Python file indicated as post_hook() and the template description file itself) into the
destination directory chosen by the user.

As it deploys templates, GPS replaces strings of the form <variable_name> with the value of the variable. If
<variable_name> is all lower case, the substitution is converted to lower-case. If <variable_name> is in
mixed case, the substitution is converted into mixed case as well. If it is in upper case, the substitution contains the
original value specified by the user.

240 Chapter 14. Customizing and Extending GPS

CHAPTER

FIFTEEN

ENVIRONMENT

15.1 Command Line Options

The command line options are:

Usage:
gps [options] [-Pproject-file] [[+line] source1] [[+line] source2] ...

Options:
--help Show this help message and exit
--version Show the GPS version and exit
--debug[=program] Start a debug session and optionally load the

program with the given arguments
--debugger debugger Specify the debugger's command line
--hide Hide GPS main window
--host=tools_host Use tools_host to launch tools (e.g. gdb)
--target=TARG:PRO Load program on machine TARG using protocol PRO
--load=lang:file Execute an external file written in the

language lang
--eval=lang:file Execute an in-line script written in the

language lang
-XVAR=VALUE Specify a value for a scenario variable
--readonly Open all files in read-only mode
--server=port Start GPS in server mode, opening a socket on the

given port
--tracelist Output the current configuration for logs
--traceon=name Activate the logs for a given module
--traceoff=name Deactivate the logs for a given module
--tracefile=file Parse an alternate configuration file for the logs

--config=file Specify the configuration file (.cgpr) to load
--autoconf Generate .cgpr automatically if needed
--configdb=dir Extra directories for gprconfig

Source files can be absolute or relative pathnames. If you prepend a file name with ‘=’, this file will be searched
anywhere on the project’s source path

To open a file at a given line, use the :command‘+line‘ prefix, e.g. gps +40 source.adb.

tools_host corresponds to a remote host’s nickname as defined in Setup the remote servers.

By default, files you specify on the command line can have absolute or relative pathnames. If you prepend a filename
with the = character, GPS looks for the file in the source search path of the project. If you do not specify a project on
the command line, GPS tries to find one. Otherwise, it displays the welcome dialog.

241

GPS User’s Guide, Release 2018

15.2 Environment Variables

You can set the following environment variables to override default settings in GPS:

• GPS_HOME

Overrides the variable HOME if present. All the configuration files and directories used by GPS are either
relative to $HOME/.gps (%HOME%.gps on Windows) if GPS_HOME is not set, or to $GPS_HOME/.gps
(respectively, %GPS_HOME%.gps) if set.

• GPS_DOC_PATH

Sets the search path for the documentation. See Adding documentation.

If you installed GPS in a directory different from that of the GNAT compiler, you need to set this variable for GPS
to find the documentation for GNAT. In the case of the compiler documentation, for example, the gps_index.
xml file installed with GPS assumes GPS_DOC_PATH points to the directory containing gnat_ugn.html,
so it should contain gnat_prefix/share/doc/gnat/html.

• GPS_CUSTOM_PATH

Contains a list of directories to search for custom files. See Customizing through XML and Python files for more
details.

• GPS_CHANGELOG_USER

Contains the user and e-mail to use in the global ChangeLog files. The convention is to have two spaces between
the name and the e-mail, such as “John Does <john.doe@home.com>”

• GPS_STARTUP_PATH

Contains the value of the PATH environment variable just before GPS was started. GPS uses this to restore the
proper environment before spawning applications independently of what directories it needs to put into its own
path.

• GPS_STARTUP_LD_LIBRARY_PATH

Same as GPS_STARTUP_LD_LIBRARY_PATH but for the LD_LIBRARY_PATH variable.

• GPS_PYTHONHOME

If set, the Python interpreter looks for libraries in the subdirectory lib/python<version> of the directory
specified.

• GNAT_CODE_PAGE

You can set this variable to CP_ACP or CP_UTF8. It is used to control the code page used on Windows platform.
The default is CP_UTF8 (to support more languages). If file or directory names are using accents, it may be
necessary to set this variable to CP_ACP which is the default Windows ANSI code page.

• GPS_ROOT

Overrides and hardcodes the default root installation directory. You usually do not need to set this variable
unless you are a GPS developer in unusual circumstances. GPS finds all its resource files (e.g., images, plugins,
and xml files) from this variable, so setting it to an incorrect value will cause GPS to misbehave.

• GPS_MEMORY_MONITOR

If set, GPS adds special code on every allocation and deallocation to make it possible to check where the
largest amount of memory is allocated using the GPS.debug_memory_usage Python command. Setting
this variable will slow GPS down.

242 Chapter 15. Environment

mailto:john.doe@home.com

GPS User’s Guide, Release 2018

15.3 Files

• $HOME/.gps

GPS state directory. Defaults to C:.gps under Windows systems if the HOME or USERPROFILE environment
variables are not defined.

• $HOME/.gps/log.txt

Log file automatically created by GPS. When GPS is running, it creates a file log.<pid>, where <pid> is
the GPS process id, so multiple GPS sessions do not clobber each other’s log. In case of a successful session,
this file is renamed to log when exiting; in case of an unexpected exit (when bug box is displayed) the log file
retains its original name. The name of the log file is configured by the traces.cfg file.

• $HOME/.gps/aliases

File containing user-defined aliases (see Defining text aliases).

• $HOME/.gps/plug-ins

Directory containing files with user-defined plugins. GPS loads all XML and Python files found under this
directory during start up. Create or edit these files to add your own menu and/or tool-bar entries in GPS or to
define support for new languages. See Customizing through XML and Python files and Adding support for new
languages.

• $HOME/.gps/key_themes/

Directory containing user defined key themes (XML files). These themes are loaded through the key shortcuts
editor.

• $HOME/.gps/keys6.xml

Contains all key bindings for the actions defined in GPS or custom files. This file only contains the key bindings
overridden through the key shortcuts editor (see The Key Shortcuts Editor).

• $HOME/.gps/gps.css

Configuration and theme file for gtk. This file can change specific aspects of the look of GPS. Its contents
overrides any other style information set by your default gtk+ theme (as selected in the Preferences dialog) and
GPS’s prefix/share/gps/gps.css file.

• $HOME/.gps/perspectives6.xml

Desktop file in XML format (created using the File → Save More → Desktop menu). It is loaded automatically
if found.

• $HOME/.gps/locations.xml

List of locations GPS previously edited. It corresponds to the history navigation (Navigate → Back and Navigate
→ Forward) menus.

• $HOME/.gps/properties.db

Stores file-specific properties across GPS sessions. In particular, it contains the encoding to use for files where
the default encoding is not appropriate.

• $HOME/.gps/histories.xml

Contains the state and history of combo boxes (for example, the Build → Run → Custom... dialog).

• $HOME/.gps/targets.xml

Contains the build targets defined by the user.

15.3. Files 243

GPS User’s Guide, Release 2018

• $HOME/.gps/preferences.xml

Contains all the preferences in XML format, as specified in the preferences menu.

• $HOME/.gps/traces.cfg

Default configuration for system traces. These traces are used to analyze problems with GPS. By default, they
are sent to the file $HOME/.gps/log.<pid>.txt.

This file is created automatically when the $HOME/.gps/ directory is created. If you remove it manually, it is
not recreated the next time you start GPS.

• $HOME/.gps/startup.xml

List of scripts to load at startup as well as additional code that needs to be executed to set up the scripts.

• $HOME/.gps/activity_log.tmplt

Template file used to generate activities’ group commit-log and patch file’s header. If not present, the system
wide template (see below) is used. The set of configurable tags are described into this template.

• prefix

Prefix directory where GPS is installed, e.g /opt/gps.

• prefix/bin

Directory containing the GPS executables.

• prefix/etc/gps

Directory containing global configuration files for GPS.

• prefix/lib

Directory containing the shared libraries used by GPS.

• prefix/share/doc/gps/html

GPS looks for all the documentation files under this directory.

• prefix/share/examples/gps

Directory containing source code examples.

• prefix/share/examples/gps/language

Directory containing sources showing how to provide a shared library to dynamically define a new language.
See Adding support for new languages.

• prefix/share/examples/gps/tutorial

Directory containing the sources used by the GPS tutorial.

See gps-tutorial.html.

• prefix/share/gps/support

Directory containing required plugins for GPS that are automatically loaded at startup.

• prefix/share/gps/plug-ins

Directory containing files with system-wide plugins (XML and Python files) that are loaded automatically at
start-up.

• prefix/share/gps/library

Directory containing files with system-wide plugins (XML and Python files) that are not loaded automatically
at startup but can be selected in the Plugins section of the preferences editor dialog.

244 Chapter 15. Environment

http://docs.adacore.com/gps-docs/tutorial/_build/html/

GPS User’s Guide, Release 2018

• prefix/share/gps/key_themes

Directory containing the predefined key themes (XML files). These can be loaded through the Key shortcuts
editor.

• prefix/share/gps/gps-splash.png

Splash screen displayed by default when GPS is started.

• prefix/share/gps/perspectives6.xml

Description of the default desktop that GPS uses when the user has not defined any default desktop and no project
specific desktop exists. You can modify this file if needed, but keep in mind that this will impact all users of
GPS sharing this installation. The format of this file is the same as $HOME/.gps/perspectives6.xml,
which can be copied from your own directory if desired.

• prefix/share/gps/default.gpr

Default project used by GPS, which can be modified after installation to provide defaults for a given system or
project.

• prefix/share/gps/readonly.gpr

Project used by GPS as the default project when working in a read-only directory.

• prefix/share/gps/activity_log.tmplt

Template file used by default to generate activities’ group commit-log and patch file’s header. This file can be
copied into a user’s home directory and customized (see above).

• prefix/share/locale

Directory used to retrieve the translation files, when relevant.

15.4 Reporting Suggestions and Bugs

If you would like to make suggestions about GPS or if you encounter a bug, please send it to mailto:report@adacore.
com or use GNATtracker if you are a supported user and to mailto:gps-devel@lists.act-europe.fr otherwise.

Please try to include a detailed description of the problem, including sources to reproduce it if needed, and/or a scenario
describing the actions performed to reproduce the problem as well as listing all the tools (e.g debugger, compiler, call
graph) involved.

The files $HOME/.gps/log.txt may also bring some useful information when reporting a bug.

If GPS generates a bug box, the log file is kept under a separate name ($HOME/.gps/log.<pid>.txt so it does
not get erased by further sessions. Be sure to include the right log file when reporting a bug box.

15.5 Solving Problems

This section addresses some common problems that may arise when using or installing GPS.

GPS crashes on some GNU/Linux distributions at start up

Look at the ~/.gps/log.<pid>.txt file and if there is a message that looks like:

[GPS.MAIN_WINDOW] 1/16 loading gps-animation.png [UNEXPECTED_EXCEPTION]
1/17 Unexpected exception: Exception name: CONSTRAINT_ERROR _UNEX-
PECTED_EXCEPTION_ Message: gtk-image.adb:281 access check failed

15.4. Reporting Suggestions and Bugs 245

mailto:report@adacore.com
mailto:report@adacore.com
mailto:gps-devel@lists.act-europe.fr

GPS User’s Guide, Release 2018

it means either that there is a conflict with ~/.local/share/mime/mime.cache, in which case
removing this file solves this conflict, or that you need to install the shared-mime-info package on
your system.

Non-privileged users cannot start GPS

If you have originally installed GPS as root and can run GPS successfully, but normal users cannot, you
should check the permissions of the directory $HOME/.gps and its subdirectories: they should be owned
by the user.

GPS crashes whenever I open a source editor

This is usually due to font problems. Editing the file $HOME/.gps/preferences.xml and changing
the name of the fonts, e.g replacing Courier by Courier Medium, and Helvetica by Sans should solve the
problem.

GPS refuses to start the debugger

If GPS cannot properly initialize the debugger (using the Debug → Initialize menu), it is usually because
the underlying debugger (gdb) cannot be launched properly. To verify this is the problem, try to launch
the gdb command from a shell (i.e., outside of GPS). If you cannot launch gdb from a shell, it usually
means you are using the wrong version of gdb (e.g a version of gdb built for Solaris 8 but run on Solaris
2.6).

GPS is frozen during a debugging session

If GPS is no longer responding while debugging an application, you should wait a little longer, since some
communications between GPS and gdb can take significant time to finish. If GPS is still not responding
after a few minutes, you can usually get control back in GPS by either typing Ctrl-C in the shell where
you have started GPS, which should unblock it. If that does not work, kill the :program:‘gdb process
launched by GPS using ps and kill or the top command under Unix

and the Tasks view under Windows. This will terminate your debugging session and will unblock GPS.

My Ada program fails during elaboration. How can I debug it?

If your program was compiled with GNAT, the main program is generated by the binder. This program
is an ordinary Ada (or C if the -C switch was used) program, compiled in the usual manner, and fully
debuggable provided the -g switch is used on the gnatlink command (or ;command:-g is used in the
gnatmake command).

The name of the package containing the main program is b~xxx.ads/adb where xxx is the name of
the Ada main unit specified in the gnatbind command. Edit and debug this file in the usual manner.
You will see a series of calls to the elaboration routines of packages. Debug these in the usual manner,
just as if you were debugging code in your application.

How can I debug the Ada run-time library?

The run time distributed in binary versions of GNAT has not been compiled with debug information, so it
needs to be recompiled before you can debug it.

The simplest way is to recompile your application and add the switches -a and -f to the gnatmake
command line. This extra step is only required to be done once assuming you keep the generated object
and ali files corresponding to the GNAT run time available.

Another possibility on Unix systems is to use the file Makefile.adalib, which is found in the
adalib directory of your GNAT installation, and specify e.g -g -O2 for the CFLAGS switches.

The GPS main window is not displayed

If, when launching GPS, nothing happens, try to rename the .gps directory (see Files) to start from a
fresh set up.

246 Chapter 15. Environment

GPS User’s Guide, Release 2018

My project have several files with the same name. How can I import it in GPS?

GPS’s projects do not allow implicit overriding of sources files, so you cannot have the same filename
multiple times in the project hierarchy. This is because GPS needs to know exactly where the file is and
cannot reliably guess which occurrence to use.

There are several ways to handle this issue:

Put all duplicate files in the same project

There is one specific case where a project is allowed to have duplicate source files: if the list of
source directories is specified explicitly. All duplicate files must be in the same project. Under
these conditions, there is no ambiguity for GPS and the GNAT tools as to which file to use and
the first file found on the source path is the one hiding all the others. GPS only shows the first
file.

You can then have a scenario variable that changes the order of source directories to give
visibility to one of the other duplicate files.

Use scenario variables in the project

Here, you define various scenarios in your project (for example compiling in “debug” mode or
“production” mode) and change source directories depending on the scenario. Such projects
can be edited directly from GPS (in the project properties editor, on the right part of the win-
dow, as described in this documentation). On top of the Project view (left part of the GPS
main window), a combo box is displayed for each variable, allowing you to switch between
scenarios depending on what you want to build.

Use extended projects

These projects cannot currently be created through GPS, so you need to edit them by hand.
See the GNAT User’s guide for more information on extending projects.

The idea behind this approach is that you can have a local overriding of some source files from
the common build/source setup (e.g., if you are working on a small part of the whole system,
you may not want to have a complete copy of the code on your local machine).

GPS is very slow compared to previous versions under Unix (GPS < 4.0.0)

GPS versions 4.x need the X RENDER extension when running under Unix systems to perform at a
reasonable speed, so you need to make sure your X server properly supports this extension.

Using the space key brings the smart completion window under Ubuntu

This is specific to the way GNOME is configured on Ubuntu distributions. To address this incompatibil-
ity, close GPS, then go to the GNOME menu :menuselect‘System->Preferences->Keyboard‘ (or launch
:program: gnome-keyboard-properties).

Select the Layout tab and click on Layout Options. Then click twice on Using space key to input non-
breakable space character, select Usual space at any level, and then close the dialogs.

File associations or icons disappear or misbehave under Windows

Sometimes file associations get redefined under Windows and no longer behave as a GPS user expects
(for example, Ada source files become associated with a stock file icon or double-clicking on a project
file opens it like a regular text file.) You may be able to restore the expected behavior by reapplying the
associations performed during GPS installation. To do this, locate the file registry-gps-version.
reg in the root of your GPS installation, and double-click it. Then confirm that you want to apply it in
the dialog that appears.

Copy/Paste operations crash GPS running on a forwarded X11 display

15.5. Solving Problems 247

GPS User’s Guide, Release 2018

It is possible to run GPS on a remote machine using the X11 display forwarding feature of ssh. But a
copy/paste operation could cause GPS to crash if untrusted forwarding (ssh -X) is used. Use the ssh
-Y option or the ForwardX11Trusted directive in ssh_config to use trusted X11 forwarding and avoid the
GPS crash.

Working with Xming

Some old versions of Xming (such as 6.9.0.31) have an issue in that they create “transient” windows larger
than the application requests, and do not allow the user to resize these windows. To circumvent this, we
have added a command line switch to tell GPS not to store the window sizes and positions: activate this
by launching GPS with --traceoff=STORE_WINDOW_POSITIONS.

Buttons placed in dialogs’ header bars or missing with GNOME 3.12+

GNOME 3.12+ override the Gtk settings set by GPS, including the ‘DialogsUseHeaders’ setting,
which has for effect to display the buttons at the top of dialogs. This leads to some prob-
lems with GPS and sometimes some buttons are missing on some dialogs (e.g: Add button in
the Aliases editor). You can run this command from the terminal to force GNOME to dis-
able this setting: gsettings set org.gnome.settings-daemon.plugins.xsettings
overrides "{'Gtk/DialogsUseHeader':<0>}"

Floating windows are openened in fullscreen on MacOS Sierra

On MacOS Sierra, when GPS is in fullscreen, all the floating windows opened from GPS (e.g: Edit →
Preferences...) are opened in fullscreen too by default. This behavior can be disabled by setting the Prefer
tabs when opening documents to Manually in the Dock section of the MacOS Sierra’s System Preferences.

248 Chapter 15. Environment

CHAPTER

SIXTEEN

SCRIPTING API REFERENCE FOR GPS

This package groups all the classes and functions exported by the GNAT Programming System.

These functions are made available through various programming languages (Python and the GPS shell at the moment).
The documentation in this package is mostly oriented towards Python, but can also be used as a reference for the GPS
shell.

16.1 Function description

For all functions, the list of parameters is specified. The first parameter is often called “self”, and refers to the instance
of the class to which the method applies. In Python, the parameter is generally put before the method’s name, as in:

self.method(arg1, arg2)

Although it could also be called as in:

method(self, arg1, arg2)

For all other parameters, their name and type are specified. An additional default value is given when the parameter is
optional. If no default value is specified, the parameter is mandatory and should always be specified. The name of the
parameter is relevant if you chose to use Python’s named parameters feature, as in:

self.method(arg1="value1", arg2="value2")

which makes the call slightly more readable. The method above would be defined with three parameters in this
documentation (resp. “self”, “arg1” and “arg2”).

Some examples are also provides for several functions, to help clarify the use of the function.

16.2 User data in instances

A very useful feature of Python is that all class instances can be associated with any number of user data fields. For
example, if you create an instance of the class GPS.EditorBuffer, you can associate two fields “field1” and
“field2” to it (the names and number are purely for demonstration purposes, and you can use your own), as in:

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
ed.field1 = "value1"
ed.field2 = 2

249

GPS User’s Guide, Release 2018

GPS takes great care for most classes to always return the same Python instance for a given GUI object. For example,
if you were to get another instance of GPS.EditorBuffer for the same file as above, you would receive the same
Python instance and thus the two fields are available to you, as in:

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
ed.field1 is still "value1"

This is a very convenient way to store your own data associated with the various objects exported by GPS. These data
cease to exist when the GPS object itself is destroyed (for instance when the editor is closed in the example above).

16.3 Hooks

In many cases, you need to connect to specific hooks exported by GPS to be aware of events happening in GPS (such
as the loading of a file or closing a file). These hooks and their use are described in the GPS manual (see also the
GPS.Hook class).

Here is a small example, where the function on_gps_started() is called when the GPS window is fully visible
to the user:

import GPS
def on_gps_started(hook):

pass

GPS.Hook("gps_started").add(on_gps_started)

The list of parameters for the hooks is described for each hook below. The first parameter is always the name of the
hook, so that the same function can be used for multiple hooks if necessary.

There are two categories of hooks: the standard hooks and the action hooks. The former return nothing, the latter
return a boolean indicating whether your callback was able to perform the requested action. They are used to override
some of GPS’s internal behavior.

16.4 Functions

GPS.add_location_command(command)
Adds a command to the navigation buttons in the toolbar. When the user presses the Back button, this command
is executed and puts GPS in a previous state. This is, for example, used while navigating in the HTML browsers
to handle their Back button.

Parameters command – A string

GPS.base_name(filename)
Returns the base name for the given full path name.

Parameters filename – A string

GPS.cd(dir)
Changes the current directory to dir.

Parameters dir – A string

GPS.compute_xref()
Updates the cross-reference information stored in GPS. This needs to be called after major changes to the sources
only, since GPS itself is able to work with partially up-to-date information

250 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.compute_xref_bg()
Updates cross-reference information stored in GPS in the background.

See also:

GPS.compute_xref()

GPS.contextual_context()
Returns the context at the time the contextual menu was open.

This function only returns a valid context while the menu is open or while an action executed from that menu
is being executed. You can store your own data in the returned instance so that, for example, you can precom-
pute some internal data in the filters for the contextual actions (see <filter> in the XML files) and reuse that
precomputed data when the menu is executed. See also the documentation for the “contextual_menu_open”
hook.

Returns An instance of GPS.Context

See also:

GPS.current_context()

Here is an example that shows how to precompute some data when we
decide whether a menu entry should be displayed in a contextual menu,
and reuse that data when the action executed through the menu is
reused.

import GPS

def on_contextual_open(name):
context = GPS.contextual_context()
context.private = 10
GPS.Console().write("creating data " + `context.private` + '\n')

def on_contextual_close(name):
context = GPS.contextual_context()
GPS.Console().write("destroying data " + `context.private` + '\n')

def my_own_filter():
context = GPS.contextual_context()
context.private += 1
GPS.Console().write("context.private=" + `context.private` + '\n')
return 1

def my_own_action():
context = GPS.contextual_context()
GPS.Console().write("my_own_action " + `context.private` + '\n')

GPS.parse_xml('''
<action name="myaction%gt;"

<filter shell_lang="python"
shell_cmd="contextual.my_own_filter()" />

<shell lang="python">contextual.my_own_action()</shell>
</action>

<contextual action="myaction">
<Title>Foo1</Title>

</contextual>
<contextual action="myaction">

<Title>Foo2</Title>
</contextual>

16.4. Functions 251

GPS User’s Guide, Release 2018

''')

GPS.Hook("contextual_menu_open").add(on_contextual_open)
GPS.Hook("contextual_menu_close").add(on_contextual_close)

The following example does almost the same thing as the above, but
without relying on the hooks to initialize the value. We set the
value in the context the first time we need it, instead of every
time the menu is opened.

import GPS

def my_own_filter2():
try:

context = GPS.contextual_context()
context.private2 += 1

except AttributeError:
context.private2 = 1

GPS.Console().write("context.private2=" + `context.private2` + '\n')
return 1

def my_own_action2():
context = GPS.contextual_context()
GPS.Console().write(

"my_own_action, private2=" + `context.private2` + '\n')

GPS.parse_xml('''
<action name="myaction2">

<filter shell_lang="python"
shell_cmd="contextual.my_own_filter2()" />

<shell lang="python">contextual.my_own_action2()</shell>
</action>
<contextual action="myaction2">

<Title>Bar1</Title>
</contextual>
<contextual action="myaction2">

<Title>Bar2</Title>
</contextual>

''')

GPS.current_context(refresh=False)
Returns the current context in GPS. This is the currently selected file, line, column, project, etc. depending on
what window is currently active. From one call of this function to the next, a different instance is returned, so
you should not store your own data in the instance, since you will not be able to recover it later on

Parameters refresh (boolean) – If false, the last compute context is returned. The context is
set by the views whenever their selection change. You can however set this parameter to true
to force a recomputation of the context. This is only useful when your script has executed a
number of commands and needs to ensure that the context is properly refresh synchronously.

Returns An instance of GPS.Context

See also:

GPS.Editor.get_line()

GPS.MDI.current:() Access the current window

252 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.contextual_context()

GPS.delete(name)
Deletes the file or directory name from the file system.

Parameters name – A string

GPS.dir(pattern=’‘)
Lists files matching pattern (all files by default).

Parameters pattern – A string

Returns A list of strings

GPS.dir_name(filename)
Returns the directory name for the given full path name.

Parameters filename – A string

GPS.dump(string, add_lf=False)
Dumps string to a temporary file. Return the name of the file. If add_lf is True, appends a line feed at end
of the name.

Parameters

• string – A string

• add_lf – A boolean

Returns A string, the name of the output file

GPS.dump_file(text, filename)
Writes text to the file specified by filename. This is mostly intended for poor shells like the GPS shell which
do not have better solutions. In Python, you should use its own mechanisms.

Parameters

• text – A string

• filename – A string

GPS.exec_in_console(noname)
This function is specific to Python. It executes the string given in argument in the context of the GPS Python
console. If you use the standard Python exec() function instead, it only modifies the current context, which
generally has no impact on the GPS console itself.

Parameters noname – A string

Import a new module transparently in the console, so that users can
immediately use it
GPS.exec_in_console("import time")

GPS.execute_action(action, *args)
Executes one of the actions defined in GPS. Such actions are either predefined by GPS or defined by the users
through customization files. See the GPS documentation for more information on how to create new actions.
GPS waits until the command completes to return control to the caller, whether you execute a shell command or
an external process.

The action’s name can start with a ‘/’, and be a full menu path. As a result, the menu itself will be executed, just
as if the user had pressed it.

The extra arguments must be strings, and are passed to the action, which can use them through $1, $2, etc.

The list of existing actions can be found using the Edit → Preferences... menu and opening the General-> Key
Shortcuts section.

16.4. Functions 253

GPS User’s Guide, Release 2018

The action is not executed if the current context is not appropriate for it

Parameters

• action – Name of the action to execute

• args – Any number of string parameters

See also:

GPS.execute_asynchronous_action()

GPS.execute_action(action="Split vertically")
will split the current window vertically

GPS.execute_asynchronous_action(action, *args)
Like GPS.execute_action(), but commands that execute external applications or menus are executed
asynchronously: this function immediately returns even though external application may not have completed its
execution.

Parameters

• action – Name of the action to execute

• args – Any number of string parameters

See also:

GPS.execute_action()

GPS.exit(force=False, status=‘0’)
Exits GPS, asking for confirmation if any file is currently modified and unsaved. If force is True, no check is
done.

status is the exit status to return to the calling shell. 0 means success on most systems.

Parameters

• force – A boolean

• status – An integer

GPS.freeze_prefs()
Prevents the signal “preferences_changed” from being emitted. Call thaw_prefs() to unfreeze.

Freezing/thawing this signal is useful when you are about to modify a large number of preferences in one batch.

See also:

GPS.thaw_prefs()

GPS.get_build_mode()
Returns the name of the current build mode. Returns an empty string if no mode is registered.

GPS.get_build_output(target_name, shadow, background, as_string)
Returns the result of the last compilation command.

Parameters

• target_name – (optional) a string

• shadow – (optional) a Boolean, indicating whether we want the output of shadow builds

• background – (optional) a Boolean, indicating whether we want the output of background
builds

254 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• as_string – (optional) a Boolean, indicating whether the output should be returned as a
single string. By default the output is returned as a list in script languages that support it

Returns A string or list, the output of the latest build for the corresponding target

See also:

GPS.File.make()

GPS.File.compile()

GPS.get_home_dir()
Returns the directory that contains the user-specific files. This string always ends with a directory separator.

Returns The user’s GPS directory

See also:

GPS.get_system_dir()

log = GPS.get_home_dir() + "log"
will compute the name of the log file generated by GPS

GPS.get_runtime()
Returns the runtime currently set in the project or the GPS interface.

Returns a string

GPS.get_system_dir()
Returns the installation directory for GPS. This string always ends with a directory separator.

Returns The install directory for GPS

See also:

GPS.get_home_dir()

html = GPS.get_system_dir() + "share/doc/gps/html/gps.html"
will compute the location of GPS's documentation

GPS.get_target()
Returns the target currently set in the project or the GPS interface.

Returns a string

GPS.get_tmp_dir()
Returns the directory where gps creates temporary files. This string always ends with a directory separator.

Returns The install directory for GPS

GPS.getenv(key)
Gets the value of the given environment variable.

Parameters key – A string

Returns a string

GPS.insmod(shared_lib, module)
Dynamically registers a new module, reading its code from shared_lib.

The library must define the following two symbols:

•_init: This is called by GPS to initialize the library itself

•__register_module: This is called to do the actual module registration, and should call the
Register_Module() function in the GPS source code.

16.4. Functions 255

GPS User’s Guide, Release 2018

This is work in progress, and not fully supported on all systems.

Parameters

• shared_lib – Library containing the code of the module

• module – Name of the module

See also:

GPS.lsmod()

GPS.is_server_local(server)
Indicates where the server is the local machine.

Parameters server – The server. Possible values are “Build_Server”, “Debug_Server”, “Execu-
tion_Server” and “Tools_Server”

Returns A boolean

GPS.last_command()
Returns the name of the last action executed by GPS. This name is not ultra-precise: it is accurate only when
the action is executed through a key binding. Otherwise, an empty string is returned. However, the intent is for
a command to be able to check whether it is called multiple times consecutively. For this reason, this function
returns the command set by GPS.set_last_command(), if any.

Returns A string

See also:

GPS.set_last_command()

def kill_line():
'''Emulates Emacs behavior: when called multiple times, the cut line

must be appended to the previously cut one.'''

The name of the command below is unknown to GPS. This is just a
string we use in this implementation to detect multiple
consecutive calls to this function. Note that this works whether
the function is called from the same key binding or not and from
the same GPS action or not

append = GPS.last_command() == "my-kill-line":
GPS.set_last_command("my-kill-line")

GPS.lookup_actions()
Returns the list of all known GPS actions, not including menu names. All actions are lower-cased, but the order
of the list is not significant.

Returns A list of strings

See also:

GPS.lookup_actions_from_key()

GPS.lookup_actions_from_key(key)
Given a key binding, for example “control-x control-b”, returns the list of actions that could be executed. Not all
actions would be executed, however, since only the ones for which the filter matches are executed. The names
of the actions are always in lower case.

Parameters key – A string

Returns A list of strings

256 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

See also:

GPS.lookup_actions()

GPS.ls(pattern=’‘)
Lists the files matching pattern (all files by default).

Parameters pattern – A string

Returns A list of strings

GPS.lsmod()
Returns the list of modules currently registered in GPS. Each facility in GPS is provided in a separate module
so that users can choose whether to activate specific modules or not. Some modules can also be dynamically
loaded.

Returns List of strings

See also:

GPS.insmod()

GPS.parse_xml(xml)
Loads an XML customization string. This string should contain one or more toplevel tags similar to what is
normally found in custom files, such as <key>, <alias>, <action>.

Optionally you can also pass the full contents of an XML file, starting with the <?xml?> header.

Parameters xml – The XML string to parse

GPS.parse_xml(
'''<action name="A"><shell>my_action</shell></action>

<menu action="A"><title>/Edit/A</title></menu>''')
Adds a new menu in GPS, which executes the command my_action

GPS.process_all_events()
Process all the graphical events that have been queue by the system: these events typically involve demands
to refresh part of the screen, handle key or mouse events, ... This is mostly useful when writing automatic
tests. In plugins, the recommand approach is instead to create actions via gps_utils.interactive(),
and run them in the background with GPS.execute_action(). Another possible approach is to use python
generators with the yield keyword.

GPS.pwd()
Prints name of the current (working) directory.

Returns A string

This function has the same return value as the standard Python function os.getcwd(). The current directory
can also be changed through a call to os.chdir(“dir”).

GPS.repeat_next(count)
Executes the next action count times.

Parameters count – An integer

GPS.reset_xref_db()
Empties the internal xref database for GPS. This is rarely useful, unless you want to force GPS to reload every-
thing.

GPS.save_persistent_properties()
Forces an immediate save of the persistent properties that GPS maintains for files and projects (for example the
text encoding, the programming language, and the debugger breakpoints).

This is done automatically by GPS on exit, so you normally do not have to call this subprogram.

16.4. Functions 257

GPS User’s Guide, Release 2018

GPS.send_button_event(window=None, type=None, button=1, x=1, y=1, state=0)
synthesize and queue an event to simulate a mouse action. This event will be processed later by gtk+ (unless you
call gps.process_all_events()). as much as possible, this function should be avoided and you should
use gps.execute_action() instead.

Parameters

• type (int) – the type of event. This defaults to a button press.

• window (GUI) – the window to which the event should be sent. This defaults to the window
that currently has the focus.

• state (int) – the state of the modified keys (control, shift,...)

GPS.send_crossing_event(window=None, type=None, x=1, y=1, state=0)
synthesize and queue an event to simulate a mouse movement. This event will be processed later by gtk+
(unless you call gps.process_all_events()). as much as possible, this function should be avoided and
you should use gps.execute_action() instead.

Parameters

• type (int) – the type of event. This defaults to an Enter notify event.

• window (GUI) – the window to which the event should be sent. This defaults to the window
that currently has the focus.

• state (int) – the state of the modified keys (control, shift,...)

GPS.send_key_event(keyval, window=None, primary=False, alt=False, shift=False, control=False,
hardware_keycode=0)

synthesize and queue an event to simulate a key press. This event will be processed later by gtk+ (unless you
call gps.process_all_events()). as much as possible, this function should be avoided and you should
use gps.execute_action() instead.

Parameters

• window (GUI) – the window to which the event should be sent. This defaults to the window
that currently has the focus.

• hardware_keycode – the hardware keycode associated to keyval

GPS.set_build_mode(mode=’‘)
Sets the current build mode. If mode is not a registered mode, does nothing.

Parameters mode – Name of the mode to set

GPS.set_last_command(command)
Overrides the name of the last command executed by GPS. This new name is the one returned by GPS.
last_command() until the user performs a different action. Thus, multiple consecutive calls of the same
action always return the value of the command parameter. See the example in GPS.last_command().

Parameters command – A string

See also:

GPS.last_command()

GPS.setenv(key, value)
Sets the value of the given environment variable to the given value.

Parameters

• key – A string

• value – A string

258 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.supported_languages()
Returns the list of languages for which GPS has special handling. Any file can be opened in GPS, but some
extensions are recognized specially by GPS to provide syntax highlighting, cross-references, or other special
handling. See the GPS documentation on how to add support for new languages in GPS.

The returned list is sorted alphabetically and the name of the language has been normalized (starts with an upper
case character and is lowercase for the rest except after an underscore character).

Returns List of strings

GPS.supported_languages()[0]
=> return the name of the first supported language

GPS.thaw_prefs()
Re-enables calling the “preferences_changed” hook.

See also:

GPS.freeze_prefs()

GPS.version()
Returns the GPS version as a string.

Returns A string

GPS.xref_db()
Returns the location of the xref database. This is an sqlite database created by GPS when it parses the .ali
files generated by the compiler.

Its location depends mainly on the optional IDE’Artifacts_Dir attribute, which defaults to the project’s object
directory if not specified.

The location can also depend on the optional IDE’Xref_Database attribute which specifies a complete path to
the cross-references database file.

Returns a string

16.5 Classes

16.5.1 GPS.Action

class GPS.Action
This class gives access to the interactive commands in GPS. These are the commands to which the user can bind
a key shortcut or for which we can create a menu. Another way to manipulate those commands is through the
XML tag <action>, but it might be more convenient to use Python since you do not have to qualify the function
name.

__init__(name)
Creates a new instance of Action. This is bound with either an existing action or with an action that will
be created through GPS.Action.create(). The name of the action can either be a simple name, or a
path name to reference a menu, such as /Edit/Copy.

Parameters name (string) – A string

button(toolbar=’main’, section=’‘, group=’‘, label=’‘, icon=’‘, hide=False)
Add a new button in some toolbars. When this button is clicked, it executes the action from self.

Parameters

16.5. Classes 259

GPS User’s Guide, Release 2018

• toolbar (string) – identifies which toolbar the action should be added to. The default
is to add to the main toolbar for the main GPS window and all floating windows. Other
possible names are the names of the various views, as listed in the /Tools/Views menu.

• section (string) – identifies which part of the toolbar the button should be added to.
By default, the button is added at the end of the toolbar. However, some toolbars define
various sections (see the menus.xml file for valid section names).

• group (string) – when a group is specified, the new button contains a popup menu.
A long click on the menu displays a popup with all actions in that group. A short click
executes the last action from this group.

• label (string) – use this as a label for the button, when the user choses to display
labels in toolbars. The default is to use the action’s name.

• icon (string) – override the default icon registered for the action.

• hide (bool) – if the action is disabled or not applicable to the current context, the button
will be hidden instead of simply be disabled.

The following adds a 'Copy to clipboard' button in the Messages
window's local toolbar:
GPS.Action("Copy to Clipboard").button(

toolbar='Messages', label='Copy')

can_execute()
Return True if the action can be executed in the current context.

Return type boolean

contextual(path, ref=’‘, add_before=True, group=0, static_path=’‘)
Create a new contextual menu associated with the action.

Parameters

• path – A string or a function(GPS.Context):string, which describes the path for the con-
textual menu.

• ref (string) – A string

• group (int) – the group of items in the contextual menu. These groups are ordered
numerically, so that all items in group 0 appear before items in group 1, and so on.

• add_before (boolean) – A boolean

:param static_path A string which describes the path for the contextual menu when path is a func-
tion.

create(on_activate, filter=’‘, category=’General’, description=’‘, icon=’‘, for_learning=False)
Export the function on_activate() and make it interactive so that users can bind keys and menus to
it. The function should not require any argument, since it will be called with none.

The package gps_utils.py provides a somewhat more convenient Python interface to make functions
interactive (see gps_utils.interactive).

Parameters

• on_activate (() -> None) – A subprogram

• filter (string|(Context) -> boolean) – A string or subprogram Either the
name of a predefined filter (a string), or a subprogram that receives the context as a param-
eter, and should return True if the command can be executed within that context. This is

260 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

used to disable menu items when they are not available. See GPS.Filter.list() to
retrieve the list of all defined named filters.

• category (str) – Category of the command in the Key Shortcuts editor.

• description (str) – Description of the command that appears in the dialog or in
tooltips. If you are using Python, a convenient value is on_activate.__doc__, which avoids
duplicating the comment.

• icon (str) – Name of the icon to use for this action (in toolbars, dialogs, ...). This is the
name of an icon file in the GPS icons directory.

• for_learning (bool) – Set it to True if you want to display this

action in the Learn view.

destroy_ui()
Remove all elements associated with this action (menus, toolbar buttons, contextual menus,...). The action
itself is not destroyed

disable(disabled=True)
Prevent the execution of the action, whether through menus, contextual menus, key shortcuts,...

Parameters disabled (bool) – whether to disable or enable

execute_if_possible()
Execute the action if its filter matches the current context. If it could be executed, True is returned,
otherwise False is returned.

Return type boolean

exists()
Returns a Boolean indicating if an action has already been created for this name.

key(key, exclusive=True)
Associate a default key binding with the action. This is ignored if the user defined his own key binding.
You can experiment with possible values for keys by using the /Edit/Key Shortcuts dialog.

Parameters

• key (string) – A string

• exclusive (bool) – if True, the shortcut will no longer be associated with any action
is was previously bound to. If False, the shortcut will be associated with multiple action.
The first one for which the filter matches is executed when the user presses those keys.

menu(path, ref=’‘, add_before=True)
Create a new menu associated with the command. This function is somewhat a duplicate of GPS.Menu.
create(), but with one major difference: the callback for the action is a python function that takes no
argument, whereas the callback for GPS.Menu() receives one argument.

Parameters

• path (string) – A string If path ends with a ‘-‘, a separator line is created, instead of a
menu item with text.

• ref (string) – A string

• add_before (boolean) – A boolean

Returns The instance of GPS.Menu that was created

Return type Menu

16.5. Classes 261

GPS User’s Guide, Release 2018

16.5.2 GPS.Alias

class GPS.Alias
This class represents a GPS Alias, a code template to be expanded in an editor. This class allows you to
manipulate them programmatically.

static get(name)
Gets the alias instance corresponding to name.

16.5.3 GPS.Bookmark

class GPS.Bookmark
This class provides access to GPS’s bookmarks. These are special types of markers that are saved across ses-
sions, and can be used to save a context within GPS. They are generally associated with a specific location in an
editor, but can also be used to locate special boxes in a graphical browser, for example.

note = ‘’
The bookmark’s note value - A string.

__init__()
This function prevents the creation of a bookmark instance directly. You must use GPS.Bookmark.
get() instead, which always returns the same instance for a given bookmark, thus allowing you to save
your own custom data with the bookmark

See also:

GPS.Bookmark.get()

static create(name)
This function creates a new bookmark at the current location in GPS. If the current window is an editor, it
creates a bookmark that will save the exact line and column, so the user can go back to them easily. Name
is the string that appears in the bookmarks window, and that can be used later to query the same instance
using GPS.Bookmark.get(). This function emits the hook bookmark_added.

Parameters name (string) – The name of the bookmark

Return type GPS.Bookmark

See also:

GPS.Bookmark.get()

GPS.MDI.get("file.adb").raise_window()
bm = GPS.Bookmark.create("name")

delete()
Delete an existing bookmark. This emits the hook bookmark_removed.

static get(name)
Retrieves a bookmark by its name. If no such bookmark exists, an exception is raised. The same instance
of :class:GPS.Bookmark is always returned for a given bookmark, so you can store your own user data
within the instance. Note however that this custom data will not be automatically preserved across GPS
sessions, so you may want to save all your data when GPS exits

Parameters name (string) – The name of the bookmark

Return type GPS.Bookmark

See also:

GPS.Bookmark.create()

262 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.Bookmark.get("name").my_own_field = "GPS"
print GPS.Bookmark.get("name").my_own_field # prints "GPS"

goto()
Changes the current context in GPS so it matches the one saved in the bookmark. In particular, if the
bookmark is inside an editor, this editor is raised, and the cursor moved to the correct line and column.
You cannot query directly the line and column from the bookmark, since these might not exist, for instance
when the editor points inside a browser.

static list()
Return the list of all existing bookmarks.

Return type [:class‘GPS.Bookmark‘]

The following command returns a list with the name of all
existing purposes
names = [bm.name() for bm in GPS.Bookmark.list()]

name()
Return the current name of the bookmark. It might not be the same one that was used to create or get the
bookmark, since the user might have used the bookmarks view to rename it.

Return type string

rename(name)
Rename an existing bookmark. This updates the bookmarks view automatically, and emits the hooks
bookmark_removed and bookmark_added.

Parameters name (string) – The new name of the bookmark

16.5.4 GPS.BuildTarget

class GPS.BuildTarget
This class provides an interface to the GPS build targets. Build targets can be configured through XML or
through the Target Configuration dialog.

__init__(name)
Initializes a new instance of the class BuildTarget. name must correspond to an existing target.

Parameters name (string) – Name of the target associated with this instance

compile_file_target=GPS.BuildTarget("Compile File")
compile_file_target.execute()

clone(new_name, new_category)
Clone the target to a new target. All the properties of the new target are copied from the target. Any
graphical element corresponding to this new target is created.

Parameters

• new_name (string) – The name of the new target

• new_category (string) – The category in which to place the new target

execute(main_name=’‘, file=’‘, force=False, extra_args=’‘, build_mode=’‘, synchronous=True, di-
rectory=’‘, quiet=False, on_exit=None)

Launch the build target.

Parameters

16.5. Classes 263

GPS User’s Guide, Release 2018

• main_name (string) – The base name of the main source to build, if this target acts
on a main file.

• file (GPS.File) – The file to build if this targets acts on a file.

• force (bool) – If True, this means that the target should be launched directly, even if its
parameters indicate that it should be launched through an intermediary dialog.

• extra_args (string|list[string]) – any extra parameters to pass to the com-
mand line. When a single string is passed, it is split into multiple arguments.

• build_mode (string) – Indicates build mode to be used for build.

• synchronous (bool) – if False, build target is launched asynchronously.
compilation_finished hook will be called when build target execution is com-
pleted.

• directory (string) – A String

• quiet (bool) – A Boolean

• on_exit – A subprogram which will be called when the build target finishes executing.
This subprogram takes as parameter an integer, representing the exit code of the command.
For instance:

GPS.BuildTarget(“Custom...”).execute(synchronous=True, on_exit=lambda status:
GPS.MDI.dialog(“status is %s” % status))

get_command_line()
Returns a string list containing the current arguments of this BuildTarget.

Note that these arguments are not expanded.

hide()
Hide target from menus and toolbar.

remove()
Remove target from the list of known targets. Any graphical element corresponding to this target is also
removed.

show()
Show target in menus and toolbar where it was before hiding.

16.5.5 GPS.Button

16.5.6 GPS.Clipboard

class GPS.Clipboard
This class provides an interface to the GPS clipboard. This clipboard contains the previous selections that were
copied or cut from a text editor. Several older selections are also saved so that they can be pasted later on.

static contents()
This function returns the contents of the clipboard. Each item in the list corresponds to a past selection,
the one at position 0 being the most recent. If you want to paste text in a buffer, you should paste the text
at position GPS.Clipboard.current() rather than the first in the list.

Return type [string]

static copy(text, append=False)
Copies a given static text into the clipboard. It is better in general to use GPS.EditorBuffer.copy(),
but it might happen that you need to append text that do not exist in the buffer.

264 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters

• text (string) – The content you want to put int the clipboard.

• append (boolean) – Wether you want to append to the current clipboard content or not.

See also:

GPS.EditorBuffer.copy()

static current()
This function returns the index, in GPS.Clipboard.contents(), of the text that was last pasted by
the user. If you were to select the menu /Edit/Paste, that would be the text pasted by GPS. If you select
/Edit/Paste Previous, current will be incremented by 1, and the next selection in the clipboard is pasted.

Return type integer

static merge(index1, index2)
This function merges two levels of the clipboard, so that the one at index index1 now contains the
concatenation of both. The one at index2 is removed.

Parameters

• index1 (integer) – A null or positive integer

• index2 (integer) – A null or positive integer

16.5.7 GPS.CodeAnalysis

class GPS.CodeAnalysis
This class is a toolset that allows handling CodeAnalysis instances.

__init__()
Raises an exception to prevent users from creating new instances.

add_all_gcov_project_info()
Adds coverage information for every source files referenced in the current project loaded in GPS and every
imported projects.

See also:

GPS.CodeAnalysis.add_gcov_project_info()

GPS.CodeAnalysis.add_gcov_file_info()

add_gcov_file_info(src, cov)
Adds coverage information provided by parsing a .gcov file. The data is read from the cov parameter
that should have been created from the specified src file.

Parameters

• src (GPS.File) – The corresponding source file

• cov (GPS.File) – The corresponding coverage file

See also:

GPS.CodeAnalysis.add_all_gcov_project_info()

GPS.CodeAnalysis.add_gcov_project_info()

a = GPS.CodeAnalysis.get("Coverage Report")
a.add_gcov_file_info(src=GPS.File("source_file.adb"),

cov=GPS.File("source_file.adb.gcov"))

16.5. Classes 265

GPS User’s Guide, Release 2018

add_gcov_project_info(prj)
Adds coverage information of every source files referenced in the GNAT project file (.gpr) for prj.

Parameters prj (A GPS.File instance) – The corresponding project file

See also:

GPS.CodeAnalysis.add_all_gcov_project_info()

GPS.CodeAnalysis.add_gcov_file_info()

clear()
Removes all code analysis information from memory.

dump_to_file(xml)
Create an XML-formated file containing a representation of the given code analysis.

Parameters xml (GPS.File) – The output xml file

See also:

GPS.CodeAnalysis.load_from_file()

a = GPS.CodeAnalysis.get ("Coverage")
a.add_all_gcov_project_info ()
a.dump_to_file (xml=GPS.File ("new_file.xml"))

static expand_line_cov_info(file, line)
Expand the coverage information at line of file

Parameters

• file (GPS.File) – The file

• line (A positive integer) – The line number

static get(name)
Creates an empty code analysis data structure. Data can be put in this structure by using one of the primitive
operations.

Parameters name (string) – The name of the code analysis data structure to get or create

Returns An instance of GPS.CodeAnalysis associated to a code analysis data structure in
GPS.

Return type GPS.CodeAnalysis

a = GPS.CodeAnalysis.get("Coverage")
a.add_all_gcov_project_info()
a.show_coverage_information()

hide_coverage_information()
Removes from the Locations view any listed coverage locations, and remove from the source editors their
annotation column if any.

See also:

GPS.CodeAnalysis.show_coverage_information()

load_from_file(xml)
Replace the current coverage information in memory with the given XML-formated file one.

Parameters xml (GPS.File) – The source xml file

266 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

See also:

GPS.CodeAnalysis.dump_to_file()

a = GPS.CodeAnalysis.get ("Coverage")
a.add_all_gcov_project_info ()
a.dump_to_file (xml=GPS.File ("new_file.xml"))
a.clear ()
a.load_from_file (xml=GPS.File ("new_file.xml"))

show_analysis_report()
Displays the data stored in the CodeAnalysis instance into a new MDI window. This window contains
a tree view that can be interactively manipulated to analyze the results of the code analysis.

show_coverage_information()
Lists in the Locations view the lines that are not covered in the files loaded in the CodeAnalysis
instance. The lines are also highlighted in the corresponding source file editors, and an annotation column
is added to the source editors.

See also:

GPS.CodeAnalysis.hide_coverage_information()

16.5.8 GPS.Codefix

class GPS.Codefix
This class gives access to GPS’s features for automatically fixing compilation errors.

See also:

GPS.CodefixError()

GPS.Codefix.__init__()

__init__(category)
Returns the instance of codefix associated with the given category.

Parameters category (string) – The corresponding category

error_at(file, line, column, message=’‘)
Returns a specific error at a given location. If message is null, then the first matching error will be taken.
None is returned if no such fixable error exists.

Parameters

• file (GPS.File) – The file where the error is

• line (integer) – The line where the error is

• column (integer) – The column where the error is

• message (string) – The message of the error

Return type GPS.CodefixError

errors()
Lists the fixable errors in the session.

Return type list[GPS.CodefixError]

static parse(category, output, regexp=’‘, file_index=-1, line_index=-1, column_index=-1,
style_index=-1, warning_index=-1)

Parses the output of a tool and suggests auto-fix possibilities whenever possible. This adds small icons

16.5. Classes 267

GPS User’s Guide, Release 2018

in the location window, so that the user can click on it to fix compilation errors. You should call
Locations.parse() with the same output prior to calling this command.

The regular expression specifies how locations are recognized. By default, it matches file:line:column.
The various indexes indicate the index of the opening parenthesis that contains the relevant information in
the regular expression. Set it to 0 if that information is not available.

Access the various suggested fixes through the methods of the Codefix class.

Parameters

• category (string) – A string

• output (string) – A string

• regexp (string) – A string

• file_index (integer) – An integer

• line_index (integer) – An integer

• column_index (integer) – An integer

• style_index (integer) – An integer

• warning_index (integer) – An integer

See also:

GPS.Editor.register_highlighting()

static sessions()
Lists all the existing Codefix sessions. The returned values can all be used to create a new instance of
Codefix through its constructor.

Return type [string]

After a compilation failure:
>>> GPS.Codefix.sessions()
=> ['Builder results']

16.5.9 GPS.CodefixError

class GPS.CodefixError
This class represents a fixable error in the compilation output.

See also:

GPS.Codefix()

GPS.CodefixError.__init__()

__init__(codefix, file, message=’‘)
Describes a new fixable error. If the message is not specified, the first error at that location is returned.

Parameters

• codefix (GPS.Codefix) – The owning codefix instance

• file (GPS.FileLocation) – The location of the error

• message (string) – The message of the error

268 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

fix(choice=0)
Fixes the error, using one of the possible fixes. The index given in parameter is the index in the list returned
by possible_fixes(). By default, the first choice is taken. Choices start at index 0.

Parameters choice (integer) – Index of the fix to apply, see output of GPS.
CodefixError.possible_fixes()

for err in GPS.Codefix ("Builder results").errors():
print err.fix()

will automatically fix all fixable errors in the last compilation
output

location()
Returns the location of the error.

Return type GPS.FileLocation

message()
Returns the error message, as issue by the tool.

Return type string

possible_fixes()
Lists the possible fixes for the specific error.

Return type [string]

for err in GPS.Codefix ("Builder results").errors():
print err.possible_fixes()

16.5.10 GPS.Command

class GPS.Command
Interface to GPS command. This class is abstract, and can be subclassed.

static get(name)
Returns the list of commands of the name given in the parameter, scheduled or running in the tasks view

Parameters name (string) – A string

Return type list[GPS.Command]

get_result()
Returns the result of the command, if any. Must be overriden by children.

interrupt()
Interrupts the current command.

static list()
Returns the list of commands scheduled or running in the tasks view.

Return type [GPS.Command]

name()
Return The name of the command

progress()
Returns a list representing the current progress of the command. If current = total, the command has
completed.

Returns A list [current, total]

16.5. Classes 269

GPS User’s Guide, Release 2018

Return type [int]

16.5.11 GPS.CommandWindow

class GPS.CommandWindow
This class gives access to a command-line window that pops up on the screen. This window is short-lived (in
fact there can be only one such window at any given time) and any key press is redirected to that window. It can
be used to interactively query a parameter for an action, for example.

Among other things, it is used in the implementation of the interactive search facility, where each key pressed
should be added to the search pattern instead of to the editor.

class Isearch(CommandWindow):
def __init__(self):

CommandWindow.__init__(
self, prompt="Pattern",
on_key=self.on_key,
on_changed=self.on_changed)

def on_key(self, input, key, cursor_pos):
if key == "control-w":

.... # Copy current word from editor into the window
self.write(input[:cursor_pos + 1] +

"FOO" + input[cursor_pos + 1:])
return True ## No further processing needed

return False

def on_changed(self, input, cursor_pos):
Search for next occurrence of input in buffer
....

GPS.CommandWindowGPS.GUI

__init__(prompt=’‘, global_window=False, on_changed=None, on_activate=None,
on_cancel=None, on_key=None, close_on_activate=True)

Initializes an instance of a command window. An exception is raised if such a window is already ac-
tive in GPS. Otherwise, the new window is popped up on the screen. Its location depends on the
global_window parameter.

Parameters

• prompt (string) – the short string displayed just before the command line itself. Its
goal is to indicate to the user what he is entering.

• global_window (bool) – If true, the command window is displayed at the bottom of
the GPS window and occupies its whole width. If false, it is displayed at the bottom of the
currently selected window.

• on_changed ((string, int) -> None) – A subprogram, is called when the user
has entered new characters in the command line. This function is given two parameters:

270 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

the current input string, and the last cursor position in this string. See the example above
on how to get the part of the input before and after the cursor.

• on_activate ((string) -> None) – A subprogram, is called when the user
pressed enter. The command window has already been closed at that point if
close_on_activate is True and the focus given back to the initial MDI window that had
it. This callback is passed a single parameter, the final input string.

• on_cancel ((string) -> None) – A subprogram, is called when the user pressed
a key that closed the dialog, for example Esc. It is passed a single parameter, the final
input string. This callback is also called when you explicitly destroy the window yourself
by calling self.destroy().

• on_key ((string, int) -> None) – Is called when the user has pressed a new key
on his keyboard but before the corresponding character has been added to the command
line. This can be used to filter out some characters or provide special behavior for some
key combination (see the example above). It is passed three parameters, the current input
string, the key that was pressed, and the current cursor position.

• close_on_activate (bool) – A boolean, determines wether the command window
has to be closed on pressing enter.

read()
Returns the current contents of the command window.

Return type string

set_background(color=’‘)
Changes the background color of the command window. This can be used to make the command window
more obvious or to highlight errors by changing the color. If the color parameter is not specified, the color
reverts to its default.

Parameters color (string) – The new background color

set_prompt(prompt)
Changes the prompt displayed before the text field.

Parameters prompt (string) – The new prompt to display

write(text, cursor=-1)
This function replaces the current content of the command line. As a result, you should make sure to
preserve the character you want, as in the on_key() callback in the example above. Calling this function
also results in several calls to the on_changed() callback, one of them with an empty string (since gtk
first deletes the contents and then writes the new contents).

The cursor parameter can be used to specify where the cursor should be left after the insertion. -1 indicates
the end of the string.

Parameters

• text (string) – A string

• cursor (integer) – An integer

16.5.12 GPS.Completion

class GPS.Completion
This class is used to handle editor completion. See the documentation in the completion.py plugin.

16.5. Classes 271

GPS User’s Guide, Release 2018

static register(resolver, language)
Registers a resolver, which inherits from CompletionResolver. language is a string indicating which
language this resolver supports.

16.5.13 GPS.Console

class GPS.Console
This class is used to create and interact with the interactive consoles in GPS. It can be used to redirect the output
of scripts to various consoles in GPS, or to get input from the user has needed.

See also:

GPS.Process

GPS.Console.__init__()

The following example shows how to redirect the output of a script to
a new console in GPS:

console = GPS.Console("My_Script")
console.write("Hello world") # Explicit redirection

The usual Python's standard output can also be redirected to this
console:

sys.stdout = GPS.Console("My_Script")
print "Hello world, too" # Implicit redirection
sys.stdout = GPS.Console("Python") # Back to python's console
sys.stdout = GPS.Console() # Or back to GPS's console

The following example shows an integration between the GPS.Console
and GPS.Process classes, so that a window containing a shell can be
added to GPS.

Note that this class is in fact available directly through "from
gps_utils.console_process import Console_Process" if you need it in
your own scripts.

import GPS
class Console_Process(GPS.Console, GPS.Process):

def on_output(self, matched, unmatched):
self.write(unmatched + matched)

def on_exit(self, status, unmatched_output):
try:

self.destroy()
except:

pass # Might already have been destroyed

def on_input(self, input):
self.send(input)

def on_destroy(self):
self.kill() # Will call on_exit

def __init__(self, command):
GPS.Console.__init__(

command[0],

272 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

on_input=Console_Process.on_input,
on_destroy=Console_Process.on_destroy,
force=True)

GPS.Process.__init__(
self, command, ".+",
on_exit=Console_Process.on_exit,
on_match=Console_Process.on_output)

bash = Console_Process(["/bin/sh", "-i"])

GPS.ConsoleGPS.GUI

__init__(name, force=False, on_input=None, on_destroy=None, accept_input=True,
on_resize=None, on_interrupt=None, on_completion=None, on_key=’‘, man-
age_prompt=True, ansi=False, toolbar_name=’‘, give_focus_on_create=True)

Creates a new instance of GPS.Console. GPS tries to reuse any existing console with the same name.
If none exists yet, or the parameter force is set to True, GPS creates a new console.

You cannot create the Python and Shell consoles through this call. If you try, an exception is raised.
Instead, use GPS.execute_action() (“/Tools/Consoles/Python”), and then get a handle on the con-
sole through GPS.Console. This is because these two consoles are tightly associated with each of the
scripting languages.

If GPS reuses an existing console, on_input() overrides the callback that was already set on the con-
sole, while on_destroy() is called in addition to the one that was already set on the console.

If this is not the desired behavior, you can also call destroy() on the console and call the constructor
again.

•The function on_input() is called whenever the user has entered a new command in the console
and pressed <enter> to execute it. It is called with the following parameters:

–$1: The instance of GPS.Console

–$2: The command to execute

See the function GPS.Console.set_prompt_regexp() for proper handling of input in the
console.

•The subprogram on_destroy() is called whenever the user closes the console. It is called with a
single parameter:

–$1: The instance of GPS.Console

•The subprogram on_completion() is called whenever the user presses Tab in the console. It is
called with a single parameter:

–$1: The instance of GPS.Console

The default implementation inserts a tab character, but you can to add additional user input through
GPS.Console.add_input() for example.

•The subprogram on_resize() is called whenever the console is resized by the user. It is passed
three parameters:

16.5. Classes 273

GPS User’s Guide, Release 2018

–$1: the instance of GPS.Console

–$2: the number of visible rows in the console,

–$3: the number of visible columns.

This is mostly useful when a process is running in the console, in which case you can use GPS.
Process.set_size() to let the process know the size. Note that the size passed to this callback
is conservative: since all characters might not have the same size, GPS tries to compute the maximal
number of visible characters and pass this to the callback, but the exact number of characters might
depend on the font.

•The subprogram on_interrupt() is called when the user presses Ctrl-c in the console. It
receives a single parameter, the instance of GPS.Console. By default a Ctrl-c is handled by
GPS itself by killing the last process that was started.

As described above, GPS provides a high-level handling of consoles, where it manages histories,
completion, command line editing and execution on its own through the callbacks described above.
This is usually a good thing and provides advanced functionalities to some programs that lack them.
However, there are cases where this gets in the way. For example, if you want to run a Unix shell or a
program that manipulates the console by moving the cursor around on its own, the high-level handling
of GPS gets in the way. In such a case, the following parameters can be used: on_key, manage_prompt
and ansi.

•ansi should be set to true if GPS should emulate an ANSI terminal. These are terminals that un-
derstand certain escape sequences that applications sent to move the cursor to specific positions on
screen or to change the color and attributes of text.

•manage_prompt should be set to False to disable GPS’s handling of prompts. In general, this is
incompatible with using the on_input() callback, since GPS no longer distinguishes what was
typed by the user and what was written by the external application. This also means that the applica-
tion is free to write anywhere on the screen. This should in general be set to True if you expect your
application to send ANSI sequences.

•on_key() is a function called every time the user presses a key in the console. This is much lower-
level than the other callbacks above, but if you are driving external applications you might have a need
to send the keys as they happen, and not wait for a newline. on_key() receives four parameters:

–$1: the instance of GPS.Console

–$2: “keycode”: this is the internal keycode for the key that the user pressed. All keys can be
represented this way, but this will occasionaly be left to 0 when the user input was simulated and
no real key was pressed.

–$3: “key”: this is the unicode character that the user entered. This will be 0 when the character
is not printable (for example return, tab, and key up). In Python, you can manipulate it with code
like unichr(key).encode("utf8") to get a string representation that can be sent to an
external process

–$4: “modifier”: these are the state of the control, shift, mod1 and lock keys. This is a bitmask,
where shift is 1, lock is 2, control is 4 and mod1 is 8.

•:toolbar_name is used to register a toolbar for the console. The given name can be used later to
register toolbar items (e.g: using the GPS.Action.button function).

•:give_focus_on_create is only used if a new console is being created. It should be set to True
if the newly created console should receive the focus. If it’s set to False, the console will not receive
the focus: its tab label will be highlighted instead.

Parameters

274 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• name – A string

• force – A boolean

• on_input – A subprogram, see the description below

• on_destroy – A subprogram

• accept_input – A boolean

• on_resize – A subprogram

• on_interrupt – A subprogram

• on_completion – A subprogram

• on_key – A subprogram

• manage_prompt – A boolean

• ansi – A boolean

• toolbar_name – A string

• give_focus_on_create – A boolean

accept_input()
Returns True if the console accepts input, False otherwise.

Returns A boolean

add_input(text)
Adds extra text to the console as if the user had typed it. As opposed to text inserted using GPS.
Console.write(), this text remains editable by the user.

Parameters text – A string

clear()
Clears the current contents of the console.

clear_input()
Removes any user input that the user has started typing (i.e., since the last output inserted through GPS.
Console.write()).

copy_clipboard()
Copies the selection to the clipboard.

create_link(regexp, on_click, foreground=’blue’, background=’‘, underline=True)
Registers a regular expression that should be highlighted in this console to provide hyperlinks, which are
searched for when calling GPS.Console.write_with_links(). The part of the text that matches
any of the link registered in the console through GPS.Console.create_link() is highlighted in
blue and underlined, just like a hyperlink in a web browser. If the user clicks on that text, on_click()
is called with one parameter, the text that was clicked on. This can, for example, be used to jump to an
editor or open a web browser.

If the regular expression does not contain any parenthesis, the text that matches the whole regexp is high-
lighted as a link. Otherwise, only the part of the text that matches the first parenthesis group is highlighted
(so you can test for the presence of text before or after the actual hyper link).

Parameters foreground and background specify colors to visualize matched text, while underline turns
underscore on.

Parameters

• regexp – A string

16.5. Classes 275

GPS User’s Guide, Release 2018

• on_click – A subprogram

• foreground – A string

• background – A string

• underline – A boolean

See also:

GPS.Console.write_with_links()

delete_links()
Drops each regular expression registered with create_link().

enable_input(enable)
Makes the console accept or reject input according to the value of “enable”.

Parameters enable – A boolean

flush()
Does nothing, needed for compatibility with Python’s file class.

get_text()
Returns the content of the console.

Returns A string

insert_link(text, on_click)
Inserts the given text in the console as an hyperlink, using the default hyperlink style. If the user clicks on
that text, on_click() is called with one parameter, the text that was clicked on. This can, for example,
be used to jump to an editor or open a web browser.

Parameters

• text – A string

• on_click – A subprogram

isatty()
Returns True if the console behaves like a terminal. Mostly needed for compatibility with Python’s file
class.

Returns A boolean

read()
Reads the available input in the console. Currently, this behaves exactly like readline().

Returns A String

readline()
Asks the user to enter a new line in the console, and returns that line. GPS is blocked until enter has been
pressed in the console.

Returns A String

select_all()
Selects the complete contents of the console.

write(text, mode=“‘text”’)
Outputs some text on the console. This text is read-only. If the user started typing some text, that text is
temporarily removed, the next text is inserted (read-only), and the user text is put back.

The optional parameter mode specifies the kind of the output text: “text” for ordinary messages (this is
default), “log” for log messages, and “error” for error messages.

276 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters

• text – A utf8 string

• mode – A string, one of “text”, “log”, “error”

See also:

GPS.Console.write_with_links()

Console().write(
u"\N{LATIN CAPITAL LETTER E WITH ACUTE}".encode("utf-8")

)

write_with_links(text)
Outputs some text on the console, highlighting the parts of it that match the regular expression registered
by GPS.Console.create_link().

Parameters text – A utf8 string

import re

console = GPS.Console("myconsole")
console.create_link("(([\w-]+):(\d+))", open_editor)
console.write_with_link("a file.adb:12 location in a file")

def open_editor(text):
matched = re.match("([\w+-]+):(\d+)", text)
buffer = GPS.EditorBuffer.get(GPS.File (matched.group(1)))
buffer.current_view().goto(

buffer.at(int(matched.group(2)), 1))

16.5.14 GPS.Construct

class GPS.Construct
One node of the semantic tree when parsing a file for a given programming language. Instances of such classes
are only created by GPS internally

file = ‘’
The GPS.File in which the construct occurs

id = ‘’
Unique id for the entity

name = ‘’
The name of the construct

start = (0, 0, 0)
The source location for the beginning of this construct, (line, column offset)

__init__()
Instances are only created by GPS itself

16.5.15 GPS.ConstructsList

class GPS.ConstructsList
This class is closely associated with the GPS.Language class, and is used by plug-ins to describe the semantic
organization in a source file.

16.5. Classes 277

GPS User’s Guide, Release 2018

This can be used in particular to populate the Outline view for custom languages (see the python_support.
py plugin in the GPS sources).

add_construct(category, is_declaration, visiblity, name, profile, sloc_start, sloc_end, sloc_entity,
id=’‘)

Register a new semantic construct from the file.

Parameters

• category (int) – the name of the category. It should be one of the CAT_* constants
in the constructs.py module. If your language has different constructs, you should
map them to one of the existing categories.

• is_declaration (bool) – whether this is the declaration for the entity, or a reference
to it.

• visibility (int) – whether the entity is public, protected or private. It should be one
of the constants in the constructs.py module.

• name (str) – the name of the entity

• profile (str) – a description of its profile (the list of parameters for a subprogram, for
instance).

• sloc_start ((int,int,int)) – the position at which this constructs starts. This is
a tuple (line, column, offset), where offset is the number of bytes since the start of the file.

• sloc_end ((int,int,int)) – the position at which this constructs ends. This is a
tuple (line, column, offset).

• sloc_entity ((int,int,int)) – the position at which the entity name starts. This
is a tuple (line, column, offset).

• id (str) – a unique identifier for this identity. You can retrieve it in calls to GPS.
Language.clicked_on_construct(), and this is used to identify overloading
identifiers in the Outline view when it is refreshed.

16.5.16 GPS.Context

class GPS.Context
Represents a context in GPS. Depending on the currently selected window, an instance of one of the derived
classes will be used.

module_name = None
The name (a string) of the GPS module which created the context.

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

directory()
Return the current directory of the context.

Return type string

end_line()
Return the last selected line in the context.

Return type integer

entity(approximate_search_fallback=True)
Returns the entity stored in the context. This might be expensive to compute, so it is often recommend to
check whether GPS.Context.entity_name returns None, first.

278 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters approximate_search_fallback – If True, when the line and column are
not exact, this parameter will trigger approximate search in the database (eg. see if there are
similar entities in the surrounding lines)

Returns An instance of GPS.Entity

entity_name()
Return the name of the entity that the context points to. This is None when the context does not contain
entity information.

Return type str

file()
Return the name of the file in the context. This method used to be set only for a GPS.Context.

Return type GPS.File

See also:

GPS.Context.files

files()
Return the list of selected files in the context

Return type list[GPS.File]

location()
Return the file location stored in the context.

Return type GPS.FileLocation

message()
Returns the current message that was clicked on

Returntype GPS.Message

project()
Return the project in the context or the root project if none was specified in the context. Return an error if
no project can be found from the context.

Return type GPS.Project

set_file(file)
Set the file stored in the context. :param GPS.File file:

start_line()
Return the first selected line in the context.

Return type integer

16.5.17 GPS.Contextual

class GPS.Contextual
This class is a general interface to the contextual menus in GPS. It gives you control over which menus should
be displayed when the user right clicks in parts of GPS.

See also:

GPS.Contextual.__init__()

name = ‘’
The name of the contextual menu (see __init__)

16.5. Classes 279

GPS User’s Guide, Release 2018

__init__(name)
Initializes a new instance of GPS.Contextual. The name is what was given to the contextual menu
when it was created and is a static string independent of the actual label used when the menu is displayed
(and which is dynamic, depending on the context). You can get the list of valid names by checking the list
of names returned by GPS.Contextual.list().

Parameters name – A string

See also:

GPS.Contextual.list()

You could for example decide to always hide the "Goto
declaration" contextual menu with the following call:

GPS.Contextual ('Goto declaration of entity').hide()

After this, the menu will never be displayed again.

create_dynamic(factory, on_activate, label=’‘, filter=None, ref=’‘, add_before=True, group=‘0’)
Creates a new dynamic contextual menu.

This is a submenu of a contextual menu, where the entries are generated by the factory parameter. This
parameter should return a list of strings, which will be converted to menus by GPS. These strings can
contain ‘/’ characters to indicate submenus.

filter is a subprogram that takes the GPS.Context as a parameter and returns a boolean indicating
whether the submenu should be displayed.

label can be used to specify the label to use for the menu entry. It can include directory-like syntax to
indicate submenus. This label can include standard macro substitution (see the GPS documentation), for
instance %e for the current entity name.

on_activate is called whenever any of the entry of the menu is selected, and is passed three parameters,
the context in which the contextual menu was displayed, the string representing the selected entry and the
index of the selected entry within the array returned by factory (index starts at 0).

The parameters ref and add_before can be used to control the location of the entry within the con-
textual menu. ref is the name of another contextual menu entry, and add_before indicates whether the new
entry is put before or after that second entry.

Parameters

• factory – A subprogram

• on_activate – A subprogram

• label – A string

• filter – A subprogram

• ref – A string

• add_before – A boolean

• group – A integer

This example shows how to create a contextual menu
through global functions

def build_contextual(context):
return ["Choice1", "Choice2"]

280 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

def on_activate(context, choice, choice_index):
GPS.Console("Messages").write("You selected " + choice)

def filter(contextl):
return context.entity_name() is not None

GPS.Contextual("My_Dynamic_Menu").create_dynamic(
on_activate=on_activate, factory=build_contextual, filter=filter)

This example is similar to the one above, but shows how
to create the menu through a python class.
Note how self can be passed to the callbacks thanks to the
call to self.create_dynamic.

class Dynamic(GPS.Contextual):
def __init__(self):

GPS.Contextual.__init__(self, "My Dynamic Menu")
self.create_dynamic(on_activate=self.on_activate,

label="References/My menu",
filter=self.filter,
factory=self.factory)

def filter(self, context):
return context.entity_name() is not None

def on_activate(self, context, choice, choice_index):
GPS.Console("Messages").write("You selected " + choice)

def factory(self, context):
return ["Choice1", "Choice2"]

hide()
Makes sure the contextual menu never appears when the user right clicks anywhere in GPS. This is the
standard way to disable contextual menus.

See also:

GPS.Contextual.show()

static list()
Returns the list of all registered contextual menus. This is a list of strings which are valid names that can
be passed to the constructor of GPS.Contextual. These names were created when the contextual menu
was registered in GPS.

Returns A list of strings

See also:

GPS.Contextual.__init__()

set_sensitive(Sensitivity)
Controls whether the contextual menu is grayed-out: False if it should be grayed-out, True otherwise.

Parameters Sensitivity – Boolean value

show()
Makes sure the contextual menu is shown when appropriate. The entry might still be invisible if you right
clicked on a context where it does not apply, but it will be checked.

See also:

16.5. Classes 281

GPS User’s Guide, Release 2018

GPS.Contextual.hide()

16.5.18 GPS.Cursor

class GPS.Cursor
Interface to a cursor in GPS.EditorBuffer. Only gives access to the insertion mark and to the selection
mark of the cursor.

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

mark()
Returns the cursor’s main mark.

NOTE: If you can interact with your cursor via Cursor.move() rather than via manually moving marks,
you should prefer that method.

Returns The GPS.EditorMark instance corresponding to the cursor’s insert mark

move(loc, extend_selection=False)
Moves the cursor to the given location.

Parameters

• loc – A GPS.EditorLocation that you want to move the cursor to

• extend_selection – A boolean. If True, the selection mark will not move so the
selection is extended. If False, both marks move simultaneously

sel_mark()
Returns the cursor’s selection mark.

NOTE: If you can interact with your cursor via Cursor.move() rather than via manually moving marks,
you should prefer that method.

Returns The GPS.EditorMark instance corresponding to the cursor’s selection mark

set_manual_sync()
Sets the buffer in manual sync mode regarding this cursor. This set sync to be manual and all inser-
tions/deletions are considered as originating from this cursor instance. If you do not do this, an action on
the buffer (like an insertion) is repercuted on every alive cursor instance.

NOTE: Do not call this manually. Instead, iterate on the results of EditorBuffer.cursors() so this
method is called for you automatically.

16.5.19 GPS.Debugger

class GPS.Debugger
Interface to debugger related commands. This class allows you to start a debugger and send commands to it. By
connection to the various debugger_* hooks, you can also monitor the state of the debugger.

By connecting to the “debugger_command_action_hook”, you can also create your own debugger commands,
that the user can then type in the debugger console. This is a nice way to implement debugger macros.

See also:

GPS.Debugger.__init__()

282 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

import GPS

def debugger_stopped(hook, debugger):
GPS.Console("Messages").write(

"hook=" + hook + " on debugger="
+ `debugger.get_num()` + "\n")

def start():
d = GPS.Debugger.spawn(GPS.File("../obj/parse"))
d.send("begin")
d.send("next")
d.send("next")
d.send("graph display A")

GPS.Hook("debugger_process_stopped").add(debugger_stopped)

breakpoints = []
A read-only property that returns the list of breakpoints currently set in the debugger. This information is
updated automatically by GPS whenever a command that might modify this list of breakpoints is executed.
The elements in this list are instances of GPS.DebuggerBreakpoint

current_file = None
A GPS.File which indicates the current file for the debugger. This is the place where the debugger
stopped, or when the user selected a new frame, the file corresponding to that frame.

current_line = 0
The current line. See description of GPS.Debugger.current_file.

remote_protocol = None
A string set to the debugger’s currently used remote protocol. This remote target is either retrieved from
the IDE’Communication_Protocol project atttribute or from a manually sent ‘target [remote_protocol]
[remote_target]’ command.

remote_target = None
A string set to the currently used debugger’s remote target. This remote target is either retrieved from the
IDE’Protocol_Host project atttribute or from a manually sent ‘target [remote_protocol] [remote_target]’
command.

__init__()
It is an error to create a Debugger instance directly. Instead, use GPS.Debugger.get() or GPS.
Debugger.spawn().

See also:

GPS.Debugger.get()

GPS.Debugger.spawn()

break_at_location(file, line)
Set a breakpoint at a specific location. If no debugger is currently running, this commands ensures that a
breakpoint will be set when a debugger is actually started.

Equivalent gdb command is “break”.

Parameters

• file (GPS.File) – the file to break into

• line (int) – the line to break at

close()
Closes the given debugger. This also closes all associated windows (such as the call stack and console).

16.5. Classes 283

GPS User’s Guide, Release 2018

command()
Returns the command being executed in the debugger. This is often only available when called from the
“debugger_state_changed” hook, where it might also indicate the command that just finished.

Returns A string

current_frame()
Returns the number of current frame.

Returns integer, the number of frame

frame_down()
Select previous frame.

frame_up()
Select next frame.

frames()

Returns list of dictionaries: “level” - integer “addr” - string “func” - string “file” - GPS.FileLocation
“args” - another dictionary with func parameters

represented as string

Returns A list of frames

static get(id=None)
Gives access to an already running debugger, and returns an instance of GPS.Debugger attached to it.
The parameter can be null, in which case the current debugger is returned, it can be an integer, in which
case the corresponding debugger is returned (starting at 1), or it can be a file, in which case this function
returns the debugger currently debugging that file.

Parameters id – Either an integer or an instance of GPS.File

Returns An instance of GPS.Debugger

get_console()
Returns the GPS.Console instance associated with the the given debugger’s console.

Returns An instance of GPS.Console

get_executable()
Returns the name of the executable currently debugged in the debugger.

Returns An instance of GPS.File

See also:

GPS.Debugger.get_num()

get_num()
Returns the index of the debugger. This can be used later to retrieve the debugger from GPS.Debugger.
get() or to get access to other windows associated with that debugger.

Returns An integer

See also:

GPS.Debugger.get_file()

is_break_command()
Returns true if the command returned by GPS.Debugger.command() is likely to modify the list of
breakpoints after it finishes executing.

Returns A boolean

284 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

is_busy()
Returns true if the debugger is currently executing a command. In this case, it is an error to send a new
command to it.

Returns A boolean

is_context_command()
Returns true if the command returned by GPS.Debugger.command() is likely to modify the current
context (e.g., current task or thread) after it finishes executing.

Returns A boolean

is_exec_command()
Returns true if the command returned by GPS.Debugger.command() is likely to modify the stack
trace in the debugger (e.g., “next” or “cont”).

Returns A boolean

static list()
Returns the list of currently running debuggers.

Returns A list of GPS.Debugger instances

non_blocking_send(cmd, output=True)
Works like send, but is not blocking, and does not return the result.

Parameters

• cmd – A string

• output – A boolean

See also:

GPS.Debugger.send()

select_frame(num)
Select frame by number.

Parameters num – The number of frame where 0 is the first frame

send(cmd, output=True, show_in_console=False)
Executes cmd in the debugger. GPS is blocked while cmd is executing on the debugger. If output is true,
the command is displayed in the console.

If show_in_console is True, the output of the command is displayed in the debugger console, but is
not returned by this function. If show_in_console is False, the result is not displayed in the console,
but is returned by this function.

There exists a number of functions that execute specific commands and parse the output appropriately. It
is better to use this functions directly, since they will change the actual command emitted depending on
which debugger is running, whether it is currently in a C or Ada frame,...

Parameters

• cmd – A string

• output – A boolean

• show_in_console – A boolean

Returns A string

See also:

GPS.Debugger.non_blocking_send()

16.5. Classes 285

GPS User’s Guide, Release 2018

See also:

GPS.Debugger.value_of()

See also:

GPS.Debugger.set_variable()

See also:

GPS.Debugger.break_at_location()

See also:

GPS.Debugger.unbreak_at_location()

set_variable(variable, value)
Set the value of a specific variable in the current context.

Equivalent gdb command is “set variable”.

Parameters

• variable (str) – the name of the variable to set.

• value (str) – the value to set it to, as a string

static spawn(executable, args=’‘, remote_target=’‘, remote_protocol=’‘, load_executable=False)
Starts a new debugger. It will debug executable. When the program is executed, the extra arguments
args are passed.

If remote_target and remote_protocol are specified and non-empty, the debugger will try to ini-
tialize a remote debugging session with these parameters. When not specified, the IDE'Program_Host
and IDE'Communication_Protocol are used if present in the .gpr project file.

When load_executable is True, GPS will try to load executable on the specified remote target,
if any.

Parameters

• executable – An instance of GPS.File

• args – A string

• remote_target – A string

• remote_protocol – A string

• load_executable – A boolean

Returns An instance of GPS.Debugger

unbreak_at_location(file, line)
Remove any breakpoint set at a specific location.

Equivalent gdb command is “clear”. If no debugger is currently running, this commands ensures that no
breakpoint will be set at that location when a debugger is actually started.

Parameters

• file (GPS.File) – the file to break into

• line (int) – the line to break at

value_of(expression)
Compute the value of expression in the current context.

Equivalent gdb command is “print”.

286 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters expression (str) – the expression to evaluate.

Returns a string, or “” if the expression could not be evaluated in the current context.

16.5.20 GPS.DebuggerBreakpoint

class GPS.DebuggerBreakpoint
Instances of this class represents one breakpoint set in the debugger.

enabled = True
Whether this breakpoint is enabled

file = None
An instance of GPS.File, where the debugger will stop.

line = 0
The line on which the debugger will stop

num = 0
The identifier for this breakpoint

type = ‘’
Either ‘breakpoint’ or ‘watchpoint’

watched = ‘’
If the breakpoint is a watchpoint, i.e. monitors changes to a variable, this property gives the name of the
variable.

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

16.5.21 GPS.Editor

class GPS.Editor
Deprecated interface to all editor-related commands.

static add_blank_lines(file, start_line, number_of_lines, category=’‘)
OBSOLESCENT.

Adds number_of_lines non-editable lines to the buffer editing file, starting at line start_line. If category is
specified, use it for highlighting. Create a mark at beginning of block and return it.

Parameters

• file – A string

• start_line – An integer

• number_of_lines – An integer

• category – A string

Returns an instance of GPS.EditorMark

static add_case_exception(name)
OBSOLESCENT.

Adds name into the case exception dictionary.

Parameters name – A string

16.5. Classes 287

GPS User’s Guide, Release 2018

static block_fold(file, line=None)
OBSOLESCENT.

Folds the block around line. If line is not specified, fold all blocks in the file.

Parameters

• file – A string

• line – An integer

static block_get_end(file, line)
OBSOLESCENT.

Returns ending line number for block enclosing line.

Parameters

• file – A string

• line – An integer

Returns An integer

static block_get_level(file, line)
OBSOLESCENT.

Returns nested level for block enclosing line.

Parameters

• file – A string

• line – An integer

Returns An integer

static block_get_name(file, line)
OBSOLESCENT.

Returns name for block enclosing line

Parameters

• file – A string

• line – An integer

Returns A string

static block_get_start(file, line)
OBSOLESCENT.

Returns ending line number for block enclosing line.

Parameters

• file – A string

• line – An integer

Returns An integer

static block_get_type(file, line)
OBSOLESCENT.

Returns type for block enclosing line.

Parameters

288 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• file – A string

• line – An integer

Returns A string

static block_unfold(file, line=None)
OBSOLESCENT.

Unfolds the block around line. If line is not specified, unfold all blocks in the file.

Parameters

• file – A string

• line – An integer

static close(file)
OBSOLESCENT.

Closes all file editors for file.

Parameters file – A string

static copy()
OBSOLESCENT.

Copies the selection in the current editor.

static create_mark(filename, line=1, column=1, length=0)
Creates a mark for file_name, at position given by line and column. Length corresponds to the text length
to highlight after the mark. The identifier of the mark is returned. Use the command goto_mark to jump
to this mark.

Parameters

• filename – A string

• line – An integer

• column – An integer

• length – An integer

Returns An instance of GPS.EditorMark

See also:

GPS.Editor.goto_mark()

GPS.Editor.delete_mark()

static cursor_center(file)
OBSOLESCENT.

Scrolls the view to center cursor.

Parameters file – A string

static cursor_get_column(file)
OBSOLESCENT.

Returns current cursor column number.

Parameters file – A string

Returns An integer

16.5. Classes 289

GPS User’s Guide, Release 2018

static cursor_get_line(file)
OBSOLESCENT.

Returns current cursor line number.

Parameters file – A string

Returns An integer

static cursor_set_position(file, line, column=1)
OBSOLESCENT.

Sets cursor to position line/column in buffer file.

Parameters

• file – A string

• line – An integer

• column – An integer

static cut()
OBSOLESCENT.

Cuts the selection in the current editor.

static edit(filename, line=1, column=1, length=0, force=False, position=5)
OBSOLESCENT.

Opens a file editor for file_name. Length is the number of characters to select after the cursor. If line and
column are set to 0, then the location of the cursor is not changed if the file is already opened in an editor.
If force is set to true, a reload is forced in case the file is already open. Position indicates the MDI position
to open the child in (5 for default, 1 for bottom).

The filename can be a network file name, with the following general format:

protocol://username@host:port/full/path

where protocol is one of the recognized protocols (http, ftp,.. see the GPS documentation), and the user-
name and port are optional.

Parameters

• filename – A string

• line – An integer

• column – An integer

• length – An integer

• force – A boolean

• position – An integer

static get_buffer(file)
OBSOLESCENT.

Returns the text contained in the current buffer for file.

Parameters file – A string

static get_chars(filename, line=0, column=1, before=-1, after=-1)
OBSOLESCENT.

290 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Gets the characters around a certain position. Returns string between “before” characters before the mark
and “after” characters after the position. If “before” or “after” is omitted, the bounds will be at the begin-
ning and/or the end of the line.

If the line and column are not specified, then the current selection is returned, or the empty string if there
is no selection.

Parameters

• filename – A string

• line – An integer

• column – An integer

• before – An integer

• after – An integer

Returns A string

static get_last_line(file)
OBSOLESCENT.

Returns the number of the last line in file.

Parameters file – A string

Returns An integer

static goto_mark(mark)
OBSOLESCENT.

Jumps to the location of the mark corresponding to identifier.

Parameters mark – A instance of GPS.EditorMark

See also:

GPS.Editor.create_mark()

static highlight(file, category, line=0)
OBSOLESCENT

Marks a line as belonging to a highlighting category. If line is not specified, mark all lines in file.

Parameters

• file – A string

• category – A string

• line – An integer

See also:

GPS.Editor.unhighlight()

static highlight_range(file, category, line=0, start_column=0, end_column=-1)
OBSOLESCENT>

Highlights a portion of a line in a file with the given category.

Parameters

• file – A string

• category – A string

16.5. Classes 291

GPS User’s Guide, Release 2018

• line – An integer

• start_column – An integer

• end_column – An integer

static indent(current_line_only=False)
OBSOLESCENT.

Indents the selection (or the current line if requested) in current editor. Does nothing if the current GPS
window is not an editor.

Parameters current_line_only – A boolean

static indent_buffer()
OBSOLESCENT.

Indents the current editor. Does nothing if the current GPS window is not an editor.

static insert_text(text)
OBSOLESCENT.

Inserts a text in the current editor at the cursor position.

Parameters text – A string

static mark_current_location()
OBSOLESCENT.

Pushes the location in the current editor in the history of locations. This should be called before jumping
to a new location on a user’s request, so that he can easily choose to go back to the previous location.

static paste()
OBSOLESCENT.

Pastes the selection in the current editor.

static print_line_info(file, line)
OBSOLESCENT.

Prints the contents of the items attached to the side of a line. This is used mainly for debugging and testing
purposes.

Parameters

• file – A string

• line – An integer

static redo(file)
OBSOLESCENT.

Redoes the last undone editing command for file.

Parameters file – A string

static refill()
OBSOLESCENT.

Refills selected (or current) editor lines. Does nothing if the current GPS window is not an editor.

static register_highlighting(category, color, speedbar=False)
OBSOLESCENT.

Creates a new highlighting category with the given color. The format for color is “#RRGGBB”. If speedbar
is true, then a mark will be inserted in the speedbar to the left of the editor to give a fast overview to the
user of where the highlighted lines are.

292 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters

• category – A string

• color – A string

• speedbar – A boolean

static remove_blank_lines(mark, number=0)
OBSOLESCENT

Removes blank lines located at mark. If number is specified, remove only the number first lines.

Parameters

• mark – an instance of GPS.EditorMark

• number – An integer

static remove_case_exception(name)
OBSOLESCENT.

Removes name from the case exception dictionary.

Parameters name – A string

static replace_text(file, line, column, text, before=-1, after=-1)
OBSOLESCENT.

Replaces the characters around a certain position. “before” characters before (line, column), and up to
“after” characters after are removed, and the new text is inserted instead. If “before” or “after” is omitted,
the bounds will be at the beginning and/or the end of the line.

Parameters

• file – A string

• line – An integer

• column – An integer

• text – A string

• before – An integer

• after – An integer

static save(interactive=True, all=True)
OBSOLESCENT.

Saves current or all files. If interactive is true, then prompt before each save. If all is true, then all files are
saved.

Parameters

• interactive – A boolean

• all – A boolean

static save_buffer(file, to_file=None)
OBSOLESCENT.

Saves the text contained in the current buffer for file. If to_file is specified, the file will be saved as to_file,
and the buffer status will not be modified.

Parameters

• file – A string

16.5. Classes 293

GPS User’s Guide, Release 2018

• to_file – A string

static select_all()
OBSOLESCENT.

Selects the whole editor contents.

static select_text(first_line, last_line, start_column=1, end_column=0)
OBSOLESCENT.

Selects a block in the current editor.

Parameters

• first_line – An integer

• last_line – An integer

• start_column – An integer

• end_column – An integer

static set_background_color(file, color)
OBSOLESCENT.

Sets the background color for the editors for file.

Parameters

• file – A string

• color – A string

static set_synchronized_scrolling(file1, file2, file3=’‘)
OBSOLESCENT.

Synchronizes the scrolling between multiple editors.

Parameters

• file1 – A string

• file2 – A string

• file3 – A string

static set_title(file, title, filename)
OBSOLESCENT.

Changes the title of the buffer containing the given file.

Parameters

• file – A string

• title – A string

• filename – A string

static set_writable(file, writable)
OBSOLESCENT.

Changes the Writable status for the editors for file.

Parameters

• file – A string

• writable – A boolean

294 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

static subprogram_name(file, line)
OBSOLESCENT.

Returns the name of the subprogram enclosing line.

Parameters

• file – A string

• line – An integer

Returns A string

static undo(file)
OBSOLESCENT.

Undoes the last editing command for file.

Parameters file – A string

static unhighlight(file, category, line=0)
OBSOLESCENT.

Unmarks the line for the specified category. If line is not specified, unmark all lines in file.

Parameters

• file – A string

• category – A string

• line – An integer

See also:

GPS.Editor.highlight()

static unhighlight_range(file, category, line=0, start_column=0, end_column=-1)
OBSOLESCENT.

Removes highlights for a portion of a line in a file.

Parameters

• file – A string

• category – A string

• line – An integer

• start_column – An integer

• end_column – An integer

16.5.22 GPS.EditorBuffer

class GPS.EditorBuffer
This class represents the physical contents of a file. It is always associated with at least one view (a GPS.
EditorView instance), which makes it visible to the user. The contents of the file can be manipulated
through this class.

extend_existing_selection = False
When set to True, this flag puts the editor in a special mode where all cursor moves will create and extend
the selection. This is used to emulate the behavior of some editors, like Emacs, or vi’s “v” mode”.

16.5. Classes 295

GPS User’s Guide, Release 2018

The default behavior is that cursor moves will cancel any existing selection, unless they are associated
with the shift key. In this case, a new selection is created if none exists, and the selection is extended to
include the new cursor location.

__init__()
Prevents the direct creation of instances of EditorBuffer. Use GPS.EditorBuffer.get() in-
stead

add_cursor(location)
Adds a new slave cursor at the given location.

Return type The resulting Cursor instance

add_special_line(start_line, text, category=’‘, name=’‘)
Adds one non-editable line to the buffer, starting at line start_line and containing the string text.
If category is specified, use it for highlighting. Creates a mark at beginning of block and return it. If
name is specified, the returned mark has this name.

Parameters

• start_line (int) – An integer

• text (string) – A string

• category (string) – A string Reference one of the categories that were registered via
GPS.Editor.register_highlighting(). This can also be the name of a style
defined via GPS.Style

• name (string) – A string

Return type EditorMark

See also:

GPS.EditorBuffer.get_mark()

apply_overlay(overlay, frm=’begining of buffer’, to=’end of buffer’)
Applies the overlay to the given range of text. This immediately changes the rendering of the text based
on the properties of the overlay.

Parameters

• overlay (EditorOverlay) – An instance of GPS .EditorOverlay

• frm (EditorLocation) – An instance of GPS.EditorLocation

• to (EditorLocation) – An instance of GPS.EditorLocation

See also:

GPS.EditorBuffer.remove_overlay()

at(line, column)
Returns a new location at the given line and column in the buffer.

Return type EditorLocation

beginning_of_buffer()
Returns a location pointing to the first character in the buffer.

Return type EditorLocation

blocks_fold()
Folds all the blocks in all the views of the buffer. Block folding is a language-dependent feature, where
one can hide part of the source code temporarily by keeping only the first line of the block (for instance

296 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

the first line of a subprogram body, the rest is hidden). A small icon is displayed to the left of the first line
so it can be unfolded later.

See also:

GPS.EditorBuffer.blocks_unfold()

GPS.EditorLocation.block_fold()

blocks_unfold()
Unfolds all the blocks that were previously folded in the buffer, ie make the whole source code visible.
This is a language dependent feature.

See also:

GPS.EditorBuffer.blocks_fold()

GPS.EditorLocation.block_unfold()

characters_count()
Returns the total number of characters in the buffer.

Return type integer

click_on_side_icon(line, column, icon_name)
Simulate a click on the editor’s side icon identified with the given icon_name and present at the given
line and in the given side information column. The default side information column (i.e: the one that
displays block folding of codefix icons) starts at 1.

Parameters

• line (integer) – the line where the clickable icon is displayed

• column (integer) – the side information column where the clickable icon is displayed

• icon_name (string) – the name of the clickable icon

close(force=False)
Closes the editor and all its views. If the buffer has been modified and not saved, a dialog is open asking
the user whether to save. If force is True, do not save and do not ask the user. All changes are lost.

Parameters force (bool) – A boolean

copy(frm=’beginning of buffer’, to=’end of buffer’, append=False)
Copies the given range of text into the clipboard, so that it can be further pasted into other applications or
other parts of GPS. If append is True, the text is appended to the last clipboard entry instead of generating
a new one.

:param EditorLocation frm : An instance of EditorLocation :param EditorLocation to: An instance
of EditorLocation :param bool append: A boolean

See also:

GPS.Clipboard.copy()

create_overlay(name=’‘)
Creates a new overlay. Properties can be set on this overlay, which can then be applied to one or more
ranges of text to changes its visual rqendering or to associate user data with it. If name is specified, this
function will return an existing overlay with the same name in this buffer if any can be found. If the name
is not specified, a new overlay is created. Changing the properties of an existing overlay results in an
immediate graphical update of the views associated with the buffer.

A number of predefined overlays exit. Among these are the ones used for syntax highlighting by GPS
itself, which are “keyword”, “comment”, “string”, “character”. You can use these to navigate from one
comment section to the next for example.

16.5. Classes 297

GPS User’s Guide, Release 2018

Parameters name (string) – A string

Return type EditorOverlay

current_view()
Returns the last view used for this buffer, ie the last view that had the focus and through which the user
might have edited the buffer’s contents.

Return type EditorView

cursors()
Returns a list of Cursor instances. This method returns a generator that automatically handles the calls
to set_manual_sync() for each cursor and the call to update_cursors_selection() at the
end.

Return type list[Cursor]

To perform action on every cursors of the current editor
This will move every cursor forward 1 char

ed = GPS.EditorBuffer.get()
for cursor in ed.cursors():

cursor.move(c.mark().location().forward_char())

cut(frm=’beginning of buffer’, to=’end of buffer’, append=False)
Copies the given range of text into the clipboard so that it can be further pasted into other applications or
other parts of GPS. The text is removed from the edited buffer. If append is True, the text is appended to
the last clipboard entry instead of generating a new one.

Parameters

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

• append (bool) – A boolean

delete(frm=’beginning of buffer’, to=’end of buffer’)
Deletes the given range of text from the buffer.

Parameters

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

delete_cursor(location)
Deletes a slave cursor at the given location.

end_of_buffer()
Returns a location pointing to the last character in the buffer.

Return type EditorLocation

expand_alias(alias)
Expands given alias in the editor buffer at the point where the cursor is.

file()
Returns the name of the file edited in this buffer.

Return type File

static get(file=’current editor’, force=False, open=True)
If file is already opened in an editor, get a handle on its buffer. This instance is then shared with all
other buffers referencing the same file. As a result, you can, for example, associate your own data with the

298 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

buffer, and retrieve it at any time until the buffer is closed. If the file is not opened yet, it is loaded in a new
editor, and a new view is opened at the same time (and thus the editor becomes visible to the user). If the
file is not specified, the current editor is returned, which is the last one that had the keyboard focus.

If the file is not currently open, the behavior depends on open:; if true, a new editor is created for that file,
otherwise None is returned.

When a new file is open, it has received the focus. But if the editor already existed, it is not raised explicitly,
and you need to do it yourself through a call to GPS.MDIWindow.raise_window() (see the example
below).

If force is true, a reload is forced in case the file is already open.

Parameters

• file (File) – An instance of GPS.File

• force (bool) – A boolean

• open (bool) – A boolean

Return type EditorBuffer

ed = GPS.EditorBuffer.get(GPS.File ("a.adb"))
GPS.MDI.get_by_child(ed.current_view()).raise_window()
ed.data = "whatever"

... Whatever, including modifying ed

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
ed.data # => "whatever"

get_analysis_unit()
Returns the corresponding libadalang AnalysisUnit.

Return type libadalang.AnalysisUnit

get_chars(frm=’beginning of buffer’, to=’end of buffer’)
Returns the contents of the buffer between the two locations given in parameter. Modifying the returned
value has no effect on the buffer.

Parameters

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

Return type string

get_cursors()
Returns a list of Cursor instances. Note that if you intend to perform actions with tgnores __hem (in
particular deletions/insertions), you should call set_manual_sync, on the cursor’s instance. Also, if you
move any selection mark, you should call update_cursors_selection afterwards.

There is a higher level method, EditorBuffer.cursors() that returns a generator that will handle
this manual work for you.

Return type list[Cursor]

get_lang()
Return the name of the programming language used for this editor, in particular for syntax highlighting
and auto indentation.

Returns a GPS.LanguageInfo instance.

16.5. Classes 299

GPS User’s Guide, Release 2018

See also:

GPS.EditorBuffer.set_lang()

get_mark(name)
Checks whether there is a mark with that name in the buffer, and return it. An exception is raised if there
is no such mark.

Parameters name (string) – A string

Return type GPS.EditorMark

See also:

GPS.EditorLocation.create_mark()

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = ed.at(4, 5)
mark = loc.create_mark("name")
mark.data = "whatever"

.. anything else

mark = ed.get_mark("name")
mark.data is still "whatever"

static get_new()
Opens a new editor on a blank file. This file has no name, and you will have to provide one when you save
it.

Return type EditorBuffer

has_slave_cursors()
Returns true if there are any alive slave cursors in the buffer currently.

Return type bool

indent(frm=’beginning of buffer’, to=’end of buffer’)
Recomputes the indentation of the given range of text. This feature is language-dependent.

Parameters

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

is_modified()
Tests whether the buffer has been modified since it was last opened or saved.

Return type bool

is_read_only()
Whether the buffer is editable or not.

Return type bool

See also:

GPS.EditorBuffer.set_read_only()

lines_count()
Returns the total number of lines in the buffer.

Return type int

300 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

static list()
Returns the list of all editors that are currently open in GPS.

Returns A list of instances of GPS.EditorBuffer

Return type [EditorBuffer]

It is possible to close all editors at once using a command like

for ed in GPS.EditorBuffer.list():
ed.close()

main_cursor()
Returns the main cursor. Generally you should not use this method except if you have a really good reason
to perform actions only on the main cursor. Instead, you should iterate on the result of EditorBuffer.
cursors().

Returns A Cursor instance

Return type Cursor

paste(location)
Pastes the contents of the clipboard at the given location in the buffer.

Parameters location (EditorLocation) – An instance of EditorLocation

redo()
Redoes the last undone command in the editor.

refill(frm=’beginning of buffer’, to=’end of buffer’)
Refills the given range of text, i.e., cuts long lines if necessary so that they fit in the limit specified in the
GPS preferences.

Parameters

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

remove_all_slave_cursors()
Removes all active slave cursors from the buffer.

remove_overlay(overlay, frm=’begining of buffer’, to=’end of buffer’)
Removes all instances of the overlay in the given range of text. It is not an error if the overlay is not applied
to any of the character in the range, it just has no effect in that case.

Parameters

• overlay (EditorOverlay) – An instance of EditorOverlay

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

See also:

GPS.EditorBuffer.apply_overlay()

remove_special_lines(mark, lines)
Removes specified number of special lines at the specified mark. It does not delete the mark.

Parameters

• mark (EditorMark) – An instance of EditorMark

• lines (int) – An integer

16.5. Classes 301

GPS User’s Guide, Release 2018

save(interactive=True, file=’Same file as edited by the buffer’)
Saves the buffer to the given file. If interactive is true, a dialog is open to ask for confirmation
from the user first, which gives him a chance to cancel the saving. interactive is ignored if file is
specified.

Parameters

• interactive (bool) – A boolean

• file (File) – An instance of File

select(frm=’beginning of buffer’, to=’end of buffer’)
Selects an area in the buffer. The boundaries are included in the selection. The order of the boundaries is
irrelevant, but the cursor is be left on to.

Parameters

• frm (EditorLocation) – An instance of EditorLocation

• to (EditorLocation) – An instance of EditorLocation

selection_end()
Returns the character after the end of the selection. This is always located after the start of the selection,
no matter what the order of parameters given to GPS.EditorBuffer.select() is. If the selection
is empty, EditorBuffer.selection_start() and EditorBuffer.selection_end() will
be equal.

Return type EditorLocation

To get the contents of the current selection, one would use:

buffer = GPS.EditorBuffer.get()
selection = buffer.get_chars(

buffer.selection_start(), buffer.selection_end() - 1)

selection_start()
Returns the start of the selection. This is always located before the end of the selection, no matter what the
order of parameters passed to GPS.EditorBuffer.select() is.

Return type EditorLocation

set_cursors_auto_sync()
Sets the buffer in auto sync mode regarding multi cursors. This means that any insertion/deletion will be
propagated in a ‘naive’ way on all multi cursors. Cursor movements will not be propagated.

set_lang(lang)
Set the highlighting programming language. When you open an existing file, GPS automatically computes
the best highlighting language based on file extensions and naming schemes defined in your project, or on
the language that was set manually via the Properties contextual menu.

This function can be used to override this, or set it for newly created files (GPS.EditorBuffer.
get_new())

See also:

GPS.EditorBuffer.get_lang()

set_read_only(read_only=True)
Indicates whether the user should be able to edit the buffer interactively (through any view).

Parameters read_only (bool) – A boolean

302 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

See also:

GPS.EditorBuffer.is_read_only()

undo()
Undoes the last command in the editor.

unselect()
Cancels the current selection in the buffer.

update_cursors_selection()
Updates the overlay used to show the multi cursor’s current selection. This must be called after any
operation on multi cursor selection marks

views()
Returns the list of all views currently editing the buffer. There is always at least one such view. When the
last view is destroyed, the buffer itself is destroyed.

Returns A list of EditorView instances

Return type list[EditorView]

16.5.23 GPS.EditorHighlighter

class GPS.EditorHighlighter
This class can be used to transform source editor text into hyperlinks when the Control key is pressed. Two
actions can then be associated with this hyperlink: clicking with the left mouse button on the hyperlink triggers
the primary action, and clicking with the middle mouse button on the hyperlink triggers the alternate action.

__init__(pattern, action, index=0, secondary_action=None)
Register a highlighter. The action is a Python function that takes a string as a parameter: the string being
passed is the section of text which is highlighted.

Parameters

• pattern – A regular expression representing the patterns on which we want to create
hyperlinks.

• action – The primary action for this hyperlink

• index – This indicate the number of the parenthesized group in pattern that needs to be
highlighted.

• secondary_action – The alternate action for this hyperlink

Define an action
def view_html(url):

GPS.HTML.browse (url)

def wget_url(url):
def on_exit_cb(self, code, output):

GPS.Editor.edit (GPS.dump (output))
p=GPS.Process("wget %s -O -" % url, on_exit=on_exit_cb)

Register a highlighter to launch a browser on any URL
left-clicking on an URL will open the default browser to
this URL middle-clicking will call "wget" to get the
source of this URL and open the output in a new editor

h=GPS.EditorHighlighter ("http(s)?://[^\s:,]*", view_html,
0, wget_url)

16.5. Classes 303

GPS User’s Guide, Release 2018

Remove the highlighter
h.remove()

remove()
Unregister the highlighter. This cannot be called while the hyper-mode is active.

16.5.24 GPS.EditorLocation

class GPS.EditorLocation
This class represents a location in a specific editor buffer. This location is not updated when the buffer changes,
but will keep pointing to the same line/column even if new lines are added in the buffer. This location is no
longer valid when the buffer itself is destroyed, and the use of any of these subprograms will raise an exception.

See also:

GPS.EditorMark()

__init__(buffer, line, column)
Initializes a new instance. Creating two instances at the same location will not return the same instance of
GPS.EditorLocation, and therefore any user data you have stored in the location will not be available
in the second instance.

Parameters

• buffer – The instance of GPS.EditorBuffer

• line – An integer

• column – An integer

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = ed.at(line=4, column=5)
loc.data = "MY OWN DATA"
loc2 = ed.at(line=4, column=5)
loc2.data is not defined at this point

backward_overlay(overlay=None)
Same as GPS.EditorLocation.forward_overlay(), but moves backward instead. If there are
no more changes, the location is left at the beginning of the buffer.

Parameters overlay – An instance of GPS.EditorOverlay

Returns An instance of GPS.EditorLocation

beginning_of_line()
Returns a location at the beginning of the line on which self is.

Returns A new instance of GPS.EditorLocation

block_end()
Returns the location of the end of the current block.

Returns An instance of GPS.EditorLocation

block_end_line()
Returns the last line of the block surrounding the location. The definition of a block depends on the specific
language of the source file.

Returns An integer

304 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

block_fold()
Folds the block containing the location, i.e., makes it invisible on the screen, except for its first line.
Clicking on the icon next to this first line unfolds the block ands make it visible to the user.

See also:

GPS.EditorLocation.block_unfold()

block_level()
Returns the nesting level of the block surrounding the location. The definition of a block depends on the
specific programming language.

Returns An integer

block_name()
Returns the name of the bock surrounding the location. The definition of a block depends on the specific
language of the source file.

Returns A string

block_start()
Returns the location of the beginning of the current block.

Returns An instance of GPS.EditorLocation

block_start_line()
Returns the first line of the block surrounding the location. The definition of a block depends on the
programming language.

Returns An integer

block_type()
Returns the type of the block surrounding the location. This type indicates whether the block is, e.g.,
subprogram, an if statement, etc.

Returns A string

block_unfold()
Unfolds the block containing the location, i.e., makes visible any information that was hidden as a result
of running GPS.EditorLocation.block_fold().

See also:

GPS.EditorLocation.block_fold()

buffer()
Returns the buffer in which the location is found.

Returns An instance of GPS.EditorBuffer

column()
Returns the column of the location.

Returns An integer

create_mark(name=’‘, left_gravity=True)
Creates a mark at that location in the buffer. The mark will stay permanently at that location, and follows
it if the buffer is modified. In fact, even if the buffer is closed and then reopened, the mark will keep track
of the location, but of course not if the file is edited outside of GPS.

Parameters

• name (str) – The name of the mark. If specified, this creates a named mark, which can
later be retrieved through a call to GPS.EditorBuffer.get_mark(). If a mark with
the same name already exists, it is moved to the new location and then returned.

16.5. Classes 305

GPS User’s Guide, Release 2018

• left_gravity (bool) – decides whether the mark is moved towards the left or the
right when text that contains the mark is deleted, or some text is inserted at that location.

Returns An instance of GPS.EditorMark

See also:

GPS.EditorBuffer.get_mark()

buffer = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = buffer.at(3, 4)
mark = loc.create_mark()
buffer.insert(loc, "text")
loc = mark.location()
loc.column() is now 8

end_of_line()
Returns a location located at the end of the line on which self is.

Returns A new instance of GPS.EditorLocation

ends_word()
Returns true if self is currently at the end of a word. The definition of a word depends on the language
used.

Returns A boolean

forward_char(count)
Returns a new location located count characters after self. If count is negative, the location is moved
backward instead.

Parameters count – An integer

Returns A new instance of GPS.EditorLocation

forward_line(count)
Returns a new location located count lines after self. The location is moved back to the beginning of the
line. If self is on the last line, the beginning of the last line is returned.

Parameters count – An integer

Returns A new instance of GPS.EditorLocation

forward_overlay(overlay=’‘)
Moves to the next change in the list of overlays applying to the character. If overlay is specified, go to
the next change for this specific overlay (i.e., the next beginning or end of range where it applies). If there
are no more changes, the location is left at the end of the buffer.

Parameters overlay – An instance of GPS.EditorOverlay

Returns An instance of GPS.EditorLocation

See also:

GPS.EditorLocation.backward_overlay()

forward_word(count)
Returns a new location located count words after self. If count is negative, the location is moved
backward instead. The definition of a word depends on the language.

Parameters count – An integer

Returns A new instance of GPS.EditorLocation

306 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

get_char()
Returns the character at that location in the buffer. An exception is raised when trying to read past the end
of the buffer. The character might be encoded in several bytes since it is a UTF8 string.

Returns A UTF8 string

char = buffer.beginning_of_buffer().get_char()
GPS.Console().write (char) ## Prints the character
To manipulate in python, convert the string to a unicode string:
unicode = char.decode("utf-8")

get_overlays()
Returns the list of all overlays that apply at this specific location. The color and font of the text is composed
through the contents of these overlays.

Returns A list of GPS.EditorOverlay instances

has_overlay(overlay)
Returns True if the given overlay applies to the character at that location.

Parameters overlay – An instance of GPS.EditorOverlay

Returns A boolean

inside_word()
Returns true if self is currently inside a word. The definition of a word depends on the language.

Returns A boolean

line()
Returns the line number of the location.

Returns An integer

offset()
Returns the offset of the location in the buffer, i.e., the number of characters from the beginning of the
buffer to the location.

Returns An integer

search(pattern, backward=False, case_sensitive=False, regexp=False, whole_word=False,
scope=’Whole’, dialog_on_failure=True)

Searches for the next occurrence of pattern in the editor, starting at the given location. If there is such
a match, this function returns the two locations for the beginning of the match and the end of the match.
Typically, these would be used to highlight the match in the editor.

When no match is found, this function returns null. Additionally, if dialog_on_failure is true, a
dialog is displayed to the user asking whether the search should restart at the beginning of the buffer.

Parameters

• pattern – A string

• backward – A boolean

• case_sensitive – A boolean

• regexp – A boolean

• whole_word – A boolean

• scope – A string

• dialog_on_failure – A boolean

Returns A list of two GPS.EditorLocation

16.5. Classes 307

GPS User’s Guide, Release 2018

See also:

GPS.File.search()

starts_word()
Returns true if self is currently at the start of a word. The definition of a word depends on the language.

Returns A boolean

subprogram_name()
Returns the name of the subprogram containing the location.

Returns A string

16.5.25 GPS.EditorMark

class GPS.EditorMark
This class represents a specific location in an open editor. As opposed to the GPS.EditorLocation class,
the exact location is updated whenever the buffer is modified. For example, if you add a line before the mark,
then the mark is moved one line forward as well, so that it still points to the same character in the buffer.

The mark remains valid even if you close the buffer; or if you reopen it and modify it. It will always point to the
same location in the file, while you have kept the Python object.

GPS.EditorLocation.create_mark() allows you to create named marks which you can then retrieve
through GPS.EditorBuffer.get_mark(). Such named marks are only valid while the editor exists. As
soon as you close the editor, you can no longer use get_mark to retrieve it (but the mark is still valid if you have
kept a python object referencing it).

See also:

GPS.EditorLocation()

column = 0
Read only property that gives the location of the mark. :type: int

file = None
Read only property that gives the location of the mark. :type: GPS.File

line = 0
Read only property that gives the location of the mark. :type: int

__init__()
Always raises an exception, thus preventing the direct creation of a mark. Instead, you should use GPS.
EditorLocation.create_mark() to create such a mark.

delete()
Deletes the physical mark from the buffer. All instances referencing the same mark will no longer be valid.
If you have not given a name to the mark in the call to GPS.EditorLocation.create_mark(), it
will automatically be destroyed when the last instance referencing it goes out of scope. Therefore, calling
delete() is not mandatory in the case of unnamed marks, although it is still recommended.

is_present()
Returns True if mark’s location is still present in the buffer.

location()
Returns the current location of the mark. This location will vary depending on the changes that take place
in the buffer. Calling this function will open the corresponding source editor.

Returns An instance of GPS.EditorLocation

308 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = ed.at(3, 5)
mark = loc.create_mark()
...
loc = mark.location()

move(location)
Moves the mark to a new location in the buffer. This is slightly less expensive than destroying the mark
and creating a new one through GPS.EditorLocation.create_mark(), although the result is the
same.

Parameters location – An instance of GPS.EditorLocation

16.5.26 GPS.EditorOverlay

class GPS.EditorOverlay
This class represents properties that can be applied to one or more ranges of text. This can be used to change
the display properties of the text (colors, fonts,...) or store any user-specific attributes that can be retrieved later.
GPS itself uses overlays to do syntax highlighting. If two or more overlays are applied to the same range of text,
the final colors and fonts of the text depends on the priorities of these overlays and the order in which they were
applied to the buffer.

This class is fairly low-level; we recommend using the class gps_utils.highlighter.OverlayStyle
instead. That class provides similar support for specifying attributes, but makes it easier to highlight sections of
an editor with that style, or to remove the highlighting.

In fact, if your goal is to highlight parts of editors, it might be simpler to use gps_utils.highilghter.
Background_Highlighter or one of the classes derived from it. These classes provide convenient support
for highlighting editors in the background, i.e. without interfering with the user or slowing things down.

__init__()
This subprogram is used to prevent the direct creation of overlays. Overlays need to be created through
GPS.EditorBuffer.create_overlay().

See also:

GPS.EditorBuffer.create_overlay()

get_property(name)
Retrieves one of the predefined properties of the overlay. This list of these properties is described for
GPS.EditorOverlay.set_property().

Parameters name – A string

Returns A string or a boolean, depending on the property

name()
Returns the name associated with this overlay, as given to GPS.EditorBuffer.
create_overlay().

Returns A string

See also:

GPS.EditorBuffer.create_overlay()

set_property(name, value)
Changes some of the predefined properties of the overlay. These are mostly used to change the visual
rendering of the text. The following attribute names are currently recognized:

16.5. Classes 309

GPS User’s Guide, Release 2018

•foreground (value is a string with the color name)

Changes the foreground color of the text.

•background (value is a string with the color name)

Changes the background color of the text.

•paragraph-background (value is a string with the color name)

Changes the background color of entire lines. Contrary to the “background” property, this highlights
the entire line, including the space after the end of the text, regardless of which characters are actually
covered by the overlay.

•font (value is a string with the font name)

Changes the text font.

•weight (value is a string, one of “light”, “normal” and “bold”)

•style (value is a string, one of “normal”, “oblique” and “italic”)

•editable (value is a boolean)

Indicates whether this range of text is editable.

•variant (one of 0 (“normal”) or 1 (“small_caps”))

•stretch (from 0 (“ultra-condensed”) to 8 (“ultra-expanded”))

•underline (one of 0 (“none”), 1 (“single”), 2 (“double”), 3 (“low”))

•size-points (an integer)

Font size in points.

•rise (an integer)

Offset of text above the baseline (below the baseline if rise is negative), in Pango units.

•pixels-above-lines (an integer)

Pixels of blank space above paragraphs.

•pixels-below-lines (an integer)

Pixels of blank space below paragraphs.

•pixels-inside-wrap (an integer)

Pixels of blank space between wrapped lines in a paragraph.

•invisible (a boolean)

Whether this text is hidden.

•strikethrough (a boolean)

Whether to strike through the text.

•background-full-height (a boolean)

Whether the background color fills the entire line height or only the height of the tagged characters.

The set of predefined attributes is fixed. However, overlays are especially useful to store your own
user data in the usual Python manner, which you can retrieve later. This can be used to mark specially
specific ranges of text which you want to be able to find easily later on, even if the buffer has been
modified since then (see GPS.EditorLocation.forward_overlay()).

310 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters

• name – A string

• value – A string or a boolean, depending on the property

16.5.27 GPS.EditorView

class GPS.EditorView
One view of an editor, i.e., the visible part through which users can modify text files. A given GPS.
EditorBuffer can be associated with multiple views. Closing the last view associated with a buffer will
also close the buffer.

To get a handle on the current editor, use the following code:
view = GPS.EditorBuffer.get().current_view()

GPS.EditorViewGPS.GUI

__init__(buffer)
Called implicitly whenever you create a new view. It creates a new view for the given buffer, and is
automatically inserted into the GPS MDI.

Parameters buffer (EditorBuffer) – An instance of GPS.EditorBuffer

buffer()
Returns the buffer to which the view is attached. Editing the text of the file should be done through this
instance.

Return type EditorBuffer

center(location=’location of cursor’)
Scrolls the view so that the location is centered.

Parameters location (EditorLocation) – An instance of GPS .EditorLocation

cursor()
Returns the current location of the cursor in this view.

Return type EditorLocation

goto(location, extend_selection=False)
Moves the cursor to the given location. Each view of a particular buffer has its own cursor position, which
is where characters typed by the user will be inserted. If extend_selection is True, extend the selection
from the current bound to the new location.

Parameters

• location (EditorLocation) – An instance of GPS .EditorLocation

• extend_selection (bool) – A Boolean

is_read_only()
Whether the view is editable or not. This property is shared by all views of the same buffer.

16.5. Classes 311

GPS User’s Guide, Release 2018

Return type bool

See also:

GPS.EditorBuffer.is_read_only()

set_read_only(read_only=True)
Indicates whether the user should be able to edit interactively through this view. Setting a view
Writable/Read Only will also modify the status of the other views of the same buffer.

Parameters read_only (bool) – A boolean

See also:

GPS.EditorBuffer.get_read_only()

title(short=False)
Returns the view’s title; the short title is returned if short is set to True.

Parameters short (bool) – A boolean

16.5.28 GPS.Entity

class GPS.Entity
Represents an entity from the source, based on the location of its declaration.

See also:

GPS.Entity.__init__()

__init__(name, file=None, line=-1, column=-1, approximate_search_fallback=True)
Initializes a new instance of the Entity class from any reference to the entity. The file parameter
should only be omitted for a predefined entity of the language. This will only work for languages for
which a cross-reference engine has been defined

Parameters

• name – A string, the name of the entity

• file – An instance of GPS.File in which the entity is referenced

• line – An integer, the line at which the entity is referenced

• column – An integer, the column at which the entity is referenced

• approximate_search_fallback – If True, when the line and column are not exact,
this parameter will trigger approximate search in the database (eg. see if there are similar
entities in the surrounding lines)

>>> GPS.Entity("foo", GPS.File("a.adb"),
10, 23).declaration().file().name()

=> will return the full path name of the file in which the entity
"foo", referenced in a.adb at line 10, column 23, is defined.

attributes()
Returns various boolean attributes of the entity: is the entity global, static, etc.

Returns A htable with the following keys: - ‘global’: whether the entity is a global entity -
‘static’: whether the entity is a local static variable (C/C++) - ‘in’: for an in parameter for an
Ada subprogram - ‘out’: for an out parameter for an Ada subprogram - ‘inout’: for an in-out
parameter for an Ada subprogram - ‘access’: for an access parameter for an Ada subprogram

312 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

body(nth=‘1’)
Returns the location at which the implementation of the entity is found. For Ada subprograms and pack-
ages, this corresponds to the body of the entity. For Ada private types, this is the location of the full
declaration for the type. For entities which do not have a notion of body, this returns the location of the
declaration for the entity. Some entities have several bodies. This is for instance the case of a separate
subprogram in Ada, where the first body just indicates the subprogram is separate, and the second body
provides the actual implementation. The nth parameter gives access to the other bodies. An exception is
raised when there are not at least nth bodies.

Parameters nth – An integer

Returns An instance of GPS.FileLocation

entity = GPS.Entity("bar", GPS.File("a.adb"), 10, 23)
body = entity.body()
print "The subprogram bar's implementation is found at " +
↪→body.file.name() + ':' + body.line() + ':' + body.column()

called_by(dispatching_calls=False)
Displays the list of entities that call the entity. The returned value is a dictionary whose keys are instances
of Entity calling this entity, and whose value is a list of FileLocation instances where the entity
is referenced. If dispatching_calls is true, then calls to self that might occur through dispatching are also
listed.

Parameters dispatching_calls – A boolean

Returns A dictionary, see below

called_by_browser()
Opens the call graph browser to show what entities call self.

calls(dispatching_calls=False)
Displays the list of entities called by the entity. The returned value is a dictionary whose keys are instances
of Entity called by this entity, and whose value is a list of FileLocation instances where the entity
is referenced. If dispatching_calls is true, calls done through dispatching will result in multiple
entities being listed (i.e., all the possible subprograms that are called at that location).

Parameters dispatching_calls – A boolean

Returns A dictionary, see below

See also:

GPS.Entity.is_called_by()

category()
Returns the category of a given entity. Possible values include: label, literal, object, subprogram, package,
namespace, type, and unknown. The exact list of strings is not hard-coded in GPS and depends on the
programming language of the corresponding source.

See instead is_access(), is_array(), is_subprogram(), etc.

Returns A string

child_types()
Return the list of entities that extend self (in the object-oriented sense)

Returns a list of GPS.Entity

declaration()
Returns the location of the declaration for the entity. The file’s name is is “<predefined>” for predefined
entities.

16.5. Classes 313

GPS User’s Guide, Release 2018

Returns An instance of GPS.FileLocation where the entity is declared

entity=GPS.Entity("integer")
if entity.declaration().file().name() == "<predefined>":

print "This is a predefined entity"

derived_types()
Returns a list of all the entities that are derived from self. For object-oriented languages, this includes
types that extend self. In Ada, this also includes subtypes of self.

Returns A list of GPS.Entity

discriminants()
Returns the list of discriminants for entity. This is a list of entities, empty if the type has no discriminant
or if this notion does not apply to the language.

Returns A list of instances of GPS.Entity

documentation(extended=False)
Returns the documentation for the entity. This is the comment block found just before or just after the
declaration of the entity (if any such block exists). This is also the documentation string displayed in the
tooltips when you leave the mouse cursor over an entity for a while. If extended is true, the returned
documentation includes formatting and the full entity description.

Parameters extended – A boolean

Returns A string

end_of_scope()
Returns the location at which the end of the entity is found.

Returns An instance of GPS.FileLocation

fields()
Returns the list of fields for the entity. This is a list of entities. This applies to Ada record and tagged
types, or C structs for instance.

In older versions of GPS, this used to return the literals for enumeration types, but these should now be
queried through self.literals() instead.

Returns A list of instances of GPS.Entity

find_all_refs(include_implicit=False)
Displays in the Locations view all the references to the entity. If include_implicit is true, implicit
uses of the entity are also referenced, for example when the entity appears as an implicit parameter to a
generic instantiation in Ada.

Parameters include_implicit – A boolean

See also:

GPS.Entity.references()

full_name()
Returns the full name of the entity that it to say the name of the entity prefixed with its callers and par-
ent packages names. The casing of the name has been normalized to lower-cases for case-insensitive
languages.

Returns A string, the full name of the entity

get_called_entities()
Return the list of entities referenced within the scope of self.

Returns a list of GPS.Entity

314 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

instance_of()
If self is an instantiation of some other generic entity, this returns that entity. For instance, if the Ada code
contains:

procedure Foo is new Generic_Proc (Integer);

and e is an instance of GPS.Entity for Foo, then e.instance_of() returns an entity for Generic_Proc.

Returns an instance of GPS.Entity or None

is_access()
Whether self is a pointer or access (variable or type)

Returns A boolean

is_array()
Whether self is an array type or variable.

Returns A boolean

is_container()
Whether self contains other entities (such as a package or a record).

Returns A boolean

is_generic()
Whether the entity is a generic.

Returns A boolean

is_global()
Whether self is a global entity.

Returns A boolean

is_predefined()
Whether self is a predefined entity, i.e. an entity for which there is no explicit declaration (like an ‘int’ in
C or an ‘Integer’ in Ada).

Returns A boolean

is_subprogram()
Whether the entity is a subprogram, procedure or function.

Returns A boolean

is_type()
Whether self is a type declaration (as opposed to a variable).

Returns A boolean

literals()
Returns the list of literals for an enumeration type.

Returns A list of instances of GPS.Entity

methods(include_inherited=False)
Returns the list of primitive operations (aka methods) for self. This list is not sorted.

Parameters include_inherited – A boolean

Returns A list of instances of GPS.Entity

name()
Returns the name of the entity. The casing of the name has been normalized to lower-cases for case-
insensitive languages.

16.5. Classes 315

GPS User’s Guide, Release 2018

Returns A string, the name of the entity

name_parameters(location)
Refactors the code at the location, to add named parameters. This only work if the language has support
for such parameters, namely Ada for now.

Parameters location – An instance of GPS.FileLocation

GPS.Entity("foo", GPS.File("decl.ads")).rename_parameters(
GPS.FileLocation(GPS.File("file.adb"), 23, 34))

overrides()
Returns the entity that self overrides.

Return type GPS.Entity

parameters()
Returns the list of parameters for entity. This is a list of entities. This applies to subprograms.

Returns A list of instances of GPS.Entity

parent_types()
Returns the list of parent types when self is a type. For example, if we have the following Ada code:

type T is new Integer;
type T1 is new T;

then the list of parent types for T1 is [T].

Returns A list of GPS.Entity

pointed_type()
Returns the type pointed to by entity. If self is not a pointer (or an Ada access type), None is returned. This
function also applies to variables, and returns the same information as their type would

Returns An instance of GPS.Entity

Given the following Ada code:
type Int is new Integer;
type Ptr is access Int;
P : Ptr;
the following requests would apply:

f = GPS.File("file.adb")
GPS.Entity("P", f).type() # Ptr
GPS.Entity("P", f).pointed_type() # Int
GPS.Entity("Ptr", f).pointed_type() # Int

primitive_of()
Returns the list of type for which self is a primitive operation (or a method, in other languages than Ada).

Returns A list of instances of GPS.Entity or []

references(include_implicit=False, synchronous=True, show_kind=False, in_file=None,
kind_in=’‘)

Lists all references to the entity in the project sources. If include_implicit is true, implicit uses of
the entity are also referenced, for example when the entity appears as an implicit parameter to a generic
instantiation in Ada.

If synchronous is True, the result is returned directly, otherwise a command is returned and its result
is accessible with get_result(). The result, in that case, is either a list of locations (if show_kind
is False) or a htable indexed by location, and whose value is a string indicating the kind of the reference

316 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

(such as declaration, body, label, or end-of-spec). in_file can be used to limit the search to references
in a particular file, which is. kind_in is a list of comma-separated list of reference kinds (as would be
returned when show_kind is True). Only such references are returned, as opposed to all references.

Parameters

• include_implicit – A boolean

• synchronous – A boolean

• show_kind – A boolean

• in_file – An instance of GPS.File

• kind_in – A string

Returns A list of GPS.FileLocation, htable, or GPS.Command

See also:

GPS.Entity.find_all_refs()

for r in GPS.Entity("GPS", GPS.File("gps.adb")).references():
print "One reference in " + r.file().name()

rename(name, include_overriding=True, make_writable=False, auto_save=False)
Renames the entity everywhere in the application. The source files should have been compiled first, since
this operation relies on the cross-reference information which have been generated by the compiler. If
include_overriding is true, subprograms that override or are overridden by self are also renamed.
Likewise, if self is a parameter to a subprogram then parameters with the same name in overriding or
overridden subprograms are also renamed.

If some renaming should be performed in a read-only file, the behavior depends on make_writable: if true,
the file is made writable and the renaming is performed; if false, no renaming is performed in that file, and
a dialog is displayed asking whether you want to do the other renamings.

The files will be saved automatically if auto_save is true, otherwise they are left edited but unsaved.

Parameters

• name – A string

• include_overriding – A boolean

• make_writable – A boolean

• auto_save – A boolean

return_type()
Return the return type for entity. This applies to subprograms.

Returns An instance of GPS.Entity

show()
Displays in the type browser the informations known about the entity, such as the list of fields for records,
list of primitive subprograms or methods, and list of parameters.

type()
Returns the type of the entity. For a variable, this its type. This function used to return the parent types
when self is itself a type, but this usage is deprecated and you should be using self.parent_types()
instead.

Returns An instance of GPS.Entity

16.5. Classes 317

GPS User’s Guide, Release 2018

16.5.29 GPS.Exception

class GPS.Exception
One of the exceptions that can be raised by GPS. It is a general error message, and its semantic depends on what
subprogram raised the exception.

GPS.Exception

16.5.30 GPS.File

class GPS.File
Represents a source file of your application.

See also:

GPS.File.__init__()

executable_path = None
Return a File instance of the executable associated with this file.

The result may be meaningless if the given File is not supposed to produce an executable.

path = ‘’
The absolute path name for the current instance of GPS.File, including directories from the root of the
filesystem.

__init__(name, local=False)
Initializes a new instance of the class File. This does not need to be called explicitly, since GPS calls
it automatically when you create such an instance. If name is a base file name (no directory is specified),
GPS attempts to search for this file in the list of source directories of the project. If a directory is specified,
or the base file name was not found in the source directories, then the file name is considered as relative to
the current directory. If local is “true”, the specified file name is to be considered as local to the current
directory.

Parameters

• name – Name of the file associated with this instance

• local – A boolean

See also:

GPS.File.name()

file=GPS.File("/tmp/work")
print file.name()

compile(extra_args=’‘)
Compiles the current file. This call returns only after the compilation is completed. Additional arguments
can be added to the command line.

Parameters extra_args – A string

318 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

See also:

GPS.File.make()

GPS.File("a.adb").compile()

directory()
Returns the directory in which the file is found.

Returns A string

Sorting files by TN is easily done with a loop like
dirs={}
for s in GPS.Project.root().sources():

if dirs.has_key (s.directory()):
dirs[s.directory()].append (s)

else:
dirs[s.directory()] = [s]

entities(local=True)
Returns the list of entities that are either referenced (local is false) or declared (local is true) in self.

Parameters local – A boolean

Returns A list of GPS.Entity

generate_doc()
Generates the documentation fo the file and displays it in the default browsers.

get_property(name)
Returns the value of the property associated with the file. This property might have been set in a previous
GPS session if it is persistent. An exception is raised if no such property already exists for the file.

Parameters name – A string

Returns A string

See also:

GPS.File.set_property()

imported_by(include_implicit=False, include_system=True)
Returns the list of files that depends on file_name. This command might take some time to execute since
GPS needs to parse the cross-reference information for multiple source files. If include_implicit is
true, implicit dependencies are also returned. If include_system is true, dependent system files from
the compiler runtime are also returned.

Parameters

• include_implicit – A boolean. This is now ignored, and only explicit dependencies
corresponding to actual ‘with’ or ‘#include’ lines will be returned.

• include_system – A boolean

Returns A list of files

See also:

GPS.File.imports()

imports(include_implicit=False, include_system=True)
Returns the the list of files that self depends on. If include_implicit is true, implicit dependencies
are also returned. If include_system is true, then system files from the compiler runtime are also
considered.

16.5. Classes 319

GPS User’s Guide, Release 2018

Parameters

• include_implicit – A boolean

• include_system – A boolean

Returns A list of files

See also:

GPS.File.imported_by()

language()
Returns the name of the language this file is written in. This is based on the file extension and the naming
scheme defined in the project files or the XML files. The empty string is returned when the language is
unknown.

Returns A string

make(extra_args=’‘)
Compiles and links the file and all its dependencies. This call returns only after the compilation is com-
pleted. Additional arguments can be added to the command line.

Parameters extra_args – A string

See also:

GPS.File.compile()

name(remote_server=’GPS_Server’)
Returns the name of the file associated with self. This is an absolute file name, including directories from
the root of the filesystem.

If remote_server is set, the function returns the equivalent path on the specified server. GPS_Server
(default) is always the local machine. This argument is currently ignored.

This function returns the same value as the self.path property, and the latter might lead to more readable
code.

Parameters remote_server – A string. Possible values are “GPS_Server” (or empty string),
“Build_Server”, “Debug_Server”, “Execution_Server” and “Tools_Server”.

Returns A string, the name of the file

other_file()
Returns the name of the other file semantically associated with this one. In Ada this is the spec or body of
the same package depending on the type of this file. In C, this will generally be the .c or .h file with the
same base name.

Returns An instance of GPS.File

GPS.File("tokens.ads").other_file().name()
=> will print "/full/path/to/tokens.adb" in the context of the
=> project file used for the GPS tutorial.

project(default_to_root=True)
Returns the project to which file belongs. If file is not one of the souces of the project, the returned value
depends on default_to_root: if false, None is returned. Otherwise, the root project is returned.

Parameters default_to_root – A boolean

Returns An instance of GPS.Project

320 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.File("tokens.ads").project().name()
=> will print "/full/path/to/sdc.gpr" in the context of the project
=> file used for the GPS tutorial

references(kind=’‘, sortby=0)
Returns all references (to any entity) within the file. The acceptable values for kind can currently be
retrieved directly from the cross-references database by using a slightly convoluted approach:

sqlite3 obj/gnatinspect.db
> select display from reference_kinds;

Parameters

• kind (string) – this can be used to filter the references, and is more efficient than
traversing the list afterward. For instance, you can get access to the list of dispatching
calls by passing “dispatching call” for kind. The list of kinds is defined in the cross-
reference database, and new values can be added at any time. See above on how to retrieve
the list of possible values.

• sortby (integer) – how the returned list should be sorted. 0 indicates that they are
sorted in the order in which they appear in the file; 1 indicates that they are sorted first by
entity, and then in file order.

Returns A list of tuples (GPS.Entity , GPS.FileLocation)

remove_property(name)
Removes a property associated with a file.

Parameters name – A string

See also:

GPS.File.set_property()

search(pattern, case_sensitive=False, regexp=False, scope=’whole’)
Returns the list of matches for pattern in the file. Default values are False for case_sensitive and regexp.
Scope is a string, and should be any of ‘whole’, ‘comments’, ‘strings’, ‘code’. The latter will match only
for text outside of comments.

Parameters

• pattern – A string

• case_sensitive – A boolean

• regexp – A boolean

• scope – One of (“whole”, “comments”, “strings”, “code”)

Returns A list of GPS.FileLocation instances

See also:

GPS.EditorLocation.search()

GPS.File.search_next()

search_next(pattern, case_sensitive=False, regexp=False)
Returns the next match for pattern in the file. Default values are False for case_sensitive and regexp. Scope
is a string, and should be any of ‘whole’, ‘comments’, ‘strings’, ‘code’. The latter will match only for text
outside of comments.

16.5. Classes 321

GPS User’s Guide, Release 2018

Parameters

• pattern – A string

• case_sensitive – A boolean

• regexp – A boolean

Returns An instance of GPS.FileLocation

See also:

GPS.File.search_next()

set_property(name, value, persistent=False)
Associates a string property with the file. This property is retrievable during the whole GPS session, or
across GPS sessions if persistent is set to True.

This is different than setting instance properties through Python’s standard mechanism in that there is no
guarantee that the same instance of GPS.File will be created for each physical file on the disk, and
therefore you would not be able to associate a property with the physical file itself.

Parameters

• name – A string

• value – A string

• persistent – A boolean

See also:

GPS.File.get_property()

GPS.Project.set_property()

unit()
Return the unit name for this file. For Ada source files, this is the unit name (i.e. the name of the package
or the library-level subprogram). For other languages, this function always returns the empty string.

Returns a string

used_by()
Displays in the dependency browser the list of files that depends on file_name. This command might take
some time to execute since GPS needs. to parse the cross-reference information for multiple source files

See also:

GPS.File.uses()

uses()
Displays in the dependency browser the list of files that file_name depends on.

See also:

GPS.File.used_by()

16.5.31 GPS.FileLocation

class GPS.FileLocation
Represents a location in a file.

See also:

GPS.FileLocation.__init__()

322 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

__init__(filename, line, column)
Initializes a new instance of GPS.FileLocation.

Parameters

• filename – An instance of GPS.File

• line – An integer

• column – An integer

location = GPS.FileLocation(GPS.File("a.adb"), 1, 2)

column()
Returns the column of the location.

Returns An integer, the column of the location

See also:

GPS.FileLocation.file()

GPS.FileLocation.line()

file()
Returns the file of the location.

Returns An instance of GPS.File, the file of the location

See also:

GPS.FileLocation.line()

GPS.FileLocation.column()

line()
Returns the line number of the location.

Returns An integer

See also:

GPS.FileLocation.file()

GPS.FileLocation.column()

16.5.32 GPS.FileTemplate

class GPS.FileTemplate
This class allows the user to create file templates from registered aliases.

static register(alias_name, label, unit_param, language, is_impl, impl_alias_name=None,
post_action=None)

Register a new file template and create a ‘New/create label contextual menu allowing users to create a
new file from it for a given directory.

A file template is associated with the registered alias retrieved from alias_name: when clicking on the
file template’s contextual menu, a dialog asks the user to enter the alias parameters values and the expanded
text of the alias is then used to prefill the new file.

The base name of the newly created file is deduced from the unit_param alias parameter value and the
naming sheme deduced from the given language. Finally, the extension is computed from the is_impl
boolean parameter, which indicates if the file is an implementation file or a specification file. The file is
then placed in the directory from which the contextual menu was spawned.

16.5. Classes 323

GPS User’s Guide, Release 2018

The optional impl_alias_name is used when when the file template should be used for a specifica-
tion file (i.e: when is_impl is False): when specified, the user will have the choice to also create the
corresponding implementation file from the given alias (e.g: create also the Ada body file when creating a
package specification file). The parameters of both aliases should match in that case.

The optional post_action parameter allows you to specify a function that will be called after the
creation of a file from this template. This function will receive the newly created file and its associated
project as parameters and should return True if it succeeds, False otherwise.

example:

post_action callback def __add_to_main_units(project, file):

Ask the user if he wants to add the newly created main unit to # the project’s main units.

unit = file.unit() dialog_msg = (“Do you want to add ‘%s’ to the main units of “

“project ‘%s’?” % (unit, project.name()))

if GPS.MDI.yes_no_dialog(dialog_msg): project.add_main_unit(unit) project.save()
project.recompute()

return True

Register the ‘Main Unit’ FileTemplate GPS.FileTemplate.register(

alias_name=”main_unit”, label=”Ada Main Unit”, unit_param=”name”, language=”ada”,
is_impl=True, post_action=__add_to_main_units)

Parameters

• alias_name (str) – the name of the alias to use

• label (str) – label used for displaying purposes

• unit_param (str) – the alias parameter to use for naming

• language (str) – the file template’s language

• is_impl (bool) – whether it’s an implementation file or not

• impl_alias_name (string) – The optional implementation alias name

• post_action – A subprogram called after the creation of a file

from this template. :type post_action: (GPS.File, GPS.Project) -> bool

16.5.33 GPS.Filter

class GPS.Filter
This class gives access to various aspects of the filters that are used by GPS to compute whether an action (and
thus a menu, contextual menu or toolbar button) can be activated by the user at the current time.

static list()
Return the list of all registered named filters. Instead of duplicating their implementation, it is better to
reuse existing filters when possible, since their result is cached by GPS. Since lots of filters might be
evaluated when computing the contextual menu, it will be faster when using named filters in such a case.

The returned named can be used in GPS.Action.create() for instance.

Returns a list of strings (the name of the filters)

324 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

16.5.34 GPS.GUI

class GPS.GUI
This is an abstract class (ie no instances of it can be created from your code, which represents a graphical
element of the GPS interface.

See also:

GPS.GUI.__init__()

__init__()
Prevents the creation of instances of GPS.GUI. Such instances are created automatically by GPS as a
result of calling other functions.

See also:

GPS.Toolbar.append()

See also:

GPS.Toolbar.entry()

See also:

GPS.Menu.get()

destroy()
Destroy the graphical element. It disappears from the interface, and cannot necessarily be recreated later
on.

hide()
Temporarily hide the graphical element. It can be shown again through a call to GPS.GUI.show().

See also:

GPS.GUI.show()

is_sensitive()
Return False if the widget is currently greyed out and not clickable by users.

Returns A boolean

See also:

GPS.GUI.set_sensitive()

pywidget()
This function is only available if GPS was compiled with support for pygobject and the latter was found
at run time. It returns a widget that can be manipulated through the usual PyGtk functions. PyGObject is
a binding to the gtk+ toolkit, and allows you to create your own windows easily, or manipulate the entire
GPS GUI from Python.

Returns An instance of PyWidget

See also:

GPS.MDI.add()

The following example makes the project view inactive. One could
easily change the contents of the project view as well.
widget = GPS.MDI.get("Project View")
widget.pywidget().set_sensitive False)

16.5. Classes 325

GPS User’s Guide, Release 2018

set_sensitive(sensitive=True)
Indicate whether the associated graphical element should respond to user interaction or not. If the element
is not sensitive, the user will not be able to click on it.

Parameters sensitive (boolean) – A boolean

See also:

GPS.GUI.is_sensitive()

show()
Show again the graphical element that was hidden by hide().

See also:

GPS.GUI.hide()

16.5.35 GPS.HTML

class GPS.HTML
This class gives access to the help system of GPS as well as the integrated browser.

static add_doc_directory(directory)
Adds a new directory to the GPS_DOC_PATH environment variable. This directory is searched for docu-
mentation files. If this directory contains a gps_index.xml file, it is parsed to find the list of documen-
tation files to add to the Help menu. See the GPS documentation for more information on the format of
the gps_index.xml files

Parameters directory – Directory containing the documentation

static browse(URL, anchor=’‘, navigation=True)
Opens the GPS HTML viewer, and loads the given URL. If anchor matches a <a> tag in this file, GPS
jumps to it. If URL is not an absolute file name, it is searched in the path set by the environment variable
GPS_DOC_PATH.

If navigation is True, the URL is saved in the navigation list, so users can move back and forward
from and to this location later on.

The URL can be a network file name, with the following general format:

protocol://username@host:port/full/path

where protocol is one of the recognized protocols (http, ftp,.. see the GPS documentation), and the user-
name and port are optional.

Parameters

• URL – Name of the file to browse

• anchor – Location in the file where to jump to

• navigation – A boolean

See also:

GPS.HTML.add_doc_directory()

GPS.HTML.browse("gps.html")
=> will open the GPS documentation in the internal browser

GPS.HTML.browse("http://host.com/my/document")
=> will download documentation from the web

326 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

16.5.36 GPS.Help

class GPS.Help
This class gives access to the external documentation for shell commands. This external documentation is stored
in the file shell_commands.xml, part of the GPS installation, and is what you are currently seeing.

You almost never need to use this class yourself, since it is used implicitly by Python when you call the
help(object) command at the GPS prompt.

The help browser understands the standard http urls, with links to specific parts of the document. For instance:

"http://remote.com/my_document"
or "#link"

As a special case, it also supports links starting with ‘%’. These are shell commands to execute within GPS,
instead of a standard html file. For instance:

GNAT.OS_Lib%lt;/a%gt;

The first word after ‘%’ is the language of the shell command, the rest of the text is the command to execute

See also:

GPS.Help.__init__()

__init__()
Initializes the instance of the Help class. This parses the XML file that contains the description of all the
commands. With python, the memory occupied by this XML tree will be automatically freed. However,
with the GPS shell you need to explicitly call GPS.Help.reset().

See also:

GPS.Help.reset()

file()
Returns the name of the file that contains the description of the shell commands. You should not have to
access it yourself, since you can do so using GPS.Help().getdoc() instead.

Returns A string

See also:

GPS.Help.getdoc()

getdoc(name, html=False)
Searches in the XML file :file‘shell_commands.xml‘ for the documentation for this specific command or
entity. If no documentation is found, an error is raised. If html is true, the documentation is formated in
HTML

Parameters

• name – The fully qualified name of the command

• html – A boolean

Returns A string, containing the help for the command

print GPS.Help().getdoc("GPS.Help.getdoc")

Help
Help.getdoc %1 "GPS.Help.getdoc"
Help.reset %2

16.5. Classes 327

GPS User’s Guide, Release 2018

reset()
Frees the memory occupied by this instance. This frees the XML tree that is kept in memory. As a result,
you can no longer call GPS.Help.getdoc().

16.5.37 GPS.History

class GPS.History
This class gives access to GPS internal settings. These settings are used in addition to the preferences, and are
used to keep information such as the list of files recently opened, or the state of various check boxes in the
interface so that GPS can display them again in the same state when it is restarted.

__init__()
No instances of this class can be created.

static add(key, value)
Update the value of one of the settings. The new value is added to the list (for instance for recently opened
files), and the oldest previous value might be removed, depending on the maximum number of elements
that GPS wants to preserve for that key.

16.5.38 GPS.Hook

class GPS.Hook
General interface to hooks. Hooks are commands executed when some specific events occur in GPS, and allow
you to customize some of the aspects of GPS.

All standard hooks are documented in the GPS.Predefined_Hooks class.

__init__(name)
Creates a new hook instance, referring to one of the already defined hooks.

Parameters name – A string, the name of the hook

add(function_name, last=True)
Connects a new function to a specific hook. Any time this hook is run through run_hook(), this function
is called with the same parameters passed to run_hook(). If last is True, this function is called after
all functions currently added to this hook. If false, it is called before.

Parameters

• function_name – A subprogram, see the “Subprogram Parameters” section in the GPS
documentation

• last – A boolean

See also:

GPS.Hook.remove()

def filed_edited(hook_name, file):
print "File edited hook=" + hook_name + " file=" + file.name()
GPS.Hook("file_edited").add(file_edited)

add_debounce(function_name, last=True)
The same as above but for calling callback asynchronously. Only for hooks which has :asynchronouse
parameter.

describe_functions()
Lists all the functions executed when the hook is executed. The returned list might contain <<internal>
strings, which indicate that an Ada function is connected to this hook.

328 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Returns A list of strings

static list()
Lists all defined hooks. See also run_hook(), register_hook() and add_hook().

Returns A list of strings

See also:

GPS.Hook.list_types()

static list_types()
Lists all defined hook types.

Returns A list of strings

See also:

GPS.Hook.register()

static register(name, type=’‘)
Definess a new hook. This hook can take any number of parameters: the default is none. The type and
number of parameters is called the type of the hook and is described by the optional second parameter.
The value of this parameter should be either the empty string for a hook that does not take any parameter.
Or it could be one of the predefined types exported by GPS itself (see list_hook_types()). Finally,
it could be the word “”generic”” if this is a new type of hook purely defined for this scripting language

Parameters

• name – A string, the name of the hook to create

• type – A string, the type of the hook. See GPS.Hook.list_types()

remove(function_name)
Removes function_name from the list of functions executed when the hook is run. This is the reverse
of GPS.Hook.add().

Parameters function_name – A subprogram, see the “Subprogram Parameters” section in
the GPS documentation

See also:

GPS.Hook.add()

run(*args)
Runs the hook. Calls all the functions that attached to that hook, and returns the return value of the last
callback (this depends on the type of the hook, most often this is always None). When the callbacks for
this hook are expected to return a boolean, this command stops as soon as one the callbacks returns True.

Parameters args – Any number of parameters to pass to the hook.

See also:

GPS.Hook.run_until_success()

GPS.Hook.run_until_failure()

run_until_failure(*args)
Applies to hooks returning a boolean. Executes all functions attached to this hook until one returns False,
in which case no further function is called. Returns the returned value of the last executed function.

Parameters args – Any number of parameters to pass to the hook.

Returns A boolean

16.5. Classes 329

GPS User’s Guide, Release 2018

See also:

GPS.Hook.run_until_success()

GPS.Hook.run()

run_until_success(*args)
Applies to hooks returning a boolean. Executes all functions attached to this hook until one returns True,
in which case no further function is called. This returns the returned value of the last executed function.
This is mostly the same as GPS.Hook.run(), but makes the halt condition more explicit.

Parameters args – Any number of parameters to pass to the hook.

Returns A boolean

See also:

GPS.Hook.run_until_failure()

GPS.Hook.run()

16.5.39 GPS.Predefined_Hooks

class GPS.Predefined_Hooks
This class is not available in GPS itself. It is included in this documentation as a way to describe all the
predefined hooks that GPS exports.

Each function below describes the name of the hook (as should be used as parameter to GPS.Hook constructor),
as well as the list of parameters that are passed by GPS.

activity_checked_hook(name)
Emitted when an activity status has been checked, the last step done after the activity has been committed.
It is at this point that the activity closed status is updated.

Parameters name (str) –

after_character_added(name, file, char, interactive)
Emitted when a character has been added in the editor. This hook is also called for the backspace key.

See also:

GPS.Predefined_Hooks.character_added()

See also:

GPS.Predefined_Hooks.word_added()

Parameters

• name (str) –

• file (GPS.File) –

after_file_changed_detected(name)
Emitted when one or more opened file have been changed outside of GPS, and GPS needed to resynchro-
nize it. This is called even when the user declined to synchronize.

Parameters name (str) –

annotation_parsed_hook(name)
Emitted when the last annotation has been parsed

Parameters name (str) –

330 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

before_exit_action_hook(name)
Emitted when GPS is about to exit. If the function returns False, the exit is aborted, and you should display
a dialog to explain why

Parameters name (str) –

Returns bool

before_file_saved(name, file)
Emitted immediately before a file is saved

Parameters

• name (str) –

• file (GPS.File) –

bookmark_added(name, str)
Emitted when a new bookmark has been created by the user. The parameter is the name of the bookmark

Parameters

• name (str) –

• str (str) –

bookmark_removed(name, str)
Emitted when a bookmark has been removed by the user. The parameter is the name of the bookmark

Parameters

• name (str) –

• str (str) –

buffer_edited(name, file)
Emitted after the user has stopped modifying the contents of an editor

Parameters

• name (str) –

• file (GPS.File) –

build_mode_changed(name, str)

Parameters

• name (str) –

• str (str) –

build_server_connected_hook(name)
Emitted when GPS connects to the build server in remote mode

Parameters name (str) –

character_added(name, file, char, interactive)
Emitted when a character is going to be added in the editor. It is also called when a character is going to
be removed, in which case the last parameter is 8 (control-h).

See also:

GPS.Predefined_Hooks.after_character_added()

See also:

GPS.Predefined_Hooks.word_added()

16.5. Classes 331

GPS User’s Guide, Release 2018

Parameters

• name (str) –

• file (GPS.File) –

clipboard_changed(name)
Emitted when the contents of the clipboard has changed, either because the user added a new entry to it
(Copy or Cut) or because the index of the last paste operation has changed (Paste Previous)

Parameters name (str) –

compilation_finished(name, category, target, mode, shadow, background, status)
Emitted when a compile operation has finished.

Among the various tasks that GPS connects to this hook are the automatic reparsing of all xref information,
and the activation of the automatic-error fixes. See also the hook “xref_updated”

Parameters

• name (str) –

• category (str) – location or highlighting category that contains the compilation output

• target (str) –

• mode (str) –

• status (int) –

compilation_starting(name, category, quiet, shadow, background, preserve_output)
Emitted when a compilation operation is about to start.

Among the various tasks that GPS connects to this hook are: check whether unsaved editors should be
saved (asking the user), and stop the background task that parses all xref info. If quiet is True, no
visible modification should be done in the MDI, such as raising consoles or clearing their content, since
the compilation should happen in background mode.

Funtions connected to this hook should return False if the compilation should not occur for some reason,
True if it is OK to start the compilation. Typically, the reason to reject a compilation would be because the
user has explicitly cancelled it through a graphical dialog, or because running a background compilation
is not suitable at this time.

The following code adds a confirmation dialog to all
compilation commands.
import gps_utils
@gps_utils.hook("compilation_starting")
def __compilation_starting(hook, category, quiet, *args):

if not quiet:
return MDI.yes_no_dialog("Confirm compilation ?")

else:
return True

If you create a script to execute your own build script, you
should always do the following as part of your script. This
ensures a better integration in GPS (saving unsaved editors,
reloading xref information automatically in the end, raising
the GPS console, parsing error messages for automatically
fixable errors,...)

if notHook ("compilation_starting").run_until_failure(
"Builder results", False, False):

332 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

return

... spawn your command
Hook("compilation_finished").run("Builder results")

Parameters

• name (str) –

• category (str) – location or highlighting category that contains the compilation output

• quiet (bool) – If False, nothing should be reported to the user unless it is an error

• shadow (bool) – Whether the build launched was a Shadow builds, i.e. a secondary
build launched automatically by GPS after a real build. For instance, when multiple
toolchains mode is activated, the builds generating xref are Shadow builds

• background (bool) –

• preserve_output (bool) – Content of Messages view is not cleaned

Returns bool

compute_build_targets(name, str)
Emitted whenever GPS needs to compute a list of subtargets for a given build target. The handler should
check whether name is a known build target, and if so, return a list of tuples, where each tuple corresponds
to one target and contains a display name (used in the menus, for instance), the name of the target and the
full path for the project.

If str is not known, it should return an empty list.

The str parameter is the name of the target, for instance ‘main’, ‘exec’ or ‘make’.

def compute_targets(hook, name):
if name == "my_target":

return [(display_name_1, target_1, ''),
(display_name_2, target_2, '')]

return ""
GPS.Hook("compute_build_targets").add(compute_targets)

Parameters

• name (str) –

• str (str) –

context_changed(name, context)
Emitted when the current context changes in GPS, such as when a new file or entity is selected, or a
window is created

Parameters

• name (str) –

• context (GPS.Context) –

:asynchronouse 400 (ms)

contextual_menu_close(name)
Called just before a contextual menu is destroyed. At this time, the value returned by GPS.
contextual_context() is still the one used in the hook contextual_menu_open and you can still

16.5. Classes 333

GPS User’s Guide, Release 2018

reference the data you stored in the context. This hook is called even if no action was selected by the user.
However, it is always called before the action is executed, since the menu itself is closed first.

See also:

GPS.Predefined_Hooks.contextual_menu_open()

Parameters name (str) –

contextual_menu_open(name)
Called just before a contextual menu is created. It is called before any of the filters is evaluated, and
can be used to precomputed data shared by multiple filters to speed up the computation. Use GPS.
contextual_context() to get the context of the contextual menu and store precomputed data in
it.

See also:

GPS.Predefined_Hooks.contextual_menu_close()

Parameters name (str) –

debugger_breakpoint_added(name, debugger, id)
The breakpoint with ID as parameter is added. The Debugger given in argument might actually be set to
None when the list of breakpoints is changed before the debugger starts.

Parameters

• name (str) –

• debugger (GPS.Debugger) –

• id (int) –

debugger_breakpoint_changed(name, debugger, id)
The breakpoint with ID as parameter is changed. The Debugger given in argument might actually be set
to None when the list of breakpoints is changed before the debugger starts.

Parameters

• name (str) –

• debugger (GPS.Debugger) –

• id (int) –

debugger_breakpoint_deleted(name, debugger, id)
The breakpoint with ID as parameter is deleted. The Debugger given in argument might actually be set to
None when the list of breakpoints is changed before the debugger starts.

Parameters

• name (str) –

• debugger (GPS.Debugger) –

• id (int) –

debugger_breakpoints_changed(name, debugger)
The list of breakpoints set in the debugger was reloaded. It might not have changed since the last time.
The Debugger given in argument might actually be set to None when the list of breakpoints is changed
before the debugger starts.

Parameters

334 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• name (str) –

• debugger (GPS.Debugger) –

debugger_command_action_hook(name, debugger, str)
Called when the user types a command in the debugger console, or emits the command through the
GPS.Debugger API. It gives you a chance to override the behavior for the command, or even define your
own commands. Note that you must ensure that any debugger command you execute this way does finish
with a prompt. The function should return the output of your custom command (which is printed in the
debugger console), or Debugger.Command_Intercepted to indicate the command was handled (but this is
not output in the console)

The following example implements a new gdb command, "hello". When
the user types this command in the console, we end up executing
"print A" instead. This can be used for instance to implement
convenient macros
def debugger_commands(hook, debugger, command):

if command == "hello":
return 'A=' + debugger.send("print A", False)

else:
return ""

GPS.Hook("debugger_command_action_hook").add(debugger_commands)

Parameters

• name (str) –

• debugger (GPS.Debugger) –

• str (str) –

Returns str

debugger_context_changed(name, debugger)
Emitted when the context of the debuggee has changed, for instance after thread switching, frame selec-
tion,...

Parameters

• name (str) –

• debugger (GPS.Debugger) –

debugger_executable_changed(name, debugger)
Emitted when the executable associated with the debugger has changed, for instance via /De-
bug/Debug/Open File. This is also called initially when the executable is given on the command line.

Parameters

• name (str) –

• debugger (GPS.Debugger) –

debugger_location_changed(name, debugger)
Emitted whenever the debugger reports a new current location, for instance when it stops at a breakpoint,
when the user switches frame or thread,...

Parameters

• name (str) –

• debugger (GPS.Debugger) –

16.5. Classes 335

GPS User’s Guide, Release 2018

debugger_process_stopped(name, debugger)
Called when the debugger has ran and has stopped, for example when hitting a breakpoint, or after a next
command. If you need to know when the debugger just started processing a command, you can connect to
the debugger_state_changed hook instead. Conceptually, you could connect to debugger_state_changed at
all times instead of debugger_process_stopped and check when the state is now “idle”.

See also:

GPS.Predefined_Hooks.debugger_stated_changed()

Parameters

• name (str) –

• debugger (GPS.Debugger) –

debugger_process_terminated(name, debugger)
‘ Emitted when the debugged process has finished

Parameters

• name (str) –

• debugger (GPS.Debugger) –

debugger_question_action_hook(name, debugger, str)
Emitted just before displaying an interactive dialog, when the underlying debugger is asking a question to
the user. This hook can be used to disable the dialog (and send the reply directly to the debugger instead). It
should return a non-empty string to pass to the debugger if the dialog should not be displayed. You cannot
send any command to the debugger in this hook. The string parameter contains the debugger question.

def gps_question(hook, debugger, str):
return "1" ## Always choose choice 1

GPS.Hook("debugger_question_action_hook").add(gps_question)

debug=GPS.Debugger.get()
debug.send("print &foo")

Parameters

• name (str) –

• debugger (GPS.Debugger) –

• str (str) –

Returns str

debugger_started(name, debugger)
Emitted after the debugger has been spawned, and when it is possible to send commands to it. Better to
use debugger_state_changed

See also:

GPS.Predefined_Hooks.debugger_stated_changed()

Parameters

• name (str) –

• debugger (GPS.Debugger) –

336 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

debugger_state_changed(name, debugger, new_state)
Indicates a change in the status of the debugger: new_state can be one of “none” (the debugger is now
terminated), “idle” (the debugger is now waiting for user input) or “busy” (the debugger is now processing
a command, and the process is running). As opposed to debugger_process_stopped, this hook is called
when the command is just starting its executing (hence the debugger is busy while this hook is called,
unless the process immediately stopped).

This hook is also called when internal commands are sent to the debugger, and thus much more often than
if it was just reacting to user input. It is therefore recommended that the callback does the minimal amount
of work, possibly doing the rest of the work in an idle callback to be executed when GPS is no longer busy.

If the new state is “busy”, you cannot send additional commands to the debugger.

When the state is either “busy” or “idle”, GPS.Debugger.command will return the command that is about
to be executed or the command that was just executed and just completed.

Parameters

• name (str) –

• debugger (GPS.Debugger) –

• new_state (str) –

debugger_terminated(name, debugger)
Emitted just before the connection to the debugger is closed. It is still possible to send commands. Better
to use debugger_state_changed

Parameters

• name (str) –

• debugger (GPS.Debugger) –

desktop_loaded(name)

Parameters name (str) –

diff_action_hook(name, vcs_file, orig_file, new_file, diff_file, title)
Emitted to request the display of the comparison window

Parameters

• name (str) –

• vcs_file (GPS.File) –

• orig_file (GPS.File) –

• new_file (GPS.File) –

• diff_file (GPS.File) –

• title (str) – (default: “”)

Returns bool

file_changed_detected(name, file)
Emitted whenever GPS detects that an opened file changed on the disk. You can connect to this hook if
you want to change the default behavior, which is asking if the user wants to reload the file. Your function
should return 1 if the action is handled by the function, and return 0 if the default behavior is desired.

This hook stops propagating as soon as a handler returns True. If you want get noticed systematically, use
the after_file_changed_detected instead.

16.5. Classes 337

GPS User’s Guide, Release 2018

import GPS

def on_file_changed(hook, file):
automatically reload the file without prompting the user
ed = GPS.EditorBuffer.get(file, force = 1)
return 1

install a handler on "file_changed_detected" hook
GPS.Hook("file_changed_detected").add(on_file_changed)

Parameters

• name (str) –

• file (GPS.File) –

Returns bool

file_changed_on_disk(name, file)
Emitted when some external action has changed the contents of a file on the disk, such as a VCS operation.
The parameter might be a directory instead of a file, indicating that any file in that directory might have
changed.

Parameters

• name (str) –

• file (GPS.File) –

file_closed(name, file)
Emitted just before the last editor for a file is closed. You can still use EditorBuffer.get() and
current_view() to access the last editor for file.

Parameters

• name (str) –

• file (GPS.File) –

file_deleted(name, file)
Emitted whenever GPS detects that a file was deleted on the disk. The parameter might be a directory
instead of a file, indicating that any file within that directory has been deleted.

Parameters

• name (str) –

• file (GPS.File) –

file_deleting(name, file)
+Emitted before GPS delete a file.

Parameters

• name (str) –

• file (GPS.File) –

file_edited(name, file)
Emitted when a file editor has been opened for a file that was not already opened before. Do not confuse
with the hook open_file_action, which is used to request the opening of a file.

See also:

338 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.Predefined_Hooks.open_file_action_hook()

Parameters

• name (str) –

• file (GPS.File) –

file_line_action_hook(name, identifier, file, every_line, tooltip, info, icon_name)
Emitted to request the display of new information on the side of the editors. You usually will not connect
to this hook, but you might want to run it yourself to ask GPS to display some information on the side
of its editors. If Info is null or empty, existing line information is removed. If the first index in Info is 0,
then space is reserved on the side for a new column, but no information is added yet. The first item should
provide info to compute the maximum width of the column (text + icon). If the first index is -1, then
extra information is added in the status bar (not on the side), using the provided Icon_Nam and Tooltip.
Otherwise, information is added for all the lines with a corresponding entry in Info.

Parameters

• name (str) –

• identifier (str) –

• file (GPS.File) –

• every_line (bool) – (default: True)

file_renamed(name, file, file2)
Emitted whenever a GPS action renamed a file on the disk. file indicates the initial location of the file, while
renamed indicates the new location. The parameters might be directories instead of files, indicating that
the directory has been renamed, and thus any file within that directory have their path changed.

Parameters

• name (str) –

• file (GPS.File) –

• file2 (GPS.File) –

file_saved(name, file)
Emitted whenever a file has been saved

Parameters

• name (str) –

• file (GPS.File) –

file_status_changed(name, file, status)
Emitted when a file status has changed. The value for the status could be one of “UNMODIFIED”,
“MODIFIED” or “SAVED”.

Parameters

• name (str) –

• file (GPS.File) –

• status (str) –

gps_started(name)
Emitted when GPS is fully loaded and its window is visible to the user. You should not do any direct
graphical action before this hook has been called, so it is recommended that in most cases your start scripts
connect to this hook.

16.5. Classes 339

GPS User’s Guide, Release 2018

Parameters name (str) –

highlight_range(name, phase, file, from_line, to_line)
Request to highlight range of text in given file. Phase 1 is executed on each keystroke and should work
fast. Phase 2 is executed when semantic information is ready and may use it.

Parameters

• name (str) –

• phase (int) –

• file (GPS.File) –

• from_line (int) –

• to_line (int) –

html_action_hook(name, url_or_file, enable_navigation, anchor)
Emitted to request the display of HTML files. It is generally useful if you want to open an HTML file and
let GPS handle it in the usual manner.

Parameters

• name (str) –

• url_or_file (str) –

• enable_navigation (bool) – (default: True)

• anchor (str) – (default: “”)

Returns bool

location_changed(name, file, line, column, project)
Emitted when the location in the current editor has changed, and the cursor has stopped moving.

Parameters

• name (str) –

• file (GPS.File) –

• line (int) –

• column (int) –

:asynchronouse 200 (ms)

log_parsed_hook(name)
Emitted when the last log has been parsed

Parameters name (str) –

marker_added_to_history(name, location)
Emitted when a new marker is added to the history list of previous locations, where the user can navigate
backwards and forwards.

Parameters

• name (str) –

• location (GPS.Location) –

mdi_child_selected(name, child)
Emitted when the currently focused MDI child has changed in GPS (e.g: when switching editors)

Parameters

340 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• name (str) –

• child (GPS.MDIWindow) –

:asynchronouse 400 (ms)

message_selected(name, message)

Parameters

• name (str) –

• message (GPS.Message) –

open_file_action_hook(name, file, line, column, column_end, enable_navigation, new_file,
force_reload, focus, project, group, initial_position, Areas, Title)

Emitted when GPS needs to open a file. You can connect to this hook if you want to have your own editor
open, instead of GPS’s internal editor. Your function should return 1 if it did open the file or 0 if the next
function connected to this hook should be called.

The file should be opened directly at line and column. If column_end is not 0, the given range should be
highlighted if possible. enable_navigation is set to True if the new location should be added to the history
list, so that the user can navigate forward and backward across previous locations. new_file is set to True
if a new file should be created when file is not found. If set to False, nothing should be done. force_reload
is set to true if the file should be reloaded from the disk, discarding any change the user might have done.
focus is set to true if the open editor should be given the keyboard focus.

See also:

GPS.Predefined_Hooks.file_edited()

GPS.Hook('open_file_action_hook').run(
GPS.File("gps-kernel.ads"),
322, # line
5, # column
9, # column_end
1, # enable_navigation
1, # new_file
0) # force_reload

Parameters

• name (str) –

• file (GPS.File) –

• line (int) – (default: 1) If -1, all editors for this file will be closed instead

• column (int) – (default: 1)

• column_end (int) –

• enable_navigation (bool) – (default: True)

• new_file (bool) – (default: True)

• force_reload (bool) –

• focus (bool) – (default: True)

• project (GPS.Project) –

Returns bool

16.5. Classes 341

GPS User’s Guide, Release 2018

preferences_changed(name, pref)
Emitted when the value of some of the preferences changes. Modules should refresh themselves dynami-
cally.

Parameters name (str) –

project_changed(name)
Emitted when the project has changed. A new project has been loaded, and all previous settings and
caches are now obsolete. In the callbacks for this hook, the attribute values have not been computed from
the project yet, and will only return the default values. Connect to the project_view_changed hook instead
to query the actual values.

See also:

GPS.Predefined_Hooks.project_view_changed()

Parameters name (str) –

project_changing(name, file)
Emitted just before a new project is loaded

Parameters

• name (str) –

• file (GPS.File) –

project_editor(name)
Emitted before the Project Editor is opened. This allows a custom module to perform specific actions
before the actual creation of this dialog.

Parameters name (str) –

project_saved(name, project)
Emitted when a project is saved to disk. It is called for each project in the hierarchy.

Parameters

• name (str) –

• project (GPS.Project) –

project_view_changed(name)
Emitted when the project view has been changed, for instance because one of the environment variables has
changed. This means that the list of directories, files or switches might now be different. In the callbacks
for this hook, you can safely query the new attribute values.

Parameters name (str) –

revision_parsed_hook(name)
Emitted when the last revision has been parsed

Parameters name (str) –

rsync_action_hook(name, synchronous, force, to_remote, print_output, print_command,
tool_name, host_name, queue_id, file)

internal use only

Parameters

• name (str) –

• synchronous (bool) –

• force (bool) –

342 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• to_remote (bool) –

• print_output (bool) –

• print_command (bool) –

• tool_name (str) –

• host_name (str) –

• queue_id (str) –

• file (GPS.File) –

Returns bool

rsync_finished(name)

Parameters name (str) –

search_functions_changed(name)
Emitted when the list of registered search functions changes.

Parameters name (str) –

search_regexps_changed(name)
Emitted when a new regexp has been added to the list of predefined search patterns.

Parameters name (str) –

search_reset(name)
Emitted when the current search pattern is reset or changed by the user or when the current search is no
longer possible because the setup of GPS has changed.

Parameters name (str) –

semantic_tree_updated(name, file)
Emitted when the semantic_tree for a file has been updated.

Parameters

• name (str) –

• file (GPS.File) –

server_config_hook(name, server, nickname)
Emitted when a server is assigned to a server operations category.

The server_type parameter is the server operations category. It can take the values “BUILD_SERVER”,
“EXECUTION_SERVER” or “DEBUG_SERVER”.

Parameters

• name (str) –

• server (str) –

• nickname (str) –

server_list_hook(name)
Emitted when the list of configured servers has changed.

Parameters name (str) –

source_lines_folded(name, context, line1, line2)

Parameters

• name (str) –

16.5. Classes 343

GPS User’s Guide, Release 2018

• line1 (int) –

• line2 (int) –

source_lines_unfolded(name, context, line1, line2)

Parameters

• name (str) –

• line1 (int) –

• line2 (int) –

status_parsed_hook(name)
Emitted when the last status has been parsed

Parameters name (str) –

stop_macro_action_hook(name)
You should run this hook to request that the macro currently being replayed be stopped. No more events
should be processed as part of this macro.

Parameters name (str) –

task_finished(name)
Emitted when a background task is finished

Parameters name (str) –

task_started(name)
Emitted when a new background task is started

Parameters name (str) –

variable_changed(name)
Emitted when one of the scenario variables has been renamed, removed or when one of its possible values
has changed.

Parameters name (str) –

vcs_active_changed(name)
Emitted when the active VCS has changed. This is the VCS on which operations like commit and log
happen.

Parameters name (str) –

vcs_file_status_changed(VCS, files, props)
Emitted when the VCS status of a file has been recomputed. The file might now be up to date, staged for
commit, locally modified,... It might also have a different version number, for file-based systems. This
hook is only called on actual change of the status, and provides basic information on the new status. Check
GPS.VCS.file_status to get more details.

Parameters

• VCS (GPS.VCS) –

• files ([GPS.File]) –

• props (int) –

vcs_refresh(name, is_file_saved)
Run this hook to force a refresh of all VCS-related views. They will resynchronize their contents from the
disk, rather than rely on cached information. Set is_file_saved parameter to True when the hook is being
run after saving a file, False otherwise

344 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters

• name (str) –

• is_file_saved (bool) –

word_added(name, file)
Emitted when a word has been added in an editor.

See also:

GPS.Predefined_Hooks.character_added()

Parameters

• name (str) –

• file (GPS.File) –

xref_updated(name)
Emitted when the cross-reference information has been updated.

Parameters name (str) –

16.5.40 GPS.Invalid_Argument

class GPS.Invalid_Argument
An exception raised by GPS. Raised when calling a subprogram from the GPS module with an invalid argument
type (passing an integer when a string is expected, for example).

GPS.Exception GPS.Invalid_Argument

16.5.41 GPS.Language

class GPS.Language
A few methods can be overridden when you create your own child class of GPS.Language, to provide support
for the Outline view. They are not defined by default, and thus the documentation is given below:

def parse_constructs(self, constructs_list, gps_file, content_string): ‘” Abstract method that has to be im-
plemented by the subclasses.

Given an empty list of constructs, a file instance and a string containing the contents of the file, this needs
to populate the list of language constructs. In turn this will give support for a number of features in GPS
including:

• Outline support

• Block highlighting/folding support

• Entity search support

param GPS.ConstructList constructs_list The list of constructs to populate.

16.5. Classes 345

GPS User’s Guide, Release 2018

param GPS.File gps_file the name of the file to parse.

param str content_string The content of the file

‘’‘

def should_refresh_constructs(self, file): ‘” Whether GPS should call parse_constructs to refresh the list. This
is called when the file has not changed on the disk, but GPS thinks there might be a need to refresh because
various hooks have been run. By default, this returns False, so that parse_constructs is only called when
the file changes on the disk.

param GPS.File file the file to test

return a bool

‘’‘

def clicked_on_construct(self, construct): ‘” Called when the user wants to jump to a specific construct. The
default is to open an editor for the file/line/column.

param GPS.Construct construct the construct as build in GPS.Language.
parse_constructs().

‘’‘

def get_last_selected_construct_id(self, file): ‘” Called when the Outline view needs to reselect in its tree
view the construct that was selected just before leaving the view associated with the given file.

This function should return the string ID of the last selected construct for the given file.

param GPS.File file the file that is associated with the Outline

return a string

‘’‘

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

static get(name)
Return a description of the language, from its name. For instance:

GPS.Language.get('ada').keywords

or:

GPS.EditorBuffer.get().get_lang().keywords

Returns a GPS.LanguageInfo

static register(instance, name, body_suffix, spec_suffix=’‘, obj_suffix=’‘, indentation_kind=1)
Register an instance of language in GPS.

Parameters

• instance (Language) – The instance you want to register

• name (string) – The name of the language

• body_suffix – The file suffix for the language - ”.c” for the C language for example

• spec_suffix – The file suffix for specification files for the language, if it applies - ”.h”
for the C language.

346 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• obj_suffix – The suffix for object files produced for the language, if it applies - ”.o”
for the C language.

• indentation_kind (int) – One of the INDENTATION_NONE, INDENTA-
TION_SIMPLE or INDENTATION_EXTENDED constants defined in the constructs
module, defining the way the language will be indented.

16.5.42 GPS.LanguageInfo

class GPS.LanguageInfo
This class gives access to various information known about the programing languages supported by GPS.

keywords = ‘’
Return a regular expression that can be used to test whether a string is a keyword for the language. The
regexp is anchored with ‘^’ and ends with ‘\b’ (word separator).

name = ‘’
Return the name of the language

16.5.43 GPS.Libclang

16.5.44 GPS.Locations

class GPS.Locations
General interface to the Locations view.

static add(category, file, line, column, message, highlight=’‘, length=‘0’, look_for_secondary=False)
Adds a new entry to the Locations view. Nodes are created as needed for category or file. If
highlight is specified as a non-empty string, the enter line is highlighted in the file with a color deter-
mined by that highlight category (see register_highlighting() for more information). length
is the length of the highlighting; the default of 0 indicates the whole line should be highlighted

Parameters

• category – A string

• file – An instance of GPS.File

• line – An integer

• column – An integer

• message – A string

• highlight – A string, the name of the highlight category

• length – An integer

• look_for_secondary – A boolean

GPS.Editor.register_highlighting("My_Category", "blue")
GPS.Locations.add(category="Name in location window",

file=GPS.File("foo.c"),
line=320,
column=2,
message="message",
highlight="My_Category")

16.5. Classes 347

GPS User’s Guide, Release 2018

static dump(file)
Dumps the contents of the Locations view to the specified file, in XML format.

Parameters file – A string

static list_categories()
Returns the list of all categories currently displayed in the Locations view. These are the top-level nodes
used to group information generally related to one command, such as the result of a compilation.

Returns A list of strings

See also:

GPS.Locations.remove_category()

static list_locations(category, file)
Returns the list of all file locations currently listed in the given category and file.

Parameters

• category – A string

• file – A string

Returns A list of EditorLocation

See also:

GPS.Locations.remove_category()

static parse(output, category, regexp=’‘, file_index=-1, line_index=-1, column_index=-1,
msg_index=-1, style_index=-1, warning_index=-1, highlight_category=’Builder re-
sults’, style_category=’Style errors’, warning_category=’Builder warnings’)

Parses the contents of the string, which is supposedly the output of some tool, and adds the errors and
warnings to the Locations view. A new category is created in the locations window if it does not exist.
Preexisting contents for that category are not removed, see locations_remove_category().

The regular expression specifies how locations are recognized. By default, it matches file:line:column. The
various indexes indicate the index of the opening parenthesis that contains the relevant information in the
regular expression. Set it to 0 if that information is not available. style_index and warning_index,
if they match, force the error message in a specific category.

highlight_category, style_category and warning_category reference the colors to use
in the editor to highlight the messages when the regexp has matched. If they are set to the empty string,
no highlighting is done in the editor. The default values match those by GPS itself to highlight the error
messages. Create these categories with GPS.Editor.register_highlighting().

Parameters

• output – A string

• category – A string

• regexp – A string

• file_index – An integer

• line_index – An integer

• column_index – An integer

• msg_index – An integer

• style_index – An integer

• warning_index – An integer

348 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• highlight_category – A string

• style_category – A string

• warning_category – A string

See also:

GPS.Editor.register_highlighting()

static remove_category(category)
Removes a category from the Locations view. This removes all associated files.

Parameters category – A string

See also:

GPS.Locations.list_categories()

static set_sort_order_hint(category)
Sets desired sorting order for file nodes of the category. Actual sort order can be overrided by user.

Parameters category – A string (“Chronological” or “Alphabetical”)

16.5.45 GPS.Logger

class GPS.Logger
This class provides an interface to the GPS logging mechanism. This can be used when debugging scripts, or
even be left in production scripts for post-mortem analysis for instance. All output through this class is done in
the GPS log file, $HOME/.gps/log.

GPS comes with some predefined logging streams, which can be used to configure the format of the log file,
such as whether colors should be used or whether timestamps should be logged with each message.

active = True
Whether this logging stream is active

count = None

__init__(name)
Creates a new logging stream. Each stream is associated with a name, which is displayed before each line
in the GPS log file, and is used to distinguish between various parts of GPS. Calling this constructor with
the same name multiple times creates a new class instance.

Parameters name – A string

log = GPS.Logger("my_script")
log.log("A message")

check(condition, error_message, success_message=’‘)
If condition is False, error_message is logged in the log file. If True, success_message is
logged if present.

Parameters

• condition – A boolean

• error_message – A string

• success_message – A string

log=GPS.Logger("my_script")
log.check(1 == 2, "Invalid operation")

16.5. Classes 349

GPS User’s Guide, Release 2018

log(message)
Logs a message in the GPS log file.

Parameters message – A string

set_active(active)
Activates or deactivates a logging stream. The default for a sttream depends on the file $HOME/.gps/
traces.cfg, and will generally be active. When a stream is inactive, no message is sent to the log
file.

Use self.active to test whether a log stream is active.

Parameters active – A boolean

16.5.46 GPS.MDI

class GPS.MDI
Represents GPS’s Multiple Document Interface. This gives access to general graphical commands for GPS, as
well as control over the current layout of the windows within GPS

See also:

GPS.MDIWindow

If the pygobject package is installed, GPS will export a few more functions to Python so that it is easier to
interact with GPS itself. In particular, the GPS.MDI.add() function allows you to put a widget created by
pygobject under control of GPS’s MDI, so users can interact with it as with all other GPS windows.

import GPS

The following line is the usual way to make pygobject visible
from gi.repository import Gtk, GLib, Gdk, GObject

def on_clicked(*args):
GPS.Console().write("button was pressed\n")

def create():
button=Gtk.Button('press')
button.connect('clicked', on_clicked)
GPS.MDI.add(button, "From testgtk", "testgtk")
win = GPS.MDI.get('testgtk')
win.split()

create()

GROUP_CONSOLES = 0

GROUP_DEBUGGER_DATA = 0

GROUP_DEBUGGER_STACK = 0

GROUP_DEFAULT = 0

GROUP_GRAPHS = 0

GROUP_VCS_ACTIVITIES = 0

GROUP_VCS_EXPLORER = 0

GROUP_VIEW = 0

POSITION_AUTOMATIC = 0

350 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

POSITION_BOTTOM = 0

POSITION_LEFT = 0

POSITION_RIGHT = 0

POSITION_TOP = 0

static add(widget, title=’‘, short=’‘, group=0, position=0, save_desktop=None)
This function is only available if pygobject could be loaded in the python shell. You must install this
library first, see the documentation for GPS.MDI itself.

This function adds a widget inside the MDI of GPS. The resulting window can be manipulated by the user
like any other standard GPS window. For example, it can be split, floated, or resized. title is the string
used in the title bar of the window, short is the string used in the notebook tabs. You can immediately
retrieve a handle to the created window by calling GPS.MDI.get (short).

This function has no effect if the widget is already in the MDI. In particular, the save_desktop parameter
will not be taken into account in such a case.

Parameters

• widget – A widget, created by pygobject, or an instance of GPS.GUI or one of the
derived classes.

• title – A string

• short – A string

• group – An integer, see the constants MDI.GROUP_* This indicates to which logical
group the widget belongs (the default group should be reserved for editors). You can
create new groups as you see fit.

• position – An integer, see the constants MDI.POSITION_*. It is used when no other
widget of the same group exists, to specify the initial location of the newly created note-
book. When other widgets of the same group exist, the widget is put on top of them.

• save_desktop – A function that should be called when GPS saves the desktop into
XML. This function receives the GPS.MDIWindow as a parameter and should return a
tuple of two elements (name, data) where name is a unique identifier for this window, and
data is a string containing additional data to be saved (and later restored). One suggestion
is to encode any Python data through JSON and send the resulting string as data. An easier
alternative is to use the modules.py support script in GPS, which handles this parameter
automatically on your behalf.

Returns The instance of GPS.MDIWindow that was created

from gi.repository import Gtk
b = Gtk.Button("Press Me")
GPS.MDI.add(b)

See also:

GPS.MDI.get()

GPS.GUI.pywidget()

GPS.MDI()

static children()
Returns all the windows currently in the MDI.

Returns A list of GPS.MDIWindow

16.5. Classes 351

GPS User’s Guide, Release 2018

static combo_selection_dialog(title, message, choices, combo_label=None)
Displays a modal dialog with the given title, the given message displayed at the top, and a combobox
displaying the possible choices.

Dy default, the first value in choices is selected in the combobox.

The optional combo_label parameter can be used to display a label on the left-side of the combobox.

This function returns the choice that is selected when the user presses the Ok button.

Parameters

• title – a string

• message – a string

• choiches – a string list

• combo_label – a string

static current()
Returns the window that currently has the focus, or None if there is none.

Returns An instance of GPS.MDIWindow or None

static current_perspective()
The name of the current perspective.

Returns str

static dialog(msg)
Displays a modal dialog to report information to a user. This blocks the interpreter until the dialog is
closed.

Parameters msg – A string

static directory_selector(base_dir=’‘)
Displays a modal directory selector, allowing the user to create a new directoy if needed. The user selected
directory is returned, or a directory with an empty name if Cancel is pressed.

A base directory can be specified in order to start the dialog from it. When not specified, the base directory
is set to the current one by default.

Parameters base_dir – A string

Returns An instance of GPS.File

static file_selector(file_filter=’empty’)
Displays a modal file selector. The user selected file is returned, or a file with an empty name if Cancel is
pressed.

A file filter can be defined (such as “*.ads”) to show only a category of files.

Parameters file_filter – A string

Returns An instance of GPS.File

static get(name)
Returns the window whose name is name. If there is no such window, None is returned.

Parameters name – A string

Returns An instance of GPS.MDIWindow

static get_by_child(child)
Returns the window that contains child or raises an error if there is none.

352 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Parameters child – An instance of GPS.GUI

Returns An instance of GPS.MDIWindow

static hide()
Hides the graphical interface of GPS.

static information_popup(text=’‘, icon=’‘)
Display a temporary information popup on the screen. This popup automatically disappears after a short
while, so should only be used to indicate success or failure for an action, for instance.

Parameters

• text (str) – The text to display.

• icon (str) – The name of an icon to display beside the text.

static input_dialog(msg, *args)
Displays a modal dialog and requests some input from the user. The message is displayed at the top and one
input field is displayed for each remaining argument. The arguments can take the form “”label=value””,
in which case “”value”” is used as default for this entry. If argument is prepend with ‘multiline:’ prefix
field is edited as multi-line text. The return value is the value that the user has input for each of these
parameters.

An empty list is returned if the user presses Cancel.

Parameters

• msg – A string

• args – Any number of strings

Returns A list of strings

a, b = GPS.MDI.input_dialog("Please enter values", "a", "b")
print a, b

static load_perspective(name)
Change the current perspective to the one designated by name. This function does nothing if name does
not refer to any known perspective.

Parameters name – A string

static present_main_window()
Present the GPS main window. This is useful when you want to programatically give the focus to the GPS
main window.

static save_all(force=False)
Saves all currently unsaved windows. This includes open editors, the project, and any other window that
has registered some save callbacks.

If force is false, a confirmation dialog is displayed so the user can select which windows to save.

Parameters force – A boolean

static show()
Shows the graphical interface of GPS.

static yes_no_dialog(msg)
Displays a modal dialog to ask a question to the user. This blocks the interpreter until the dialog is closed.
The dialog has two buttons Yes and No, and the selected button is returned to the caller.

Parameters msg – A string

Returns A boolean

16.5. Classes 353

GPS User’s Guide, Release 2018

if GPS.MDI.yes_no_dialog("Do you want to print?"):
print "You pressed yes"

16.5.47 GPS.MDIWindow

class GPS.MDIWindow
This class represents one of the windows currently displayed in GPS. This includes both the windows currently
visible to the user, and the ones that are temporarily hidden, for instance because they are displayed below
another window. Windows acts as containers for other widgets.

GPS.GUI GPS.MDIWindow

__init__()
Prevents the creation of instances of GPS.MDIWindow . This is done by calling the various subprograms
in the GPS.MDI class.

close(force=False)
Close the window. If force is False, give the window an opportunity to prevent its deletion (for instance
through a save confirmation dialog).

Parameters force – A boolean

float(float=True)
Floats the window, i.e., creates a new toplevel window to display it. It is then under control of the user’s
operating system or window manager. If float is False, the window is reintegrated within the GPS MDI
instead.

Parameters float – A boolean

get_child()
Returns the child contained in the window. The returned value might be an instance of a subclass of
GPS.GUI, if that window was created from a shell command.

Returns An instance of GPS.GUI

Accessing the GPS.Console instance used for python can be done
with:
GPS.MDI.get("Python").get_child()

is_floating()
Returns True if the window is currently floating (i.e., in its own toplevel window) or False if the window
is integrated into the main GPS window.

Returns A boolean

name(short=False)
Returns the name of the window. If short is False, the long name is returned, the one that appears in the
title bar. If True, the short name is returned, the one that appears in notebook tabs.

Parameters short – A boolean

354 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Returns A string

next(visible_only=True)
Returns the next window in the MDI, or the current window if there is no other window. If
visible_only is True, only the windows currently visible to the user can be returned. This always
returns floating windows.

Parameters visible_only – A boolean

Returns An instance of GPS.MDIWindow

raise_window()
Raises the window so that it becomes visible to the user. The window also gains the focus.

rename(name, short=’‘)
Changes the title used for a window. name is the long title, as it appears in the title bar, and short, if
specified, is the name that appears in notebook tabs.

Using this function may be dangereous in some contexts, since GPS keeps track of editors through their
name.

Parameters

• name – A string

• short – A string

split(vertically=True, reuse=False, new_view=False)
Splits the window in two parts, either horizontally (side by side), or vertically (one below the other).

Parameters

• vertically (bool) –

• reuse (bool) – whether to reuse an existing space to the side of current window, rather
than splitting the current window. This should be used to avoid ending up with too small
windows.

• new_view (bool) – whether to create a new view when the current window is an editor.

See also:

GPS.MDIWindow.single()

16.5.48 GPS.MemoryUsageProvider

class GPS.MemoryUsageProvider
General interface used to populate the GPS Memory Usage View.

In practice, this class is derived in the code to provide memory usage providers that are specific to ones or more
external tools (e.g: a memory usage provider that fetches data generated from the ld linker).

16.5.49 GPS.MemoryUsageProviderVisitor

class GPS.MemoryUsageProviderVisitor
This class is used to notify GPS of events that occur during a memory usage provider task (e.g: when a memory
usage provider has finished to fetch all the memory usage data needed by the Memory Usage View).

on_memory_usage_data_fetched(regions, sections, modules)
Report when a GPS.MemoryUsageProvider finished to fetch all the memory usage data of the last
built executable (i.e: memory regions and memory sections and modules).

16.5. Classes 355

GPS User’s Guide, Release 2018

This method is called in GPS.MemoryUsageProvider.async_fetch_memory_usage_data.

Note that the given GPS.MemoryUsageProviderVisitor instance is freed after calling this method.

Parameters

• regions – a list of (name, origin, length) tuples describing memory regions.

• sections – a list of (name, origin, length, region_name) tuples describing memory
sections.

• modules – a list of (obj_file, lib_file, origin, size,

region_name, section_name) tuples describing modules, which are file based split of
ressources consumed: obj_file and lib_file repectively correspond to the full paths of the
object file and, if any, of the library file for which this artifact was compiled.

16.5.50 GPS.Menu

class GPS.Menu
This class is a general interface to the menu system in GPS. It gives you control over such things as which menus
should be active and what should be executed when the menu is selected by the user.

See also:

GPS.Menu.__init__()

action = None
The GPS.Action executed by this menu

__init__()
Prevents the creation of a menu instance. Such instances can only be created internally by GPS as a result
of calling GPS.Menu.get() or GPS.Menu.create(). This is so you always get the same instance
of GPS.Menu when refering to a given menu in GPS and so you can store your own specific data with the
menu.

static get(path)
Returns the menu found at the given path. path is similar to file paths, starting with the main GPS menu
(‘/’), down to each submenus. For example, ‘/VCS/Directory/Update Directory’ refers to the submenu
‘Update Directory’ of the submenu ‘Directory’ of the menu ‘VCS’. Path is case-sensitive.

Parameters path – A string

Returns The instance of GPS.Menu

The following example will prevent the user from using the VCS
menu and all its entries:

GPS.Menu.get('/VCS').set_sensitive (False)

16.5.51 GPS.Message

class GPS.Message
This class is used to manipulate GPS messages: build errors, editor annotations, etc.

__init__(category, file, line, column, text, show_on_editor_side=True, show_in_locations=True, al-
low_auto_jump_to_first=True)

Adds a Message in GPS.

Parameters

356 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• category – A String indicating the message category

• file – A File indicating the file

• line – An integer indicating the line

• column – An integer indicating the column

• text – A pango markup String containg the message text

• show_on_editor_side (bool) – Whether to show the message in the editor’s gutter

• show_in_locations (bool) – Whether to show the message in the locations view

• allow_auto_jump_to_first (bool) – If True, then adding a message that is the
first for its category will auto jump the editor to it, if the corresponding preference is
activated

Create a message

m=GPS.Message("default", GPS.File("gps-main.adb"),
1841, 20, "test message")

Remove the message
m.remove()

cancel_subprogram()
Remove the action item associated to this message.

create_nested_message(file, line, column, text)
Add nested message.

Parameters

• file – A File indicating the file

• line – An integer indicating the line

• column – An integer indicating the column

• text – A string containg the message text

execute_action()
If the message has an associated action, executes it.

get_category()
Returns the message’s category.

get_column()
Returns the message’s column.

get_file()
Returns the message’s file.

get_flags()
Returns an integer representing the location of the message: should it be displayed in locations view
and source editor’s sidebar. Message is displayed in source editor’s sidebar when zero bit is set, and is
displayed in locations view when first bit is set, so here is possible values:

•GPS.Message.MESSAGE_INVISIBLE: message is invisible

•GPS.Message.MESSAGE_IN_SIDEBAR: message is visible in source editor’s sidebar only

•GPS.Message.MESSAGE_IN_LOCATIONS: message is visible in locations view only

16.5. Classes 357

GPS User’s Guide, Release 2018

•GPS.Message.MESSAGE_IN_SIDEBAR_AND_LOCATIONS: message is visible in source editor
and locations view

Note, this set of flags can be extended in the future, so they should be viewed as bits that are “or”ed
together.

get_line()
Returns the message’s line.

get_mark()
Returns an EditorMark which was created with the message and keeps track of the location when the
file is edited.

get_text()
Returns the message’s text.

static list(file=None, category=None)
Returns a list of all messages currently stored in GPS.

Parameters

• file – a GPS File. Specifying this parameter restricts the output to messages to this
file only.

• category – a String. Specifying this parameter restricts the output to messages of this
category only

Returns a list of GMS.Message

remove()
Removes the message from GPS.

set_action(action, image, tooltip=None)
Adds an action item to the message. This adds an icon to the message; Clicking on the icon executes
action.

Parameters

• action – A String corresponding to a registered GPS action

• image – A String name of the icon to display. See Adding custom icons for more infor-
mation on icons

• tooltip – A string containing the tooltip to display when the mouse is on the icon

static set_sort_order_hint(category, hint)
Sets default sorting method for files in the Locations view.

Parameters

• category – Name of messages category

• hint – Default sorting method (“chronological” or “alphabetical”)

set_style(style, len)
Sets the style of the message. len is the length in number of characters to highlight. If 0, highlight the
whole line. If omitted, the length of the message highlighting is not modified.

Parameters

• style – An integer

• len – An integer

358 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

set_subprogram(subprogram, image, tooltip=None)
Adds an action item to the message. This adds an icon to the message. Clicking on this icon calls
subprogram, with the message passed as its parameter.

Parameters

• subprogram – A subprogram in the scripting language. This subprogram takes on pa-
rameter, which is a message

• image – A String name of the icon to display. See Adding custom icons for more infor-
mation on icons

• tooltip – A string which contains the tooltip to display when the mouse is on the icon

This adds a "close" button to all the messages
[msg.set_subprogram(lambda m : m.remove(), "gtk-close", "")

for msg in GPS.Message.list()]

16.5.52 GPS.Missing_Arguments

class GPS.Missing_Arguments
An exception raised by GPS. Raised when calling a subprogram from the GPS module with missing arguments.

GPS.Exception GPS.Missing_Arguments

16.5.53 GPS.OutlineView

class GPS.OutlineView
This class gives access to suprograms used to control the GPS Outline view (e.g: selecting a specific construct
in the Ouline view).

static select_construct(id)
Select the construct idetified with the given id in the Outline view.

An exception is raised when the the id does not match a construct in the Outline view.

16.5.54 GPS.OutputParserWrapper

class GPS.OutputParserWrapper
This class is used to handle user-defined tool output parsers. Parsers are organized in chains. Output of one
parser is passed as input to next one. Chains of parser could be attached to a build target. This class is for internal
use only. Instead users should inherit custom parser from OutputParser defined in tool_output.py,
but their methods match.

Here is an example of custom parser:
#
import GPS, tool_output

16.5. Classes 359

GPS User’s Guide, Release 2018

class PopupParser(tool_output.OutputParser):
def on_stdout(self,text,command):

GPS.MDI.dialog (text)
if self.child != None:

self.child.on_stdout (text,command)

You can attach custom parser to a build target by specifying it in an XML file.

<target model="myTarget" category="_Run" name="My Target">
<output-parsers>[default] popupparser</output-parsers>

</target>

Where [default] abbreviates names of all parsers predefined in GPS.

__init__(child=None)
Creates a new parser and initialize its child reference, if provided.

on_exit(status, command)
Called when all output is parsed to flush any buffered data at end of the stream.

on_stderr(text, command)
Like on_stdout(), but for the error stream.

on_stdout(text, command)
Called each time a portion of output text is ready to parse. Takes the portion of text as a parameter and
passes filtered portion to its child.

16.5.55 GPS.Preference

class GPS.Preference
Interface to the GPS preferences, as set in the Edit → Preferences... dialog. New preferences are created through
XML customization files (or calls to GPS.parse_xml(), see the GPS documentation).

See also:

GPS.Preference.__init__()

GPS.parse_xml('''
<preference name="custom-adb-file-color"

label="Background color for .adb files"
page="Editor:Fonts & Colors"
default="yellow"
type="color" />''')

print "color is " + GPS.Preference("custom-adb-file-color").get()

__init__(name)
Initializes an instance of the GPS.Preference class, associating it with the preference name, which is
the one that is found in the $HOME/.gps/preferences file. When you are creating a new preference,
this name can include ‘/’ characters, which results in subpages created in the Preferences dialog. The
name after the last ‘/’ should only include letters and ‘-‘ characters. You can also specify a group before
the last ‘/’, by appending a ‘:’ delimitor followed by the name of the preference’s group. If the name starts
with ‘/’ and contains no other ‘/’, the preference is not visible in the Preferences dialog, though it can be
manipulated as usual and is loaded automatically by GPS on startup.

Parameters name – A string

create(label, type, doc=’‘, default=’‘, *args)
Creates a new preference and makes it visible in the preferences dialog. In the dialog, the preference

360 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

appears in the page given by the name used when creating the instance of GPS.Preference. label
qualifies the preference and doc appears as a tooltip to explain the preference to users. type describes
the type of preference and therefore how it should be edited by users.

The parameters to this function cannot be named (since it uses a variable number of parameters, see the
documentation below).

The additional parameters depend on the type of preference you are creating:

•For “integer”, the default value is 0, and the two additional parameters are the minimum and maximum
possible values. These are integers.

•For a “boolean”, the default is True.

•For a “string”, the default is the empty string.

•A “multiline” behaves the same as a string except it is edited on multiple lines in the Preferences
dialog.

•For a “color”, the default is “black”.

•For a “font”, the default is “sans 9”.

•For an “enum”, any number of additional parameters can be specified. They are all the possible values
of the preference. The default is the index in the list of possible values, starting at 0.

Parameters

• label – A string

• type – A string, one of “integer”, “boolean”, “string”, “color”, “font”, “enum”, “multi-
line”

• doc – A string

• default – Depends on the type

• args – Additional parameters depending on the type

Returns The preference itself

create_style(label, doc=’‘, default_fg=’‘, default_bg=’white’, default_font_style=’default’)
Creates a new text style preference, which enables the user to choose between different text style charac-
teristics, namely foreground color, background color, and wether the text is bold, italic, both, or neither.

Parameters

• label (string) – The label of the preference

• doc (string) – The documentation of the preference

• default_fg (string) – The default foreground color for this preference, as a CSS-
like color.

• default_bg (string) – The default background color for this preference, as a CSS-
like color

• default_font_style (string) – The style, one of “default”, “normal”, “bold”,
“italic” or “bold_italic”

create_with_priority(label, type, priority, doc=’‘, default=’‘, *args)
Same as GPS.Preferences.create() but with an additional parameter allowing to specify the pri-
ority of the preference. By default, preferences have -1 for priority. Higher priority preferences are placed
at the top of the page.

16.5. Classes 361

GPS User’s Guide, Release 2018

Parameters priority – An integer

get()
Gets value of the given preference. The exact returned type depends on the type of the preference. Note
that boolean values are returned as integers, for compatibility with older versions of Python.

Returns A string or an integer

if GPS.Preference("MDI-All-Floating"):
print "We are in all-floating mode"

set(value, save=True)
Sets value for the given preference. The type of the parameter depends on the type of the preference.

Parameters

• value – A string, boolean or integer

• save – no longer used, kept for backward compatibility only.

16.5.56 GPS.PreferencesPage

class GPS.PreferencesPage
Interface to the GPS preferences pages, as set in the Edit → Preferences... dialog.

This interface can be used to create custom preferences pages.

static create(name, get_widget, priority=-1, is_integrated=False)
Create a new preferences page and makes it visible in the Preferences dialog, adding an entry with the
given `name.

Each time the page is selected, the PyGtk widget returned by the get_widget``function
is displayed. Note that this widget is destroyed when closing the
preferences dialog: thus, ``get_widget can’t return the same widget twice and
should create a new one each time it is called instead.

The priority is used to order the preferences pages in the Preferences dialog tree view, using the
following policy:

•Pages with higher priorities are listed at the top of the tree view.

•If two pages have the same priority, the alphabetical order determines which page will appear first.

when is_integrated is True, the preferences editor dialog will not create an entry for this page in its
left tree view. This is generally needed for pages that are integrated in another visible preferences pages or
for pages displayed in the GPS preferences assistant.

Parameters

• name – A string

• get_widget – function returning a PyGtk widget

• priority – integer defining the page’s priority

• is_integrated – A boolean

362 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

16.5.57 GPS.Process

class GPS.Process
Interface to expect-related commands. This class can be used to spawn new processes and communicate with
them later. It is similar to what GPS uses to communicate with gdb. This is a subclass of GPS.Command.

See also:

GPS.Process.__init__()

GPS.Command()

The following example launches a gdb process, lets it print its
welcome message, and kills it as soon as a prompt is seen in the
output. In addition, it displays debugging messages in a new GPS
window. As you might note, some instance-specific data is stored in
the instance of the process, and can be retrieve in each callback.

import GPS, sys

def my_print(msg):
sys.stdout.set_console("My gdb")
print(msg)
sys.stdout.set_console()

def on_match(self, matched, unmatched):
my_print "on_match (" + self.id + ")=" + matched
self.kill()

def on_exit(self, status, remaining_output):
my_print "on_exit (" + self.id + ")"

def run():
proc = GPS.Process("gdb", "^\(gdb\)", on_match=on_match,

on_exit=on_exit)
proc.id = "first session"

run()

A similar example can be implemented by using a new class. This is
slightly cleaner, since it does not pollute the global namespace.

class My_Gdb(GPS.Process):
def matched(self, matched, unmatched):

my_print("matched " + self.id)
self.kill()

def exited(self, status, output):
my_print("exited " + self.id)

def __init__(self):
self.id = "from class"
GPS.Process.__init__(self, "gdb",

"^\(gdb\)",
on_match=My_Gdb.matched,
on_exit=My_Gdb.exited)

My_Gdb()

16.5. Classes 363

GPS User’s Guide, Release 2018

GPS.Command GPS.Process

__init__(command, regexp=’‘, on_match=None, on_exit=None, task_manager=True,
progress_regexp=’‘, progress_current=1, progress_total=1, before_kill=None,
remote_server=’‘, show_command=False, single_line_regexp=False,
case_sensitive_regexp=True, strip_cr=True, active=False, directory=’‘, block_exit=True)

Spawns command, which can include triple-quoted strings, similar to Python, which are always preserved
as one argument.

The external process might not start immediately. Instead, it will start whenever GPS starts process-
ing events again (once your script gives the hand back to GPS), or when you call expect() or
get_result() below.

If regexp is not-empty and on_match_action is specified, launch on_match_action when
regexp is found in the process output. If on_exit_action is specified, execute it when the pro-
cess terminates. Return the ID of the spawned process.

regexp is always compiled with the multi_line option, so “^” and “$” also match at the beginning and
end of each line, not just the whole output. You can optionally compile it with the single_line option
whereby ”.” also matches the newline character. Likewise you can set the regexp to be case insensitive by
setting case_sensitive_regexp to False.

on_match is a subprogram called with the parameters:

•$1 = the instance of GPS.Process

•$2 = the string which matched the regexp

•$3 = the string since the last match

before_kill is a subprogram called just before the process is about to be killed. It is called when the
user is interrupting the process through the tasks view, or when GPS exits. It is not called when the process
terminates normally. When it is called, the process is still valid and can be send commands. Its parameters
are:

•$1 = the instance of GPS.Process

•$2 = the entire output of the process

on_exit is a subprogram called when the process has exited. You can no longer send input to it at this
stage. Its parameters are:

•$1 = the instance of GPS.Process

•$2 = the exit status

•$3 = the output of the process since the last call to on_match()

If task_manager is True, the process will be visible in the GPS tasks view and can be interrupted
or paused by users. Otherwise, it is running in the background and never visible to the user. If
progress_regexp is specified, the output of the process will be scanned for this regexp. The
part that matches will not be returned to on_match. Instead, they will be used to guess the current
progress of the command. Two groups of parenthesis are parsed, the one at progress_current,
and the one at progress_total. The number returned for each of these groups indicate the current
progress of the command and the total that must be reached for this command to complete. For

364 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

example, if your process outputs lines like “done 2 out of 5”, you should create a regular expression
that matches the 2 and the 5 to guess the current progress. As a result, a progress bar is displayed in
the tasks view of GPS, and will allow users to monitor commands.

An exception is raised if the process could not be spawned.

param command A string or list of strings. The list of strings is preferred, since it provides
a better handling of arguments with spaces (like filenames). When you are using a string,
you need to quote such arguments.

param regexp A string

param on_match A subprogram, see the section “Subprogram parameters” in the GPS doc-
umentation

param on_exit A subprogram

param task_manager A boolean

param progress_regexp A string

param progress_current An integer

param progress_total An integer

param before_kill A subprogram

param str remote_server Possible values are “GPS_Server”, the empty string (equiv-
alent to “GPS_Server”), “Build_Server”, “Debug_Server”, “Execution_Server” and
“Tools_Server”. This represents the server used to spawn the process. By default, the
GPS_Server is used, which is always the local machine. See the section “Using GPS for
Remote Development” in the GPS documentation for more information on this field.

param bool show_command if True, the command line used to spawn the new process is
displayed in the Messages console.

param bool single_line_regexp

param bool case_sensitive_regexp

param bool strip_cr If true, the output of the process will have all its ASCII.CR removed
before the string is passed to GPS and your script. This, in general, provides better portabil-
ity to Windows systems, but might not be suitable for applications for which CR is relevant
(for example, those that drive an ANSI terminal).

param bool active Whether GPS should actively monitor the state of the process. This will
require more CPU (and might make the GUI less reactive while the process runs), but
ensures that events like on_exit will be called earlier.

param str directory The directory in which the external process should be started.

param bool block_exit If true, then GPS will display a dialog when the user wants to exit,
asking whether to kill this process.

See also:

GPS.Process

expect(regexp, timeout=-1)
Blocks execution of the script until either regexp has been seen in the output of the command or
timeout has expired. If timeout is negative, wait forever until we see regexp or the process com-
pletes execution.

While in such a call, the usual on_match callback is called as usual, so you might need to add an explicit
test in your on_match callback not to do anything in this case.

16.5. Classes 365

GPS User’s Guide, Release 2018

This command returns the output of the process since the start of the call and up to the end of the text that
matched regexp. Note that it also includes the output sent to the on_match callback while it is running. It
does not, however, include output already returned by a previous call to this function (nor does it guarantee
that two successive calls return the full output of the process, since some output might have been matched
by on_match between the two calls, and would not be returned by the second call).

If a timeout occurred or the process terminated, an exception is raised.

Parameters

• regexp – A string

• timeout – An integer, in milliseconds

Returns A string

proc = GPS.Process("/bin/sh")
print("Output till prompt=" + proc.expect (">"))
proc.send("ls")

get_result()
Waits untill the process terminates and returns its output. This is the output since the last call to this
function, so if you call it after performing some calls to expect(), the returned string does not contain
the output already returned by expect().

Returns A string

interrupt()
Interrupts a process controlled by GPS.

kill()
Terminates a process controlled by GPS.

send(command, add_lf=True)
Sends a line of text to the process. If you need to close the input stream to an external process, it often
works to send the character ASCII 4, for example through the Python command chr(4).

Parameters

• command – A string

• add_lf – A boolean

set_size(rows, columns)
Tells the process about the size of its terminal. rows and columns should (but need not) be the number
of visible rows and columns of the terminal in which the process is running.

Parameters

• rows – An integer

• columns – An integer

wait()
Blocks the execution of the script until the process has finished executing. The exit callback registered
when the process was started will be called before returning from this function.

This function returns the exit status of the command.

Returns An integer

366 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

16.5.58 GPS.Project

class GPS.Project

Represents a project file. Also see the GPS documentation on how to create new project attributes.

See also:

GPS.Project.__init__()

Related hooks:

•project_view_changed

Called whenever the project is recomputed, such as when one of its attributes was changed by
the user or the environment variables are changed.

This is a good time to test the list of languages (GPS.Project.languages()) that the
project supports and do language-specific customizations

•project_changed

Called when a new project was loaded. The hook above is called after this one.

target = None
Returns the Target project attribute value or an empty string if not defined.

If the given project extends from another project, the attribute is also looked up in the extended project.

__init__(name)
Initializes an instance of GPS.Project. The project must be currently loaded in GPS.

Parameters name – The project name

See also:

GPS.Project.name()

add_attribute_values(attribute, package, index, value)

Adds some values to an attribute. You can add as many values you need at the end of the param
list. If the package is not specified, the attribute at the toplevel of the project is queried. The
index only needs to be specified if it applies to that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

• value – A string, the name of the first value to add

See also:

GPS.Project.set_attribute_as_string()

GPS.Project.remove_attribute_values()

GPS.Project.clear_attribute_values()

For example:

16.5. Classes 367

GPS User’s Guide, Release 2018

GPS.Project.root().add_attribute_values(
"Default_Switches", "Compiler", "ada", "-gnatwa", "-gnatwe");

add_dependency(path)
Adds a new dependency from self to the project file pointed to by path. This is the equivalent of putting
a with clause in self, and means that the source files in self can depend on source files from the imported
project.

Parameters path – The path to another project to depend on

See also:

GPS.Project.remove_dependency()

add_main_unit(*args)
Adds some main units to the current project for the current scenario. The project is not saved automatically.

Parameters args – Any number of arguments, at least one

static add_predefined_paths(sources=’‘, objects=’‘)
Adds some predefined directories to the source path or the objects path. These are searched when GPS
needs to open a file by its base name, in particular from the Find → Find File in Project dialog. The new
paths are added in front, so they have priorities over previously defined paths.

Parameters

• sources – A list of directories separated by the appropriate separator (‘:’ or ‘;’ depend-
ing on the system

• objects – As above

GPS.Project.add_predefined_paths(os.pathsep.join(sys.path))

add_source_dir(directory)
Adds a new source directory to the project. The new directory is added in front of the source path. You
should call GPS.Project.recompute() after calling this method to recompute the list of source files.
The directory is added for the current value of the scenario variables only. Note that if the current source
directory for the project is not specified explicitly in the .gpr file), it is overriden by the new directory you
are adding. If the directory is already part of the source directories for the project, it is not added a second
time.

Parameters directory – A string

See also:

GPS.Project.source_dirs()

GPS.Project.remove_source_dir()

ancestor_deps()
Returns the list of projects that might contain sources that depend on the project’s sources. When doing
extensive searches it is not worth checking other projects. Project itself is included in the list.

This is also the list of projects that import self.

Returns A list of instances of GPS.Project

for p in GPS.Project("kernel").ancestor_deps():
print p.name()

will print the name of all the projects that import kernel.gpr

368 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

artifacts_dir()
Return the directory that contains the artifacts generated by this project.

Returns A string

clear_attribute_values(attribute, package, index)

Clears the values list of an attribute.

If the package is not specified, the attribute at the toplevel of the project is queried.

The index only needs to be specified if it applies to that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

dependencies(recursive=False)
Returns the list of projects on which self depends (either directly if recursive is False, or including
indirect dependencies if True).

Parameters recursive – A boolean

Returns A list of GPS.Project instances

exec_dir()
Return the directory that contains the executables generated for the main programs of this project. This is
either Exec_Dir or Object_Dir.

Returns A string

external_sources()
Return the list of all sources visible to the builder, but that are not part of a project. This includes sources
found in one of the predefined directories for the builder, or sources found in the directories references in
the ADA_SOURCE_PATH environment variable.

Returns A list of instances of GPS.File

file()
Returns the project file.

Returns An instance of GPS.File

generate_doc(recursive=False)
Generates the documentation for the projet (and its subprojects if recursive is True) and displays it in
the default browser.

get_attribute_as_list(attribute, package=’‘, index=’‘)
Fetches the value of the attribute in the project.

If package is not specified, the attribute at the toplevel of the project is queried.

index only needs to be specified if it applies to that attribute.

If the attribute value is stored as a simple string, a list with a single element is returned. This function
always returns the value of the attribute in the currently selected scenario.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

16.5. Classes 369

GPS User’s Guide, Release 2018

• index – A string, the name of the index for the specific value of this attribute

Returns A list of strings

See also:

GPS.Project.scenario_variables()

GPS.Project.get_attribute_as_string()

GPS.Project.get_tool_switches_as_list()

If the project file contains the following text:
#
project Default is
for Exec_Dir use "exec/";
package Compiler is
for Switches ("file.adb") use ("-c", "-g");
end Compiler;
end Default;

Then the following commands;

a = GPS.Project("default").get_attribute_as_list("exec_dir")
=> a = ("exec/")

b = GPS.Project("default").get_attribute_as_list(
"switches", package="compiler", index="file.adb")

=> b = ("-c", "-g")

get_attribute_as_string(attribute, package=’‘, index=’‘)
Fetches the value of the attribute in the project.

If package is not specified, the attribute at the toplevel of the project is queried.

index only needs to be specified if it applies to that attribute.

If the attribute value is stored as a list, the result string is a concatenation of all the elements of the list.
This function always returns the value of the attribute in the currently selected scenario.

When the attribute is not explicitely overridden in the project, the default value is returned. This default
value is the one described in an XML file (see the GPS documentation for more information). This default
value is not necessarily valid, and could for instance be a string starting with a parenthesis, as explained in
the GPS documentation.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

Returns A string, the value of this attribute

See also:

GPS.Project.scenario_variables()

GPS.Project.get_attribute_as_list()

GPS.Project.get_tool_switches_as_string()

370 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

If the project file contains the following text:
project Default is
for Exec_Dir use "exec/";
package Compiler is
for Switches ("file.adb") use ("-c", "-g");
end Compiler;
end Default;

a = GPS.Project("default").get_attribute_as_string("exec_dir")
=> a = "exec/"

b = GPS.Project("default").get_attribute_as_string(
"switches", package="compiler", index="file.adb")

=> b = "-c -g"

get_executable_name(main)
Returns the name of the executable, either read from the project or computed from main.

Parameters main (GPS.File) – the main source file.

Returns A string

get_property(name)
Returns the value of the property associated with the project. This property might have been set in a
previous GPS session if it is persistent. An exception is raised if no such property exists for the project.

Parameters name – A string

Returns A string

See also:

GPS.Project.set_property()

get_tool_switches_as_list(tool)
Like get_attribute_as_list(), but specialized for the switches of tool. Tools are defined
through XML customization files, see the GPS documentation for more information.

Parameters tool – The name of the tool whose switches you want to get

Returns A list of strings

See also:

GPS.Project.get_attribute_as_list()

GPS.Project.get_tool_switches_as_string()

If GPS has loaded a customization file that contains the
following tags:
#
<?xml version="1.0" ?>
<toolexample>
<tool name="Find">
<switches>
<check label="Follow links" switch="-follow" />
</switches>
</tool>
</toolexample>

The user will as a result be able to edit the switches for Find
in the standard Project Properties editor.

16.5. Classes 371

GPS User’s Guide, Release 2018

Then the Python command

GPS.Project("default").get_tool_switches_as_list("Find")

will return the list of switches that were set by the user in the
Project Properties editor.

get_tool_switches_as_string(tool)
Like GPS.Project.get_attribute_as_string(), but specialized for a tool.

Parameters tool – The name of the tool whose switches you want to get

Returns A string

See also:

GPS.Project.get_tool_switches_as_list()

is_harness_project()
Returns True if the project is a harness project generated by gnattest tool.

Returns A boolean

is_modified(recursive=False)
Returns True if the project has been modified but not saved yet. If recursive is true, the return value
takes into account all projects imported by self.

Parameters recursive – A boolean

Returns A boolean

languages(recursive=False)
Returns the list of languages used for the sources of the project (and its subprojects if recursive is
True). This can be used to detect whether some specific action in a module should be activated or not.
Language names are always lowercase.

Parameters recursive – A boolean

Returns A list of strings

The following example adds a new menu only if the current project
supports C. This is refreshed every time the project is changed
by the user.

import GPS
c_menu=None

def project_recomputed(hook_name):
global c_menu
try:

Check whether python is supported
GPS.Project.root().languages(recursive=True).index("c")
if c_menu == None:

c_menu = GPS.Menu.create("/C support")
except:

if c_menu:
c_menu.destroy()
c_menu = None

GPS.Hook("project_view_changed").add(project_recomputed)

372 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

static load(filename, force=False, keep_desktop=False)
Loads a new project, which replaces the current root project, and returns a handle to it. All imported
projects are also loaded at the same time. If the project is not found, a default project is loaded.

If force is True, the user will not be asked whether to save the current project, whether it was modified
or not.

If keep_desktop is False, load the saved desktop configuration, otherwise keep the current one.

Parameters

• filename – A string, the full path to a project file

• force – A boolean

• keep_desktop – A boolean

Returns An instance of GPS.Project

name()
Returns the name of the project. This does not include directory information; use self.file().
name() if you want to access that information.

Returns A string, the name of the project

object_dirs(recursive=False)
Returns the list of object directories for this project. If recursive is True, the source directories of
imported projects is also returned. There might be duplicate directories in the returned list.

Parameters recursive – A boolean

Returns A list of strings

original_project()
For given harness project returns the name of the original user project, which harness was generated from.
Returns No_Project if this is not a harness project.

Returns An instance of GPS.Project

properties_editor()
Launches a graphical properties editor for the project.

static recompute()
Recomputes the contents of a project, including the list of source files that are automatically loaded from
the source directories. The project file is not reloaded from the disk and this should only be used if you
have created new source files outside of GPS.

GPS.Project.recompute()

remove_attribute_values(attribute, package, index, value)

Removes specific values from an attribute. You can specify as many values you need at the end
of the param list.

If package is not specified, the attribute at the toplevel of the project is queried.

index only needs to be specified if it applies to that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

16.5. Classes 373

GPS User’s Guide, Release 2018

• value – A string, the name of the first value to remove

See also:

GPS.Project.set_attribute_as_string()

GPS.Project.add_attribute_values()

GPS.Project.clear_attribute_values()

For example:

GPS.Project.root().remove_attribute_values(
"Default_Switches", "Compiler", "ada", "-gnatwa", "-gnatwe");

remove_dependency(imported)
Removes a dependency between two projects. You must call GPS.Project.recompute() once you
are done doing all the modifications on the projects.

Parameters imported – An instance of GPS.Project

See also:

GPS.Project.add_dependency()

remove_property(name)
Removes a property associated with a project.

Parameters name – A string

See also:

GPS.Project.set_property()

remove_source_dir(directory)
Removes a source directory from the project. You should call GPS.Project.recompute() after
calling this method to recompute the list of source files. The directory is added only for the current value
of the scenario variables.

Parameters directory – A string

See also:

GPS.Project.add_source_dir()

rename(name, path=’<current path>’)
Renames and moves a project file (the project is only put in the new directory when it is saved, but is not
removed from its original directory). You must call GPS.Project.recompute() at some point after
changing the name.

Parameters

• name – A string

• path – A string

static root()
Returns the root project currently loaded in GPS.

Returns An instance of GPS.Project

print "Current project is " + GPS.Project.root().name()

save()
Save the project. Return True if the project was saved without problems, False otherwise.

374 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

Returns A bool indicating the saving status

static scenario_variables()
Returns the list of scenario variables for the current project hierarchy and their current values. These
variables are visible at the top of the Project view in the GPS window. The initial value for these variables
is set from the environment variables’ value when GPS is started. However, changing the value of the
environment variable later does not change the value of the scenario variable.

Returns hash table associating variable names and values

See also:

GPS.Project.set_scenario_variable()

For example:

GPS.Project.scenario_variables()["foo"]
=> returns the current value for the variable foo

static scenario_variables_cmd_line(prefix=’‘)
Returns a concatenation of VARIABLE=VALUE, each preceded by prefix. This string is generally used
when calling external tools, for example, make or GNAT.

Parameters prefix – String to print before each variable in the output

Returns a string

The following GPS action can be defined in an XML file, and will
launch the make command with the appropriate setup for the
environment
variables:
<action name="launch make"> \
<shell lang="python">GPS.scenario_variables_cmd_line()</shell> \
<external>make %1</external> \
</action>

static scenario_variables_values()
Returns a hash table where keys are the various scenario variables defined in the current project and values
the different values that this variable can accept.

Returns A hash table of strings

search(pattern, case_sensitive=False, regexp=False, scope=’whole’, recursive=True)
Returns the list of matches for pattern in all the files belonging to the project (and its imported projects
if recursive is true, which is the default). scope is a string, and should be any of ‘whole’, ‘comments’,
‘strings’, ‘code’. The latter will match only for text outside of comments.

Parameters

• pattern – A string

• case_sensitive – A boolean

• regexp – A boolean

• scope – One of (“whole”, “comments”, “strings”, “code”)

• recursive – A boolean

Returns A list of GPS.FileLocation instances

set_attribute_as_string(attribute, package, index, value)
Sets the value of an attribute. The attribute has to be stored as a single value. If package is not specified,

16.5. Classes 375

GPS User’s Guide, Release 2018

the attribute at the toplevel of the project is queried. index only needs to be specified if it applies to that
attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

• value – A string, the name of the value to set

See also:

GPS.Project.add_attribute_values()

GPS.Project.remove_attribute_values()

GPS.Project.clear_attribute_values()

set_property(name, value, persistent=False)
Associates a string property with the project. This property is retrievable during the whole GPS session,
or across GPS sessions if persistent is set to True.

This is different than setting instance properties through Python’s standard mechanism in that there is no
guarantee that the same instance of GPS.Project is created for each physical project on the disk and
therefore you would not be able to associate a property with the physical project itself.

Parameters

• name – A string

• value – A string

• persistent – A boolean

See also:

GPS.Project.get_property()

GPS.Project.remove_property()

GPS.File.set_property()

static set_scenario_variable(name, value)
Changes the value of a scenario variable. You need to call GPS.Project.recompute() to activate
this change (so that multiple changes to the project can be grouped).

If name does not correspond to an actual scenario variable in your project (i.e. the name of the variable in
an “external(...)” typed expression), the corresponding environment variable is still changed. This might
impact the reloading of the project, for instance when “external(...)” is used to construct the name of a
directory, as in:

for Object_Dir use external("BASE") & "/obj";

Parameters

• name – A string

• value – A string

See also:

GPS.Project.scenario_variables()

376 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

source_dirs(recursive=False)
Returns the list of source directories for this project. If recursive is True, the source directories of
imported projects is also returned. There might be duplicate directories in the returned list.

Parameters recursive – A boolean

Returns A list of strings

See also:

GPS.Project.add_source_dir()

sources(recursive=False)
Returns the list of source files for this project. If recursive is true, all sources from imported projects
are also returned. Otherwise, only the direct sources are returned. The basenames of the returned files are
always unique: not two files with the same basenames are returned, and the one returned is the first one
see while traversing the project hierarchy.

Parameters recursive – A boolean

Returns A list of instances of GPS.File

16.5.59 GPS.ProjectTemplate

class GPS.ProjectTemplate
This class is used to manipulate GPS Project Templates.

static add_templates_dir(noname)
Adds a directory to the path in which GPS looks for templates. GPS will look for project templates in
immediate subdirectories of this directory.

Parameters noname – A GPS.File pointing to a directory.

16.5.60 GPS.ReferencesCommand

class GPS.ReferencesCommand
This is the type of the commands returned by the references extractor.

See also:

GPS.Command()

GPS.Entity.references()

GPS.Command GPS.ReferencesCommand

get_result()
Returns the references that have been found so far by the command.

Returns A list of strings

16.5. Classes 377

GPS User’s Guide, Release 2018

See also:

GPS.Entity.references()

16.5.61 GPS.Revision

class GPS.Revision
General interface to the revision browser.

static add_link(file, revision_1, revision_2)
Creates a link between revision_1 and revision_2 for file.

Parameters

• file – A string

• revision_1 – A string

• revision_2 – A string

static add_log(file, revision, author, date, log)
Adds a new log entry into the revision browser.

Parameters

• file – A string

• revision – A string

• author – A string

• date – A string

• log – A string

static add_revision(file, revision, symbolic_name)
Registers a new symbolic name (tag or branches) corresponding to the revision of file.

Parameters

• file – A string

• revision – A string

• symbolic_name – A string

static clear_view(file)
Clears the revision view of file.

Parameters file – A string

16.5.62 GPS.Search

class GPS.Search
This class provides an interface to the search facilities used for the GPS omni-search. In particular, this allows
you to search file names, sources, and actions, etc.

This class provides facilities exported directly by Ada, so you can for example look for file names by writting:

s = GPS.Search.lookup(GPS.Search.FILE_NAMES)
s.set_pattern("search", flags=GPS.Search.FUZZY)
while True:

(has_next, result) = s.get()

378 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

if result:
print result.short

if not has_next:
break

However, one of the mandatory GPS plugins augments this base class with high-level constructs such as iterators
and now you can write code as:

for result in GPS.Search.search(
GPS.Search.FILE_NAMES, "search", GPS.Search.FUZZY):

print result.short

Iterations are meant to be done in the background, so they are split into small units.

It is possible to create your own search providers (which would be fully included in the omni-search of GPS) by
subclassing this class, as in:

class MySearchResult(GPS.Search_Result):
def __init__(self, str):

self.short = str
self.long = "Long description: %s" % str

def show(self):
print "Showing a search result: '%s'" % self.short

class MySearchProvider(GPS.Search):
def __init__(self):

Override default so that we can build instances of our
class
pass

def set_pattern(self, pattern, flags):
self.pattern = pattern
self.flags = flags
self.current = 0

def get(self):
if self.current == 3:

return (False, None) # no more matches
self.current += 1
return (

True, # might have more matches
MySearchResult(

"match %d for '%s' (flags=%d)"
% (self.current, self.pattern, self.flags)

)
)

GPS.Search.register("MySearch", MySearchProvider())

ACTIONS = ‘Actions’

BOOKMARKS = ‘Bookmarks’
The various contexts in which a search can occur.

BUILDS = ‘Build’

CASE_SENSITIVE = 8

ENTITIES = ‘Entities’

16.5. Classes 379

GPS User’s Guide, Release 2018

FILE_NAMES = ‘File names’

FUZZY = 1

OPENED = ‘Opened’

REGEXP = 4
The various types of search, similar to what GPS provides in its omni-search.

SOURCES = ‘Sources’

SUBSTRINGS = 2

WHOLE_WORD = 16
Flags to configure the search, that can be combined with the above.

__init__()
Always raises an exception; use GPS.Search.lookup() to retrieve an instance.

get()
Returns the next occurrence of the pattern.

Returns a tuple containing two elements; the first element is a boolean that indicates whether
there might be further results; the second element is either None or an instance of
GPS.Search_Result. It might be set even if the first element is False. On the other hand,
it might be None even if there might be further results, since the search itself is split into
small units. For instance, when searching in sources, each source file will be parsed indepen-
dently. If a file does not contain a match, next() will return a tuple that contains True (there
might be matches in other files) and None (there were no match found in the current file)

static lookup(name)
Looks up one of the existing search factories.

Parameters name – a string, one of, e.g., GPS.Search.FILE_NAMES, GPS.Search.SOURCES

next()
Results the next non-null result. This might take longer than get(), since it keeps looking until it actually
finds a new result. It raises StopIteration when there are no more results.

static register(name, factory, rank=-1)
Registers a new custom search. This will be available to users via the omni-search in GPS, or via the
GPS.Search class.

Parameters

• name – a string

• factory – an instance of GPS.Search that will be reused every time the user starts a
new search.

• rank – the search order for the provider. If negative, the new provider is added last. Other
providers might be registered later, though, so the rank could change. User preferences
will also override that rank.

static search(context, pattern, flags=2)
A high-level wrapper around lookup and set_pattern to make Python code more readable (see general
documentation for GPS.Search).

Parameters

• context – a string, for example GPS.Search.SOURCES

• pattern – a string

• flags – an integer, see GPS.Search.set_pattern()

380 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

set_pattern(pattern, flags=0)
Sets the search pattern.

Parameters

• pattern – a string

• flags – an integer, the combination of values such as GPS.Search.FUZZY,
GPS.Search.REGEXP, GPS.Search.SUBSTRINGS, GPS.Search.CASE_SENSITIVE,
GPS.Search.WHOLE_WORD

16.5.63 GPS.Search_Result

class GPS.Search_Result
A class that represents the results found by GPS.Search.

long = ‘’
A long version of the description. For instance, when looking in sources it might contain the full line that
matches

short = ‘’
The short description of the result

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

show()
Executes the action associated with the result. This action depends on where you were searching. For
example, search in file names would as a result open the corresponding file; searching in bookmarks
would jump to the corresponding location; search in actions would execute the corresponding action.

16.5.64 GPS.SemanticTree

class GPS.SemanticTree
This class represents the semantic information known to GPS for a given file.

__init__(file)
Creates a SemanticTree.

Parameters file – A File.

is_ready()
Return True if and only if the semantic tree for this file is available

Returns A boolean.

update()
Ask for an immediate recomputation of the sematic tree.

This should be used by custom implementations of semantic trees, to force GPS to ask for the new contents
of the tree.

16.5.65 GPS.Style

class GPS.Style
This class is used to manipulate GPS Styles, which are used, for example, to represent graphical attributes given
to Messages.

16.5. Classes 381

GPS User’s Guide, Release 2018

This class is fairly low-level, and we recommend using the class gps_utils.highlighter.
OverlayStyle() instead. That class provides similar support for specifying attributes, but makes it easier
to highlight sections of an editor with that style, or to remove the highlighting.

__init__(name, create)
Creates a style.

Parameters

• name – A String indicating the name of the style

• create – A File indicating the file

Create a new style
s=GPS.Style("my new style")

Set the background color to yellow
s.set_background("#ffff00")

Apply the style to all the messages
[m.set_style(s) for m in GPS.Message.list()]

get_background()

Returns a string, background of the style

get_foreground()

Returns a string, foreground of the style

get_in_speedbar()
Returns a Boolean indicating whether this style is shown in the speedbar.

Returns a boolean

get_name()

Returns a string, the name of the style.

static list()
Returns a list of all styles currently registered in GPS.

Returns a list of GPS.Style

set_background(noname)
Sets the background of style to the given color.

Parameters noname – A string representing a color, for instance “blue” or “#0000ff”

set_foreground(noname)
Sets the foreground of style to the given color.

Parameters noname – A string representing a color, for instance “blue” or “#0000ff”

set_in_speedbar(noname)
Whether this style should appear in the speedbar.

Parameters noname – A Boolean

16.5.66 GPS.SwitchesChooser

class GPS.SwitchesChooser
This class represents a GTK widget that can be used to edit a tool’s command line.

382 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

GPS.GUI GPS.SwitchesChooser

__init__(name, xml)
Creates a new SwitchesChooser widget from the tool’s name and switch description in XML format.

Parameters

• name – A string

• xml – A string

get_cmd_line()
Returns the tool’s command line parameter.

Returns A string

set_cmd_line(cmd_line)
Modifies the widget’s aspect to reflect the command line.

Parameters cmd_line – A string

16.5.67 GPS.Task

class GPS.Task
This class provides an interface to the background tasks being handled by GPS, such as the build commands,
the query of cross references, etc. These are the same tasks that are visible through the GPS Tasks view.

EXECUTE_AGAIN = ‘execute_again’

FAILURE = ‘failure’
Whether the task has a visible progress bar in GPS’s toolbar or the Tasks view.

SUCCESS = ‘success’

visible = False

__init__(name, execute, active=False, block_exit=False)
Create a task.

Parameters

• name – A string identifying the task.

• execute – a function which takes the task as parameter and returns one of the constants:

GPS.Task.EXECUTE_AGAIN if execute should be reexecuted by GPS
GPS.Task.SUCCESS if the task has terminated successfully GPS.Task.FAILURE if
the task has terminated unsuccessfully

• active – A boolean. By default the ‘execute’ functions are executed in the background
approximately every 100ms - setting this to True makes GPS run the ‘execute’ function
much more aggressively, every time the GUI is idle. Use this with caution, as this might
impact the responsiveness of the user interface.

16.5. Classes 383

GPS User’s Guide, Release 2018

• block_exit – A boolean. Set this to True if a confirmation popup should appear when
the task is running and GPS has been asked to quit.

block_exit()
Returns True if and only if this task should block the exit of GPS.

Returns A boolean

interrupt()
Interrupts the task.

static list()

Returns a list of GPS.Task, all running tasks

name()
Returns the name of the task.

Returns A string

pause()
Pauses the task.

progress()
Returns the current progress of the task.

Returns A list containing the current step and the total steps

resume()
Resumes the paused task.

set_progress(current, total)
Sets the progress indication for this task.

Parameters

• current – an integer, the current progress.

• total – an integer, the total progress.

status()
Returns the status of the task.

Returns A string

16.5.68 GPS.Timeout

class GPS.Timeout
This class gives access to actions that must be executed regularly at specific intervals.

See also:

GPS.Timeout.__init__()

Execute callback three times and remove it
import GPS;

def callback(timeout):
if not hasattr(timeout, "occur"):

return True

timeout.occur += 1
print "A timeout occur=" + `timeout.occur`

384 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

if timeout.occur == 3:
timeout.remove()

t = GPS.Timeout(500, callback)
t.occur = 0

__init__(timeout, action)
A timeout object executes a specific action repeatedly, at a specified interval, as long as it is registered.
The action takes a single argument, the instance of GPS.Timeout that called it.

Parameters

• timeout – The timeout in milliseconds at which to execute the action

• action – A subprogram parameter to execute periodically

remove()
Unregisters a timeout.

16.5.69 GPS.ToolButton

16.5.70 GPS.Toolbar

16.5.71 GPS.Unexpected_Exception

class GPS.Unexpected_Exception
An exception raised by GPS. It indicates an internal error in GPS, raised by the Ada code itself. This exception
is unexpected and indicates a bug in GPS itself, not in the Python script, although it might be possible to modify
the latter to work around the issue.

GPS.Exception GPS.Unexpected_Exception

16.5.72 GPS.VCS2

class GPS.VCS2
An interface to a version control engine.

One project is always associated with at most one version control, which is used for all of its sources.

However, in a given tree of projects, there can be multiple such engines, if different repositories are used for
the sources (for instance a third-party repository is imported), possibly for different implementations of version
control (one for git, one for subversion...)

As a result, for a given source file you first need to find the relevant engine, via a call to GPS.VCS2.get.

For efficiency, GPS caches the status of files locally, and only refreshes at specific points. To get the sta-
tus of a file as currently cached, use GPS.VCS2.get_file_status. This will always return a valid status, even
if the cache has never been initialized by querying the actual VCS on the disk. To do this, call one of
GPS.VCS2.ensure_status_for_* methods. These methods will eventually run the vcs_file_status_update hook

16.5. Classes 385

GPS User’s Guide, Release 2018

to let you know that the status has changed. This is all implemented asynchronously though, since such a query
might take time.

This class provides the user view for VCS engines.

In practice, it is further derived in the code, to provide support for various VCS engines like git, CVS, subversion,
clearcase,... The hierarchy is:

GPS.VCS2
|

vcs2.VCS (abstract)
|

+-----+-----+
| | |

Git CVS Subversion

Actions = <GPS.__enum_proxy object>

Branch = <class GPS.Branch>

Commit = <class GPS.Commit>

Status = <GPS.__enum_proxy object>

name
Return the name of the VCS (as could be set in the project’s IDE.VCS_Kind attribute). This is always
lower-cased.

Type str

static active_vcs()
Return the currently active VCS. When the project uses a single VCS, it will always be the same instance.
But when the project tree has multiple VCS, or the same VCS but multiple working directories, this will
return the instance selected by the user in the local toolbar of the VCS views.

Return type GPS.VCS2

ensure_status_for_all_source_files()
Ensure that all source files in any of the loaded project have a known status in self’s cache. This doesn’t
ensure that the status for files that are under version control but not part of the project sources is also
computed, although in most cases the VCS engine will indeed compute them.

This is computed asynhronously.

ensure_status_for_files(files)
Make sure that all files has a known status in self’s cache. This is computed asynhronously.

Parameters files (List[GPS.File]) –

ensure_status_for_project(project)
Make sure that all source files of the project have a known status in self’s cache. This is computed
asynhronously.

Parameters project (GPS.Project) –

static get(project)
Return the VCS to use for the files in a given project. Each project can have its own VCS, if for instance
it is imported from another repository.

Parameters project (GPS.Project) –

Return type GPS.VCS2

386 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

get_file_status(file)
Return the file status, as seen in self’cache.

Parameters file (GPS.File) –

Returntype a tuple (GPS.VCS2.Status, str, str) where the two strings are the version and the
repository version

invalidate_status_cache()
Mark all entries in self’s cache as no longer valid. This will force a refresh next time one of the en-
sure_status_* method is called.

set_run_in_background(background)
Should be called to let GPS know when background commands are executing. This is used to queue
commands instead of running several of them in parallel. Do not call this function directly. Instead, use
the python function vcs2.core.run_in_background which provides a higher-level API for this purpose.

static supported_systems()
Shows the list of supported VCS systems.

Returns List of strings

static vcs_in_use()
Return the list of all VCS in use for the loaded project and its imported projects.

Return type [GPS.VCS2]

16.5.73 GPS.VCS2_Task_Visitor

class GPS.VCS2_Task_Visitor
A class used in GPS.VCS2.async_fetch_history. This is only used when writing your own support for VCS
engines.

annotations(file, first_line, ids, annotations)
Report annotations to add to the side of the editors. Such annotations should provide author, last modifi-
cation date, commit id,... for each line.

Parameters

• file (GPS.File) – the file for which we add annotations

• first_line (int) – the first line number for which we return information.

• ids (List(str)) – the commit ids, for each line.

• annotations (List(str)) – the annotations. The first entry is for first_line, then the
next line, and so on.

branches(category, iconname, can_rename, branches)
Report a list of branches available for the current VCS.

Parameters

• category (str) – the name of the category, as displayed in the Branches view. You
can call this method several times for the same category if need be. If the category is
‘BRANCHES’, it will be expanded in the GUI to show all the branches within.

• iconname (str) – icon to use for this category.

• can_rename (bool) – true if the branches can be renamed.

• branches (List) – a list of branches (see GPS.VCS2.Branch).

16.5. Classes 387

GPS User’s Guide, Release 2018

diff_computed(diff)
Used to report a diff, from GPS.VCS2.async_diff.

Parameters diff (str) – the diff, using standard diff format.

file_computed(contents)
Used to provide the contents of a file at a specific version.

Parameters contents (str) – the contents of the file.

history_lines(list)
Report when a new line for the VCS history was seen. Used from GPS.VCS2.async_fetch_history.

Parameters list (List(GPS.VCS2.Commit)) – a list of lines from the history. This
doesn’t have to be the whole log, though, although it is more efficient to send bigger chunks.

set_details(id, header, message)
Used to provide details on one specific commit, from the GPS.VCS2.async_fetch_commit_details method.

Parameters

• id (str) – the commit for which we are reporting details

• header (str) – a multi-string piece of information to display in the History view. This
should show the commit id, the date and author of the commit,...

• message (str) – a multi-string description of the commit message, and possibly a diff
of what has changed.

success(msg=’‘)
This should be called whenever an action succeed. It is used to perform various cleanups on the Ada side
(for instance recomputing the status of files).

Parameters msg (str) – If specified, a temporary popup is displayed to the user showing the
message. The popup automatically disappears after a short while.

tooltip(text)
Report additonal text to display in tooltips. In particular, this is called in the Branches view, as a result of
calling the VCS engine’s async_action_on_branch method.

Parameters text (str) – additional text for the tooltip

16.5.74 GPS.Valgrind

class GPS.Valgrind
This class helps testing GPS. To use it run GPS under valgrind and call corresponding methods to turn on/off
callgrin for intresting part of GPS execution. See more info in valgrind documentation.

static callgrind_dump_stats()
Force generation of a profile dump at specified position in code, for the current thread only. Written
counters will be reset to zero.

static callgrind_start_instrumentation()
Start full Callgrind instrumentation if not already enabled.

static callgrind_stop_instrumentation()
Stop full Callgrind instrumentation if not already disabled.

static callgrind_toggle_collect()
Toggle the collection state. This allows to ignore events with regard to profile counters.

static callgrind_zero_stats()
Reset the profile counters for the current thread to zero.

388 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

16.5.75 GPS.Vdiff

class GPS.Vdiff
This class provides access to the graphical comparison between two or three files or two versions of the same
file within GPS. A visual diff is a group of two or three editors with synchronized scrolling. Differences are
rendered using blank lines and color highlighting.

static __init__()
This function prevents the creation of a visual diff instance directly. You must use GPS.Vdiff.
create() or GPS.Vdiff.get() instead.

See also:

GPS.Vdiff.create()

GPS.Vdiff.get()

close_editors()
Closes all editors involved in a visual diff.

static create(file1, file2, file3=’‘)
If none of the files given as parameter is already used in a visual diff, creates a new visual diff and returns
it. Otherwise, None is returned.

Parameters

• file1 – An instance of GPS.File

• file2 – An instance of GPS.File

• file3 – An instance of GPS.File

Returns An instance of GPS.Vdiff

files()
Returns the list of files used in a visual diff.

Returns A list of GPS.File

static get(file1, file2=’‘, file3=’‘)
Returns an instance of an already exisiting visual diff. If an instance already exists for this visual diff, it
is returned. All files passed as parameters must be part of the visual diff but not all files of the visual diff
must be passed for the visual diff to be returned. For example if only one file is passed, the visual diff that
contains it, if any, is returned even if it is a two or three file visual diff.

Parameters

• file1 – An instance of GPS.File

• file2 – An instance of GPS.File

• file3 – An instance of GPS.File

static list()
Returns the list of visual diffs currently opened in GPS.

Returns A list GPS.Vdiff

Here is an example that demonstrates how to use GPS.Vdiff.list to
close all the visual diff.

First two visual diff are created
vdiff1 = GPS.Vdiff.create(GPS.File("a.adb"), GPS.File("b.adb"))
vdiff2 = GPS.Vdiff.create(GPS.File("a.adb"), GPS.File("b.adb"))

16.5. Classes 389

GPS User’s Guide, Release 2018

Then we get the list of all current visual diff
vdiff_list = GPS.Vdiff.list()

And we iterate on that list in order to close all editors used in
each visual diff from the list.

for vdiff in vdiff_list:
files = vdiff.files()

But before each visual diff is actually closed, we just inform
the user of the files that will be closed.

for file in files:
print "Beware! " + file.name () + "will be closed."

Finally, we close the visual diff

vdiff.close_editors()

recompute()
Recomputes a visual diff. The content of each editor used in the visual diff is saved. The files are recom-
pared and the display is redone (blank lines and color highlighting).

16.5.76 GPS.XMLViewer

class GPS.XMLViewer
This class represents Tree-based views for XML files.

__init__(name, columns=3, parser=None, on_click=None, on_select=None, sorted=False)
Creates a new XMLViewer, named name.

columns is the number of columns that the table representation should have. The first column is always
the one used for sorting the table.

parser is a subprogram called for each XML node that is parsed. It takes three arguments: the name of
the XML node being visited, its attributes (in the form “attr=’foo’ attr=”bar””), and the text value of that
node. This subprogram should return a list of strings, one per visible column create for the table. Each
element will be put in the corresponding column.

If parser is not specified, the default is to display in the first column the tag name, in the second column
the list of attributes, and in the third column when it exists the textual contents of the node.

on_click is an optional subprogram called every time the user double-clicks on a line, and is passed the
same arguments as parser. It has no return value.

on_select has the same profile as on_click, but is called when the user has selected a new line, not
double-clicked on it.

If sorted is True, the resulting graphical list is sorted on the first column.

Parameters

• name – A string

• columns – An integer

• parser – A subprogram

• on_click – A subprogram

390 Chapter 16. Scripting API reference for GPS

GPS User’s Guide, Release 2018

• on_select – A subprogram

• sorted – A boolean

Display a very simply tree. If you click on the file name,
the file will be edited.
import re

xml = '''<project name='foo'>
<file>source.adb</file>

</project>'''

view = GPS.XMLViewer("Dummy", 1, parser, on_click)
view.parse_string(xml)

def parser(node_name, attrs, value):
attr = dict()
for a in re.findall('''(\w+)=['"](.*?)['"]\B''', attrs):

attr[a[0]] = a[1]

if node_name == "project":
return [attr["name"]]

elif node_name == "file":
return [value]

def on_click(node_name, attrs, value):
if node_name == "file":

GPS.EditorBuffer.get(GPS.File(value))

static create_metric(name)
Creates a new XMLViewer for an XML file generated by gnatmetric. name is the name for the window.

Parameters name (string) – A string

static get_existing(name)
Returns a XMLViewer instance if name corresponds to an existing XMLViewer window. If no
XMLViewer`window has been found for the given ``name`, returns None instead.

Parameters name (string) – A string

parse(filename)
Replaces the contents of self by that of the XML file.

Parameters filename – An XML file

parse_string(str)
Replaces the contents of self by that of the XML string str.

Parameters str – A string

16.5. Classes 391

GPS User’s Guide, Release 2018

392 Chapter 16. Scripting API reference for GPS

CHAPTER

SEVENTEEN

SCRIPTING API REFERENCE FOR GPS.BROWSERS

Interface to the graph drawing API in GPS.

17.1 Classes

17.1.1 GPS.Browsers.AbstractItem

class GPS.Browsers.AbstractItem
This abstract class represents either items or links displayed in the canvas, and provide common behavior.

height
The height of the item (in its own coordinate space)

Type (read-write) int

is_link
Whether the item is a link.

Type (read-only) bool

parent
The parent item (to which self was added)

Type (read-only) GPS.Browsers.Item

style
The style applied to the item

Type (read-write) GPS.Browsers.Style

width
The width of the item (in its own coordinate space)

Type (read-write) int

x
The position of the item. For a toplevel item, this is the position within the diagram. For an item that was
added to another item, this is the position within its parent.

Type (read-write) int

y
The position of the item. For a toplevel item, this is the position within the diagram. For an item that was
added to another item, this is the position within its parent.

Type (read-write) int

393

GPS User’s Guide, Release 2018

hide()
Temporarily hide the item, until GPS.Browsers.Item.show is called.

show()
Show an item that has been hidden.

17.1.2 GPS.Browsers.Diagram

class GPS.Browsers.Diagram
A diagram contains a set of items.

You can extend this class with your own, and declare the following special subprograms which are called auto-
matically by GPS:

def on_selection_changed(self, item, *args):
'''
Called when the selection status of item has changed.

:param GPS.Browsers.Item item: the item that was selected or
unselected. This is set to None when all items were
unselected.

'''

Selection = <GPS.__enum_proxy object>

items = None
The list of all GPS.Browsers.Item in the diagram. This only include toplevel items, you will need to
iterate their own children if you need access to them. This also includes links.

selected = None
The list of selected GPS.Browsers.Item

__init__()
Creates a new empty diagram.

add(item)
Add a new item to the diagram. The coordinates of the item are set through item.set_position().

Parameters item (GPS.Browsers.Item) – the item to add

changed()
This method should be called whenever the contents of the diagram has changed, or some items have been
modified. This will trigger a re-display of the diagram. Not needed when you only added a new item to
the diagram.

clear()
Remove all items from the diagram.

clear_selection()
Unselect all items in the diagram.

is_selected(item)
Whether the item is selected.

Parameters item (GPS.Browsers.Item) – the item to check

Returns a boolean

links(item)
Return the incoming or outgoing links for item (i.e. all links for which item is a source or a target)

394 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

Parameters item (GPS.Browsers.AbstractItem) – the source of the links

Returns list of GPS.Browsers.AbstractItem

static load_json(file, diagramFactory=None)
Load a JSON file into a series of diagrams.

The format of the file is described below, and is basically a serialization of all the style and object attributes
mentioned elsewhere in this documentation.

The JSON file should contain an object (“{...}”) with the following attributes:

•styles: this is a dict of style objects. Each style is itself described as an object whose attributes are any
of the valid parameters for GPS.Browsers.Style.__init__().

There are a few special ids that can be used to set the default properties or styles for the items defined
in this json file. For instance, if the id starts with “__default_props_” followed by one of the valid
item type, the object can define the default attribute for any of the valid attributes of items.

If the id starts with “__default_style_”, the object defines the style properties for any of the item type.

For instance:

{"styles": {
'__default_props_text': {"margin": [0, 5, 0, 5]},
'__default_props_rect': {"minWidth": 200},
'__default_style_text': {"fontName": "arial 10"},
'customStyle1': {"stroke": "blue"}

}}

•templates: this is a dictionary of diagram objects (as described below. They are not created or inserted
in the diagram. However, if a later description inside diagrams contains an attribute ‘template’, then
that attribute will be replaced by all the attributes defined in the template. For instance:

'templates': {
'#tmpl0': { 'type': 'rect'; 'width': 10 }

},
'diagrams': [

{ 'template': '#tmp10',
'height': 20

}
]

is equivalent to putting the type and the width inline in the objet definition, but provide better sharing.

•diagrams: this is a list of diagram object. A single file can contain multiple diagrams, but a browser
window always only displays a single diagram.

Each diagram object has two possible attributes:

–items: this is a list of item objects (see below)

–links: this is a list of link objects (see below)

An item object is itself described with a JSON object, with the following possible attributes:

•id: an optional string, which defines an id for an object. This id can be used when creating links. It is
also stored as an id attribute in the instance of GPS.Browsers.Item that is created.

•data: this field is stored as is in the generated instance of GPS.Browsers.Item. It can be used to store
any application specific data, in particular since the instance will be passed to the callbacks to handle
click events.

17.1. Classes 395

GPS User’s Guide, Release 2018

•x, y, anchorx, anchory: optional float attributes. See the description of GPS.Browsers.Item.
set_position().

•width, height: the size of the item. This can be specified as a positive float to specify a size in pixels.
Alternatively it can be set to GPS.Browsers.Item.Size.FIT (-1) so that the item and its margins occupy
the full width of its parent (for a vertical layout) or the full height (for a horizontal layout). It can also
be set to GPS.Browsers.Item.Size.AUTO (-2) so that the item occupies the minimal size needed for all
of its children. The default is FIT.

•style: an optional string (which then references the id of one of the styles defined in the “styles”
attribute described above, or an inline JSON object that describes a style as above.

•type: the type of the item. Valid values are “rect”, “hr”, “ellipse”, “polyline” or “text” (see the corre-
sponding classes in this documentation). This attribute is optional, and will be guessed automatically
in some cases. For instance, when the object also has a text attribute, it is considered as a text item. If
it has a “points” attribute it is considered as a polyline item. The default type is “rect”.

•minWidth and minHeight: the minimal size for an item. See GPS.Browsers.Item.
set_min_size().

•vbox and hbox: list of items, which are the children of the current item. These children are orga-
nized either vertically or horizontally (only one of the two attributes can be specified, vbox takes
precedence).

When an item is created as a child of another one (in its parent’s vbox or hbox), it may have the following
additional attributes. See GPS.Browsers.Item.add() for more information.

•margin: the margins around the item. This is either a single float (in which case all margins are equal),
or a list of four floats which give the top, right, bottom and left margins respectively.

•align: one of the values from GPS.Browsers.Item.Align. In a JSON file, though, you can only
use the corresponding integer values.

•float: whether the item is set as floating

•overflow: one of the integer values for GPS.Browers.Item.Overflow

Text objects (corresponding to GPS.Browsers.TextItem) have the following additional attributes:

•text: the text to display.

•directed: one of the values from GPS.Browsers.TextItem.Text_Arrow, which indicates that
an extra arrow should be displayed next to the text. This is mostly relevant when the text is used as a
label on a link, in which case the actual arrow will be computed automatically from the orientation of
the link.

Hr objects (corresponding to GPS.Browsers.HrItem) have the following additional attributes:

•text: the text to display.

Polyline objects (corresponding to GPS.Browsers.PolylineItem) have the following additional
attributes:

•points: the points that describe the contour of the object, as a list of floats. They are grouped into
pairs, each of which describes the coordinates of a point.

•close: whether the last point should automatically be linked to the first.

•relative: an optional boolean (defaults to false) that indicates whether the points are coordinates rela-
tive to the item’s topleft corner, or are relative to the previous point.

Rect items (corresponding to GPS.Browsers.RectItem) have the following additional attributes:

•radius: optional float indicating the radius for the corners of the rectangle.

396 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

A link object contains the following attributes (see GPS.Browser.Link for more information on the
parameters):

•id: an optional string id for the link, if you need to create links to it.

•from and to: these are record with one mandatory field, ref, which is the id of one of the objects or
links created previously. In addition, these records can also specify the following attributes:

–anchorx, anchory: floats in the range 0.0 .. 1.0 which specify where the item is attached in its
target item

–side takes its value from GPS.Browsers.Link.Side, and is used to force the link to emerge from
one specific side of the item.

–label is a JSON object describing an item, as described earlier. This will generally be a text item.

•label: one of GPS.Browsers.Item, to display in the middle of the link. This will generally be a
text item. If it is directed, the arrow will be computed from the orientation of the link.

•route: one of GPS.Browsers.Link.Routing (as integer) to indicate how the link is displayed.

•waypoints: a list of floats, which will be grouped into pairs to define waypoints. See GPS.
Browsers.Link.set_waypoints(). An alternative definition is to use an object with two
fields, points which is the list of floats, and relative which is a bool indicating whether the points are
in absolute coordinates or relative to the previous point.

Here is an example which draws two items linked together:

{"styles": {},
"diagrams": [
{"items": [

{"x": 0, "y": 0, "style": "customStyle1",
"id": "first item",
"width": 100, "height": 100,
"vbox": [

{"text": "Name",
"style": {"fontName": "arial 20", stroke:null}},
{"type": "hr", "text":"attributes"},
{"text": "+attr:integer"}

]
},
{"x": 100, "y":200",
"id": "second item",
"text": "Annotation"},

],
"links": [
{"from": {"ref": "first item"},
"to": {"ref": "second item"},
"style": {"stroke": "blue", "dashes": [4, 4]}}

]
}

]
}

Parameters

• file (str) – an object that has a read() function, or the name of a file as a string.

• diagramFactory (callable) – a callback that creates a new instance of
GPS.Browsers.Diagram or one of its derived classes. Typically, you could pass the class
itself, since calling it will create a new instance. As a special case, the diagrams returned

17.1. Classes 397

GPS User’s Guide, Release 2018

by this function include a special ids field, which is a dict mapping the id to the actual
item.

Returns the list of GPS.Browsers.Diagram objects created.

static load_json_data(data, diagramFactory=None)
Load a JSON description and display the corresponding data. See GPS.Browsers.Diagram.
load_json() for more information on the format of the JSON file.

lower_item(item)
Lower the item, so that it is displayed below all other items.

Parameters item (GPS.Browsers.Item) – the item to lower.

raise_item(item)
Raise the item, so that it is displayed above all other items.

Parameters item (GPS.Browsers.Item) – the item to raise.

remove(item)
Remove an item from the diagram.

Parameters item (GPS.Browsers.Item) – the item to remove.

select(item)
Select the item. If the diagram is set up for single selection, any previously selected item is first unselected.

Parameters item (GPS.Browsers.Item) – the item to select.

set_selection_mode(mode=’GPS.Browsers.Diagram.Selection.SINGLE’)
Controls the selection in the views associated with this buffer. It can be used to indicate whether a single
item or multiple items can be selected.

Parameters mode (GPS.Browsers.Diagram.Selection) – the type of selection

unselect(item)
Unselect the item.

Parameters item (GPS.Browsers.Item) – the item to select.

17.1.3 GPS.Browsers.EditableTextItem

class GPS.Browsers.EditableTextItem
A text item (GPS.Browsers.TextItem) that can be double-clicked on to edit its text. See GPS.
Browsers.View.start_editing() if you need to start the editing from the script, instead of having
the user double-click on the item.

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.EditableTextItemGPS.Browsers.TextItem

editable = True
Whether this item is currently editable by the user

__init__(style, text, directed=’GPS.Browsers.TextItem.Text_Arrow.NONE’, on_edited=None)
Creates a new editable text item

398 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

Parameters

• style (GPS.Browsers.Style) – how to draw the item

• text (str) – the text to display.

• directed (bool) – whether to draw an additional arrow next to the text. This can be
used for instance when the text is next to a link, and indicates in which direction the text
applies.

• on_edited – A callback whenever the text has been modified interactively by the user.
The profile is on_edited(textitem, old_text)

17.1.4 GPS.Browsers.EllipseItem

class GPS.Browsers.EllipseItem
An item which displays an ellipse or a circle. It can contain children.

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.EllipseItem

__init__(style, width=-1.0, height=-1.0)
Create a new ellipse/circle item, inscribed in the box given by the width and height.

Parameters

• style (GPS.Browsers.Style) – how to draw the item

• width (float) – used to force a specific width for the item. If negative or null, the width
is computed from the children of the item.

• height (float) – similar to width.

17.1.5 GPS.Browsers.HrItem

class GPS.Browsers.HrItem
A horizontal-line item, with optional text in the middle. This is basically represented as:

—– text —–

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.HrItem

__init__(style, text=’‘)
Creates a new horizontal line.

Parameters

17.1. Classes 399

GPS User’s Guide, Release 2018

• style (GPS.Browsers.Style) – how to draw the item

• text (str) – the text to display.

17.1.6 GPS.Browsers.ImageItem

class GPS.Browsers.ImageItem
An item that shows an image.

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.ImageItem

__init__(style, filename, width=-1.0, height=1.0)
Creates a new image item.

Parameters

• style (GPS.Browsers.Style) – how to draw the border of the item

• filename (str) – the filename to load.

• width (float) – forcing a size for the item (the default is to use the image’s own size)

• height (float) – forcing a size for the item (the default is to use the image’s own size)

17.1.7 GPS.Browsers.Item

class GPS.Browsers.Item
This abstract class represents any of the items that can be displayed in a browser. Such items have an outline,
whose form depends on the type of the item (rectangular, polygone,...) They can almost all contain children.
Unless you specified an explicit size for the item, its size will be computed to include all the children. The
children are stacked either vertically or horizontally within their container, so that one child appears by default
immediately below or to the right of the previous one. Extra margins can be specified to force extra space.

GPS.Browsers.AbstractItem GPS.Browsers.Item

Align = <GPS.__enum_proxy object>

Layout = <GPS.__enum_proxy object>

Overflow = <GPS.__enum_proxy object>

Size = <GPS.__enum_proxy object>
Describes the size of an item. In general, the size is given as a number of pixels. There are however a few
special values.

400 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

•FIT indicates that the item is sized so that it fits exactly in its parent container, including the child
margins. So for instance given a parent with a vertical layout, of width 200px, and a child with 10px
margins both on left and right, then the child’s width will be set to 180px.

•AUTO indicates that the item’s size is computed so that all of its children fit exactly inside the item.

children = None
The list of GPS.Browsers.Item that were added to the item. This property is not writable.

__init__()
Will raise an exception, this is an abstract class.

add(item, align=’GPS.Browsers.Item.Align.START’, margin=(0, 0, 0, 0), float=False, over-
flow=’GPS.Browsers.Item.Overflow.PREVENT’)
Add a child item. This child will be displayed as part of the item, and will move with it. The size of the
child will impact the size of its parent, unless you have forced a specific size for the latter.

Parameters

• item (GPS.Browsers.Item) – the item to add

• align (GPS.Browsers.Item.Align) – How the item should be aligned within its
parent. When the size of the child is computed automatically, it will have the same width
as its parent (for vertical layout) or the same height as its parent (for horizontal layout),
minus the margins. In this case, the align parameter will play no role. But when the child
is smaller than its parent, the align parameter indicates on which side an extra margin is
added.

• margin (list_of_float) – Extra margin to each side of the item (resp. top, right,
bottom and left margin). These a float values.

• float (bool) – Whether the child should be floating within its parent. This impacts the
layout: by default, in a vertical layout, all children are put below one another, so that they
do not overlap. However, when a child is floating, it will be put at the current y coordinate,
but the next item will be put at the same coordinate as if the child was not there.

• overflow (GPS.Browsers.Item.Overflow) – Whether the child’s size should
impact the parent size. For instance, you might want to display as much text as possible in
a box. When overflow is set to PREVENT, the box will be made as large as needed to have
the whole text visible (unless you have specified an explicit size for the box, as usual). But
when the overflow is set to HIDE, the box will get its size from the other children, and the
text will simply be ellipsized if it does not fit in the box.

get_parent_with_id()
Returns either self (if it has an “id” attribute), or its first parent that does. It might return None if nothing
is found. Such “id” attributes are in general used to identify items with semantic information, rather than
just display purposes.

recurse()
A generator that returns self and all its child items. For instance:

for it in item.recurse(): ...

set_child_layout(layout=’GPS.Browsers.Item.Layout.VERTICAL’)
Choose how children are organized within this item.

Parameters layout (GPS.Browsers.Item.Layout) – if set to VERTICAL, then the
child items are put below one another, otherwise they are put next to one another.

set_height_range(min=-1.0, max=-1.0)
Constrain the range of height for self. Self could be make larger if its children request a larger size, but will
not smaller than the given size. The default is for items to use the full width of their parent (for vertical

17.1. Classes 401

GPS User’s Guide, Release 2018

layout) or the full height (for horizontal layout), and the size required by their children for the other axis.
This overrides any previous call to set_size

Parameters

• min (float) – minimal height

• max (float) – maximal height

set_position(x=None, y=None, anchorx=0.0, anchory=0.0)
Indicates the position of the item. This is the position within its parent item, or if there is no parent this
is the absolute position of the item within the diagram. Calling this function should always be done for
toplevel items, but is optional for children, since their position is computed automatically by their container
(which is especially useful with text items, whose size might be hard to compute).

Parameters

• x (float) – coordinates relative to parent or browser.

• y (float) – coordinates relative to parent or browser.

• anchorx (float) – what position within the item x is refering to. If set to 0.0, x indi-
cates the left side of the item. If set to 0.5, x indicates the middle of the item. 1.0 indicates
the right side of the item.

• anchory (float) – what position within the item y is refering to.

set_size(width=-1.0, height=-1.0)
Forces a specific size for self. This overrides any previous call to set_width_range and set_height_range.

Parameters

• width (float) – actual width. If -1, the width will be computed automatically.

• height (float) – actual height. If -1, the height will be computed automatically.

set_width_range(min=-1.0, max=-1.0)
Constrain the range of width for self. Self could be make larger if its children request a larger size, but will
not smaller than the given size. The default is for items to use the full width of their parent (for vertical
layout) or the full height (for horizontal layout), and the size required by their children for the other axis.
This overrides any previous call to set_size

Parameters

• min (float) – minimal width

• max (float) – maximal width

toplevel()
The item that contains self, or self itself if it is already a toplevel item. This is simply computed by using
the GPS.Browsers.AbstractItem.parent() property.

Returns a GPS.Browsers.AbstractItem

17.1.8 GPS.Browsers.Link

class GPS.Browsers.Link
A line between two items. When the items are moved, the line is automatically adjusted to stay connected to
those items.

402 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

GPS.Browsers.AbstractItem GPS.Browsers.Link

Routing = <GPS.__enum_proxy object>

Side = <GPS.__enum_proxy object>

fromLabel = None
Returns a GPS.Browsers.Item element (or None) corresponding to the link’s source label.

label = None
Returns a GPS.Browsers.Item element (or None) corresponding to the link’s label.

source = None
The source GPS.Browsers.Item for the link

target = None
The target GPS.Browsers.Item for the link

toLabel = None
Returns a GPS.Browsers.Item element (or None) corresponding to the link’s target label.

__init__(origin, to, style, routing=’GPS.Browsers.Link.Routing.STRAIGHT’, label=None,
fromX=0.5, fromY=0.5, fromSide=’GPS.Browsers.Link.Side.AUTO’, fromLabel=None,
toX=0.5, toY=0.5, toSide=’GPS.Browsers.Link.Side.AUTO’, toLabel=None)

Creates a new link attached to the two items FROM and TO.

Parameters

• from (GPS.Browsers.Item) – the origin of the link.

• to (GPS.Browsers.Item) – the target of the link.

• style (GPS.Browsers.Style) – how to draw the item

• routing (GPS.Browsers.Link.Routing) – the routing algorithm to use to com-
pute how the link is displayed. A STRAIGHT link takes the shortest route between the
two items, whereas an ORTHOGONAL link only uses horizontal and vertical lines to do
so. A CURVE is almost the same as a straight link, but is slightly curves, which is useful
when several links between the same two items exist. An ORTHOCURVE link uses bezier
curves to link the two items.

• fromX (float) – the position within the origin where the link is attached. This is a float
in the range 0.0 .. 1.0. The link itself is not displayed on top of the origin box, but changing
the attachment point will change the point at which the link exits from the origin box.

• fromY (float) – similar to fromY, for the vertical axis

• fromSide (GPS.Browsers.Link.Side) – This can be used to force the link to ex-
ist from a specific side of its toplevel container. For instance, if you set fromX to 0.0,
the link will always exit from the left side of self. But if self itself is contained within
another item, it is possible that the line from the left side of self to the target of the
link will in fact exit from some other place in the container item. Setting fromSide to
GPS.Browsers.Link.Side.LEFT will make sure the link exits from the left side of the par-
ent item too.

17.1. Classes 403

GPS User’s Guide, Release 2018

• label (GPS.Browsers.Item) – a label (in general a TextItem) to display in the mid-
dle of the link.

• fromLabel (GPS.Browsers.Item) – a label (in general a TextItem) to display next
to the origin of the link.

• toX (float) – This plays a similar role to fromX, but it can also have a negative value.
In such a case, GPS will try to move the end position of the link along the border of the
item, so as to get a horizontal or vertical segment. If this is not possible, the usual behavior
applies to abs(toX) to find the attachment of the link in the item.

• toY (float) – similar to toX

• toLabel (GPS.Browsers.Item) – a label (in general a TextItem) to display next to
the target of the link.

recurse()
Returns self and its labels. This matches GPS.Browsers.Item.recurse. Note that a label doesn’t have self
as its parent, so you cannot get back to the link from one of its labels.

set_waypoints(points, relative=False)
Force specific waypoints for link. The lines will pass through each of these points when it is routed as
straight or orthogonal lines. By default, the coordinates are absolute (in the same coordinate system as the
items). If however you specify relative coordinates, then each point is relative to the previous one (and the
first one is relative to the link’s attachment point on its origin item).

Parameters

• points (list_of_float) – The floats are grouped into pair, each of which describes
the coordinates of one points.

• relative (bool) – whether the coordinates are relative to the previous point, or absolte.

17.1.9 GPS.Browsers.PolylineItem

class GPS.Browsers.PolylineItem
An item which displays a set of connected lines. It can be used to draw polygons for instance, or simple lines.

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.PolylineItem

__init__(style, points, close=False)
Create a new polyilne item.

Parameters

• style (GPS.Browsers.Style) – how to draw the item

• points (list_of_float) – each points at which line ends. The coordinates are rela-
tive to the top-left corner of the item (so that (0,0) is the top-left corner itself). The floats
are grouped into pair, each of which describes the coordinates of one points. For instance:

(0,0, 100,100)

404 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

displays a single line which goes from the top-left corner to a point at coordinates
(100,100).

• close (bool) – whether the last point should automatically be linked to the first. This
ensures the polygone is properly closed and can be filled.

17.1.10 GPS.Browsers.RectItem

class GPS.Browsers.RectItem
A special kind of item, which displays a rectangular box, optionally with rounded corner. It can contain children
items.

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.RectItem

__init__(style, width=-1.0, height=-1.0, radius=0.0)
Creates a new rectangular item.

Parameters

• style (GPS.Browsers.Style) – how to draw the item

• width (float) – used to force a specific width for the item. If this is null or negative,
the width will be computed from the children of the item.

• height (float) – used to force a specific height, which will be computed automatically
if height is negative or null

• radius (float) – the radius for the angles.

17.1.11 GPS.Browsers.Style

class GPS.Browsers.Style
This class provides multiple drawing attributes that are used when drawing on a browser. This includes colors,
dash patterns, arrows and symbols,... Very often, such a style will be reused for multiple objects.

Align = <GPS.__enum_proxy object>

Arrow = <GPS.__enum_proxy object>

Symbol = <GPS.__enum_proxy object>

Underline = <GPS.__enum_proxy object>

17.1. Classes 405

GPS User’s Guide, Release 2018

__init__(stroke=’black’, fill=’‘, lineWidth=1.0, dashes=[], sloppy=False, fontName=’sans
9’, fontUnderline=’GPS.Browsers.Style.Underline.NONE’, fontStrike=False, font-
Color=’black’, fontLineSpacing=0, fontHalign=’GPS.Browsers.Style.Align.LEFT’,
arrowFrom=’GPS.Browsers.Style.Arrow.NONE’, arrowFromLength=8.0, arrowFro-
mAngle=0.4, arrowFromStroke=’black’, arrowFromFill=’‘, arrowFromWidth=1.0,
arrowTo=’GPS.Browsers.Style.Arrow.NONE’, arrowToLength=8.0, arrowToAn-
gle=0.4, arrowToStroke=’black’, arrowToFill=’‘, arrowToWidth=1.0, symbol-
From=’GPS.Browsers.Style.Symbol.NONE’, symbolFromStroke=’black’, symbol-
FromDist=16.0, symbolFromWidth=1.0, symbolTo=’GPS.Browsers.Style.Symbol.NONE’,
symbolToStroke=’black’, symbolToDist=16.0, symbolToWidth=1.0, shadowColor=None,
shadowOffsetX=2.0, shadowOffsetY=2.0)

Constructs a new style. This function takes a very large number of parameters, but they are all optional.
Not all of them apply to all objects either.

Parameters

• stroke (str) – the color to use to draw lines. The format is one of “rgb(255,255,255)”,
“rgba(255,255,255,1.0)” or “#123456”. Transparency is supported when using rgba.

• fill (str) – how closed objects should be filled. The format is either a color, as for
stroke, or a string describing a gradient as in “linear x0 y0 x1 y1 offset1 color1 offset2
color2 ...”

where (x0,y0) and (x1,y1) define the orientation of the gradient. It is recommended that
they are defined in the range 0..1, since the gradient will be automatically transformed to
extend to the whole size of the object. The rest of the parameters are used to define each
color the gradient is going through, and the offset (in the range 0..1) where the color must
occur. For instance “linear 0 0 1 1 0 rgba(255,0,0,0.2) 1 rgba(0,255,0,0.2)”

• lineWidth (float) – the width of a line

• dashes (list_of_floats) – a dash pattern. The first number is the number of pixels
which should get ink, then the number of transparent pixels, then again the number of
inked pixels,... The pattern will automatically repeat itself.

• sloppy (boolean) – when true, no straight line is displayed. They are instead approxi-
mated with curves. Combined with a hand-drawing font, this makes the display look as if
it has been hand-drawn.

• fontName (str) – the font to use and its size.

• fontUnderline (GPS.Browsers.Style.Underline) – The underline to use for
the text

• fontStrike (boolean) – whether to strikethrough the text.

• fontColor (str) – the color to use for text.

• fontLineSpacing (int) – extra number of pixels to insert between each lines of text.

• fontHalign (GPS.Browsers.Style.Align) – How text should be aligned hori-
zontally within its bounding box.

• arrowFrom (GPS.Browsers.Style.Arrow) – How should arrows be displayed on
the origin of a line.

• arrowFromLength (float) – the size of an arrow.

• arrowFromAngle (float) – the angle for an arrow.

• arrowFromStroke (str) – the stroke color for the arrow.

• arrowFromFill (str) – the fill pattern for the arrow.

406 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

• arrowTo (GPS.Browsers.Style.Arrow) – same as arrowFrom, but for the end of
a line

• arrowToLength (float) – similar to arrowFromLength

• arrowToAngle (float) – similar to arrowFromAngle

• arrowToStroke (str) – similar to arrowFromStroke

• arrowToFill (str) – similar to arrowFromFill

• symbolFrom (GPS.Browsers.Style.Symbol) – the extra symbol to display near
the origin of a line.

• symbolFromStroke (str) – the stroke color to use for the symbol.

• symbolFromDist (float) – the distance from the end of the line at which the symbol
should be displayed.

• shadowColor (str) – the color to use for shadows

17.1.12 GPS.Browsers.TextItem

class GPS.Browsers.TextItem
An item that displays text (optionaly within a rectangular box).

GPS.Browsers.AbstractItem GPS.Browsers.Item GPS.Browsers.TextItem

TextArrow = <GPS.__enum_proxy object>

text = None
The text to display. This can be modified as needed, but you then need to call
GPS.Browsers.Diagram.changed to let GPS know of the change.

__init__(style, text, directed=’GPS.Browsers.TextItem.Text_Arrow.NONE’)
Creates a new text item

Parameters

• style (GPS.Browsers.Style) – how to draw the item

• text (str) – the text to display.

• directed (bool) – whether to draw an additional arrow next to the text. This can be
used for instance when the text is next to a link, and indicates in which direction the text
applies.

17.1.13 GPS.Browsers.View

class GPS.Browsers.View
A view shows a part of a diagram and its objects. Multiple views can be associated with the same diagram.

17.1. Classes 407

GPS User’s Guide, Release 2018

Although this class can be instantiated as is, it is most useful, in general, to extend it, in particular by adding a
method on_item_clicked:

class My_View(GPS.Browsers.View):

def on_item_double_clicked(self, topitem, item, x, y, *args):
'''
Called when the user double clicks on a specific item.
It is recommended to add "*args" in the list of parameters,
since new parameters might be added in the future.

:param GPS.Browsers.Item topitem: the toplevel item clicked on
:param GPS.Browsers.Item item: the item clicked on.

When the item was created from a JSON file (see
:func:`GPS.Browsers.Diagram.load_json`), it contains
additional fields like `data` and `id` that were extracted
from JSON.
This item is either topitem or a child of it.

:param float x: the coordinates of the mouse within the item.
:param float y: the coordinates of the mouse within the item.
'''

def on_item_clicked(self, topitem, item, x, y, *args):
'''
Called when the user releases the mouse button on a specific
item.
This method is called twice for a double-click (once per
actual click).
The parameters are the same as above.
'''

def on_create_context(self, context, topitem, item, x, y, *args):
'''
Called when the user has right-clicked on an item.
This function should prepare the context for contextual menus,
although it does not directly add contextual menu entries.
Instead, declare those menus as usual with
:class:`GPS.Contextual` or :func:`gps_utils.make_interactive`.

:param GPS.Context context: the context.
The function should add custom fields to this context.
These fields can then be tested for the filter or the
action associated with a :class:`GPS.Contextual`.

'''

def on_key(self, topitem, item, key, *args):
'''
Called when the user presses a keyboard key while the view has
the focus.

:param GPS.Browsers.Item topitem: the toplevel item clicked on
:param GPS.Browsers.Item item: the specific item clicked on.
:param int key: the key that was pressed (see Gdk.KEY_*

constants)
'''

408 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

GPS.Browsers.ViewGPS.GUI

Background = <GPS.__enum_proxy object>

diagram = None
The GPS.Browsers.Diagram that the view is referring to. This is a writable property.

editing_in_progress = False
A read-only property that indicates whether the user is currently interactively modifying the contents of an
item (for instance an EditableTextItem). See GPS.Browsers.View.start_editing()

scale = 1.0
The scaling factor for the view. This is a writable property

topleft = (0.0, 0.0)
The coordinates of the top-left corner of the view. This is a writable property

__init__()
Creates the python class instance, but does not associate it with any window yet. Before any of the other
functions can be called, you first need to call self.create() to create the actual window. This creation is
done in two steps, so that you can create your own class extending view. This is in particular needed to
provide support for user interaction.

animate_item_position(item, x, y, duration=0.4)
Moves an item to a new position. This is animated, i.e. the item will go through various steps before
reaching that position.

Parameters

• item (GPS.Browsers.Item) – the item to move

• x (float) – coordinates relative to parent or browser.

• y (float) – coordinates relative to parent or browser.

• duration (float) – how long the animation should take

cancel_editing()
Cancel any interactive editing that might be taking place

center_on(point, xpos=0.5, ypos=0.5)
Scrolls the view so that the point is at the given position within the view (in the middle if xpos and ypos
are both 0.5, or to the left if xpos is 0.0, or the right if xpos is 1.0, and so on).

Parameters point (tuple) – the point

create(diagram, title, save_desktop=None, snap_to_grid=True, snap_to_guides=False, tool-
bar=’Browser’)

Creates a new view that shows the given diagram. This view is automatically made visible in GPS.

Parameters

• diagram (GPS.Browsers.Diagram) – the diagram to display.

• title (str) – the title used for the notebook tab.

17.1. Classes 409

GPS User’s Guide, Release 2018

• save_desktop (func(child)) – An optional callback when GPS is saving the desk-
top. It is passed the MDIWindow in which the view was put, and should return a string
to store in the desktop (see GPS.MDI.add() for more information). This is generally
not useful, unless you are writting a custom python module, in which case the parameter
should be set to “module._save_desktop”. See the documentation for modules.py for
more information.

• snap_to_grid (bool) – whether items should preferably align on the grid when they
are moved (ie they might be moved an additional small amount so that they are properly
aligned). Snapping is systematically disabled when the user moves the item while pressing
shift.

• snap_to_guides (bool) – whether items should preferably align on smart guides.
These guides are generated for particular points of interests of the other items (typically
the top, middle and bottom of the bounding box). This feature is useful to help user align
items.

• toolbar (str) – The name of the toolbar definition to use for the local toolbar of the
browser. Such definitions are found in the file share/gps/menus.xml in the GPS install. If
the name is not defined in that file, a new definition will be used that extends the standard
browsers toolbar. You can later add custom actions to the toolbar by using GPS.Action.
button()

export_pdf(filename, format=’a4’, visible_only=True)
Creates a PDF file with the contents of the view.

Parameters

• filename (GPS.File) – the name of the file to create or override.

• format (str) – one of “a4”, “a4_portrait”, “a4_landscape”, or similar variants with “a3”
and “letter”. It can also be a string “width,height” where the size is given in inches.

• visible_only (bool) – if True, the output will match was is visible in the view. If
False, the output will include the whole contents of the diagram.

scale_to_fit(max_scale=4.0)
Scale and scroll the view so that all the items in the model are visible.

Parameters max_scale (float) – maximum scaling factor to allow.

scroll_into_view(item, duration=0.0)
Scrolls the view as little as possible so that item becomes visible.

Parameters

• item (GPS.Browsers.Item) – the item to show

• duration (float) – if not null, scrolling will be animated over that period of time.

set_background(type, style=None, size=20.0)
Set the type of background to display in the view.

Parameters

• type (GPS.Browsers.View.Background) – the type of background to display.

• style (GPS.Browsers.Style) – the style to use for the drawing. Depending on
the style, the stroke or the fill should be set (or perhaps both). For instance the COLOR
background uses the fill pattern (color or gradient). If you are using GRID, the fill should
be unset, but the stroke should be set. When using a gradient, it is not resized to the size
of the view (as opposed to what is done for items for instance), so it should be something
like linear 0 0 1000 1000 0 black 1 yellow

410 Chapter 17. Scripting API reference for GPS.Browsers

GPS User’s Guide, Release 2018

• size (float) – the size of the grid, when using GRID or DOTS.

set_read_only(readonly=True)
A read-only view does not allow users to move items. It is still possible to click on items though, or zoom
and scroll the view.

Parameters readonly (bool) – whether the view is read-only.

set_selection_style(style)
The style used to highlight the selected items (see GPS.Browsers.Diagram.
set_selection_mode()).

Parameters style (GPS.Browsers.Style) – the style to use.

start_editing(item)
If item is editable, start interactive editing, as if the user had clicked on it.

17.1. Classes 411

GPS User’s Guide, Release 2018

412 Chapter 17. Scripting API reference for GPS.Browsers

CHAPTER

EIGHTEEN

USEFUL PLUGINS

18.1 User plugins

GPS comes with a number of plugins, some of which are activated by default. Control which plugins are activated by
using the Edit → Preferences... menu.

This section discusses a few of the many plugins built in to GPS. The preferences dialog shows their description, so
you can decide whether you want them enabled.

18.1.1 The auto_highlight_occurrences.py module

This plugin highlights all occurrences of the entity under the cursor.

Whenever your cursor rests in a new location, GPS will search for all other places where this entity is referenced using
either the cross-reference engine in GPS, if this information is up-to-date, or a simple textual search. Each of these
occurrences will then be highlighted in a color depending on the kind of the entity.

This plugin does its work in the background, whenever GPS is not busy responding to your actions, so it should have
limited impact on the performances and responsiveness of GPS.

If you are interested in doing something similar in your own plugins, we recommend you look at the gps_utils.
highlighter.Background_Highlighter class instead, which provides the underlying framework.

A similar plugin which you might find useful is in the gps_utils.highlighter.Regexp_Highlighter
class. By creating a simple python file in your gps directory, you are able to highlight any regular expression in the
editor, which is useful for highlighting text like “TODO”, or special comments for instance.

18.1.2 The dispatching.py module

Highlighting all dispatching calls in the current editor

This package will highlight with a special background color all dispatching calls found in the current editor. In
particular, at such locations, the cross-references might not lead accurate result (for instance “go to body”), since the
exact subprogram that is called is not known until run time.

18.2 Helper plugins

A number of plugins are useful when you want to create your own plugins.

413

GPS User’s Guide, Release 2018

18.2.1 The gps_utils module

class gps_utils.Chainmap(*maps)
Combine multiple mappings for sequential lookup.

For example, to emulate Python’s normal lookup sequence:

import __builtin__ pylookup = Chainmap(locals(), globals(), vars(__builtin__))

gps_utils.execute_for_all_cursors(ed, mark_fn, extend_selection=False)
Execute the function mark_fn for every cursor in the editor, meaning, the main cursor + every existing multi
cursor. mark_fn has the prototype def mark_fn(EditorBuffer, EditorMark)

gps_utils.freeze_prefs()
A context manager that temporarily freezes GPS’ preferences_changed signal from being emitted, and then
reactivated it. This is useful when modifying a large number of preferences as a single batch.

This can be used as:

with gps_utils.freeze_prefs():
GPS.Preference(...).set(...)
GPS.Preference(...).set(...)
GPS.Preference(...).set(...)

gps_utils.get_gnat_driver_cmd()
Return the name of the GNAT driver that is suitable for the current project’s target. For instance: “gnat” for
native targets or “powerpc-elf-gnat” for cross PowerPC ELF targets.

class gps_utils.hook(hook, last=True)
A decorator that makes it easier to connect to hooks:

@hook("gps_started")
def my_function(*args, **kwargs):

pass

Note that the function does not receive the hook as the first parameter. The function should however accept any
number of parameters, for future extensions, since some hooks might receive extra arguments.

gps_utils.in_ada_file(context)
Returns True if the focus is currently inside an Ada editor

gps_utils.in_xml_file(context)
Returns True if the focus is in an XML editor

class gps_utils.interactive(*args, **kwargs)
A decorator with the same behavior as make_interactive(). This can be used to easily associate a function with
an interactive action, menu or key, so that a user can conveniently call it:

@interactive("Editor", menu="/Edit/Foo")
def my_function():

pass

gps_utils.is_writable(context)
Returns True if the focus is currently inside a writable editor

gps_utils.make_interactive(callback, category=’General’, filter=’‘, menu=’‘, key=’‘, contex-
tual=’‘, name=’‘, before=’‘, after=’‘, contextual_ref=’‘, icon=’‘,
description=’‘, toolbar=’‘, toolbar_section=’‘, button_label=’‘,
static_path=’‘, key_exclusive=True, for_learning=False)

Declare a new GPS action (an interactive function, in Emacs talk), associated with an optional menu and default
key.

414 Chapter 18. Useful plugins

GPS User’s Guide, Release 2018

Parameters

• callback – This is the code that gets executed when the user executes the action. Such
an action is executed via a menu, a toolbar button, a key shortcut, or by entering its name in
the omnisearch.

The callback can be one of:

– a standard function that requires no argument although it can have optional arguments
(none will be set when this is called from the menu or the key shortcut).

– a class: when the user executes the action, a new instance of the class is created, so it is
expected that the work is done in the __init__ of the class. This is in particular useful
for classes that derive from CommandWindow.

– a generator function. Those are functions that use the yield keyword to temporar-
ily suspend and give back control to the caller. These are convenient when chaining
background tasks. See the workflows/promises.py package for more on generators and
workflows

• menu – The name of a menu to associate with the action. It will be placed within its parent
just before the item referenced as before, or after the item referenced as after.

• icon (str) – Name of the icon to use for this action, for instance in toolbars or in various
dialogs. This is the name of a file (minus extension) found in the icons directory of GPS.

• contextual – Path for the contextual menu This is either a string, for instance
‘/Menu/Submenu’ or ‘/Menu/Submenu %f’, which supports a number of parameter sub-
stitution; or a function that receives a GPS.Context as parameter and returns a string.

• static_path – This is a string that contains the path and name for the contextual menu
when ‘contextual’ parameter is function.

• name (str) – The name for the action. The default is to use the callback’s name.

• key_exclusive (bool) – Only applies when a key is specified. If true, the key will
no longer execute any action it was previously bound to. If false, the key will be bound to
multiple actions.

• description (str) – the description for this action, as visible to the user. If not speci-
fied, the callback’s own documentation will be used.

• toolbar (str) – If specified, inserts a button in the corresponding toolbar (either ‘main’
or the name of the view as found in the /Tools/Views menu)

• toolbar_section (str) – Where, in the toolbar, to insert the button. See GPS.
Action.button()

• button_label (str) – The label to use for the button (defaults to the name of the ac-
tion).

• for_learning (bool) – whether or not this action should be displayed

in the Learn view.

Returns a tuple (GPS.Action, GPS.Menu) The menu might be None if you did not request its cre-
ation.

gps_utils.save_current_window(f, *args, **kwargs)
Save the window that currently has the focus, executes f, and reset the focus to that window.

gps_utils.save_dir(fn)
Saves the current directory before executing the instrumented function, and restore it on exit. This is a python
decorator which should be used as:

18.2. Helper plugins 415

GPS User’s Guide, Release 2018

@save_dir
def my_function():

pass

gps_utils.save_excursion(f, args, kwargs, undo_group=True)
Save current buffer, cursor position and selection and execute f. (args and kwargs) are passed as arguments
to f. They indicate that any number of parameters (named or unamed) can be passed in the usual way to
save_excursion, and they will be transparently passed on to f. If undo_group is True, then all actions performed
by f will be grouped so that the user needs perform only one single undo to restore previous start.

Then restore the context as it was before, even in the case of abnormal exit.

Example of use:

def my_subprogram():
def do_work():

pass # do actual work here
save_excursion(do_work)

See also the with_save_excursion decorator below for cases when you need to apply save_excursion to a whole
function.

gps_utils.with_save_current_window(fn)
A decorator with the same behavior as save_current_window.

gps_utils.with_save_excursion(fn)
A decorator with the same behavior as save_excursion. To use it, simply add @with_save_excursion before the
definition of the function. This ensures that the current context will be restored when the function terminates:

@with_save_excursion
def my_function():

pass

18.2.2 The gps_utils.highlighter.py module

This file provides various classes to help highlight patterns in files.

class gps_utils.highlighter.Background_Highlighter(style)
An abstract class that provides facilities for highlighting parts of an editor. If possible, this highlighting is done
in the background so that it doesn’t interfer with the user typing. Example of use:

class Example(Background_Highlighter):
def process(self, start, end):

... analyze the given range of lines, and perform highlighting

... where necessary.

e = Example()
e.start_highlight(buffer1) # start highlighting a first buffer
e.start_highlight(buffer2) # start highlighting a second buffer

Parameters style (OverlayStyle) – style to use for highlighting.

on_start_buffer(buffer)
Called before we start processing a new buffer.

416 Chapter 18. Useful plugins

GPS User’s Guide, Release 2018

process(start, end)
Called to highlight the given range of editor. When this is called, previous highlighting has already been
removed in that range.

Parameters

• start (GPS.EditorLocation) – start of region to process.

• end (GPS.EditorLocation) – end of region to process.

remove_highlight(buffer=None)
Remove all highlighting done by self in the buffer.

Parameters buffer (GPS.EditorBuffer) – defaults to the current buffer

set_style(style)
Change the current highlight style.

Parameters style (OverlayStyle) – style to use for highlighting.

start_highlight(buffer=None, line=None, context=None)
Start highlighting the buffer, possibly in the background.

Parameters

• buffer (GPS.EditorBuffer) – The buffer to highlight (defaults to the current
buffer). This buffer is added to the list of buffers, and will be processed when other buffers
are finished.

• line (integer) – The line the highlighting should start from. By default, this is the
current line in the editor, so that the user sees changes immediately. But you could chose
to start from the top of the file instead.

• context (integer) – Number of lines before and after ‘line’ that should be high-
lighted. By default, the whole buffer is highlighted.

stop_highlight(buffer=None)
Stop the background highlighting of the buffer, but preserves any highlighting that has been done so far.

Parameters buffer (GPS.EditorBuffer) – If specified, highlighting is only stopped for
a specific buffer.

class gps_utils.highlighter.Location_Highlighter(style, context=2)
An abstract class that can be used to implement highlighter related to the cross-reference engine. As usual, such
an highlighter does its job in the background. To find the places to highlight in the editor, this class relies on
having a list of entities and their references. This list will in general be computed once when we start processing
a new buffer:

class H(Location_Highlighter):
def recompute_refs(self, buffer):

return ...computation of references within file ...

Parameters context (integer) – The number of lines both before and after a given reference
where we should find for possible approximate matches. This is used when the reference re-
turned by the xref engine was outdated.

recompute_refs(buffer)
Called before we start processing a new buffer.

Returns a list of tuples, each of which contains an (name, GPS.FileLocation). The highlighting
is only done if the text at the location is name. Name should be a byte-sequence that encodes

18.2. Helper plugins 417

GPS User’s Guide, Release 2018

a UTF-8 strings, not the unicode string itself (the result of GPS.EditorBuffer.get_chars or
GPS.Entity.name can be used).

class gps_utils.highlighter.On_The_Fly_Highlighter(style, context_lines=0)
This abstract class provides a way to easily highlight text in an editor. When possible, the highlighting is done
in the background, in which case it is also done on the fly every time the file is modified. If pygobject is not
available, the highlighting is only done when the file is opened or saved

As for Background_Highlight, you need to override the process() function to perform actual work.

Parameters

• style (OverlayStyle) – the style to apply.

• context_lines (integer) – The number of lines (plus or minus) around the current
location that get refreshed when a local highlighting is requested.

must_highlight(buffer)

Parameters buffer (GPS.EditorBuffer) – The buffer to test.

Returns whether to highlight this buffer. The default is to higlight all buffers, but some high-
lightings might apply only to specific languages for instance

Return type boolean

start()
Start highlighting. This is automatically called from __init__, and only needs to be called when you have
called stop() first. Do not call this function multiple times.

stop()
Stop highlighting through self

class gps_utils.highlighter.OverlayStyle(name, foreground=’‘, background=’‘, weight=None,
slant=None, editable=None, whole_line=False,
speedbar=False, style=None, **kwargs)

Description for a style to apply to a section of an editor. In practice, this could be implemented as an editor
overlay, or a message, depending on whether highlighting should be done on the whole line or not.

Parameters

• name (string) – name of the overlay so that we can remove it later.

• foreground (string) – foreground color

• background (string) – background color

• weight (string) – one of “bold”, “normal”, “light”

• slant (string) – one of “normal”, “oblique”, “italic”

• editable (boolean) – whether the text is editable by the user interactively.

• whole_line (boolean) – whether to highlight the whole line, up to the right margin

• speedbar (boolean) – whether to show a mark in the speedbar to the left of editors.

• style (GPS.Style) – the style to apply to the overlay.

• kwargs – other properties supported by EditorOverlay

apply(start, end)
Apply the highlighting to part of the buffer.

Parameters

• start (GPS.EditorLocation) – start of highlighted region.

418 Chapter 18. Useful plugins

GPS User’s Guide, Release 2018

• end (GPS.EditorLocation) – end of highlighted region.

remove(start, end=None)
Remove the highlighting in whole or part of the buffer. :param GPS.EditorLocation start: start of region.
:param GPS.EditorLocation end: end of region. If unspecified, the highlighting for the whole buffer is
removed.

use_messages()

Returns Whether this style will use a GPS.Message or a GPS.EditorOverlay to highlight.

Return type boolean

class gps_utils.highlighter.Regexp_Highlighter(regexp, style, context_lines=0)
The Regexp_Highlighter is a concrete implementation to highlight editors based on regular expressions. One
example is for instance to highlight tabs or trailing spaces on lines, when this is considered improper style:

Regexp_Highlighter(
regexp=" +|\s+$",
style=OverlayStyle(

name="tabs style",
strikethrough=True,
background="#FF7979"))

Another example is to highlight TODO lines. Various conventions exist to mark these in the sources, but the
following should catch some of these:

Regexp_Highlighter(
regexp="TODO.*|\?\?\?.*",
style=OverlayStyle(

name="todo",
background="#FF7979"))

Another example is a class to highlight Spark comments. This should only be applied when the language is
spark:

class Spark_Highlighter(Regexp_Highlighter):
def must_highlight(self, buffer):

return buffer.file().language().lower() == "spark"

Spark_Highlighter(
regexp="--#.*$",
style=OverlayStyle(

name="spark", foreground="red"))

Parameters

• regexp (string) – the regular expression to search for. It should preferrably apply to a
single line, since highlighting is done on small sections of the editor at a time, and it might
not detect cases where the regular expression would match across sections.

• style (OverlayStyle) – the style to apply.

class gps_utils.highlighter.Text_Highlighter(text, style, whole_word=False, con-
text_lines=0)

Similar to Regexp_Highlighter, but highlights constant text instead of a regular expression. By default, high-
lighting is done in all buffer, override the function must_highlight to reduce the scope.

Parameters

18.2. Helper plugins 419

GPS User’s Guide, Release 2018

• text (string) – the text to search for. It should preferrably apply to a single line, since
highlighting is done on small sections of the editor at a time, and it might not detect cases
where the text would match across sections.

• style (OverlayStyle) – the style to apply.

18.2.3 The gps_utils.console_process.py module

class gps_utils.console_process.ANSI_Console_Process(command)
This class has a purpose similar to Console_Process. However, this class does not attempt to do any of the
high-level processing of prompt and input that Console_Process does, and instead forward immediately any of
the key strokes within the console directly to the external process. It also provides an ANSI terminal to the
external process. The latter can thus send escape sequences to change colors, cursor position,...

class gps_utils.console_process.Console_Process(command, close_on_exit=True,
force=False, ansi=False, man-
age_prompt=True, task_manager=False)

This class provides a way to spawn an interactive process and do its input/output in a dedicated console in GPS.
The process is created so that it does not appear in the task manager, and therefore the user can exit GPS without
being asked whether or not to kill the process.

You can of course derive from this class easily. Things are slightly more complicated if you want in fact to
derive from a child of GPS.Console (for instance a class that would handle ANSI escape sequences). The code
would then look like:

class ANSI_Console (GPS.Console):
def write (self, txt): ...

class My_Process (ANSI_Console, Console_Process):
def __init__ (self, command):

Console_Process.__init__ (self, command)

In the list of base classes for My_Process, you must put ANSI_Console before Console_Process. This is be-
cause python resolves overridden methods by looking depth-first search from left to right. This way, it will see
ANSI_Console.write before Console_Process.write and therefore use the former.

However, because of that the __init__ method that would be called when calling My_Process (...) is also that of
ANSI_Console. Therefore you must define your own __init__ method locally.

See also the class ANSI_Console_Process if you need your process to execute within a terminal that understands
ANSI escape sequences.

Parameters

• force (boolean) – If True, a new console is opened, otherwise an existing one will be
reused (although you should take care in this case if you have multiple processes attached
to the same console).

• manage_prompt (boolean) – If True, then GPS will do some higher level handling of
prompts: when some output is done by the process, GPS will temporarily hide what the
user was typing, insert the output, and append what the user was typing. This is in general
suitable but might interfer with external programs that do their own screen management
through ANSI commands (like a Unix shell for instance).

• task_manager (boolean) – If True, the process will be visible in the GPS tasks view
and can be interrupted or paused by users. Otherwise, it is running in the background and
never visible to the user.

420 Chapter 18. Useful plugins

GPS User’s Guide, Release 2018

on_completion(input)
The user has pressed <tab> in the console. The default is just to insert the character, but if you are
driving a process that knows about completion, such as an OS shell for instance, you could have a different
implementation. input is the full input till, but not including, the tab character

on_destroy()
This method is called when the console is being closed. As a result, we terminate the process (this also
results in a call to on_exit

on_exit(status, remaining_output)
This method is called when the process terminates. As a result, we close the console automatically, al-
though we could decide to keep it open as well

on_input(input)
This method is called when the user has pressed <enter> in the console. The corresponding command is
then sent to the process

on_interrupt()
This method is called when the user presses control-c in the console. This interrupts the command we are
currently processing

on_key(keycode, key, modifier)
The user has pressed a key in the console (any key). This is called before any of the higher level
on_completion or on_input callbacks. If this subprogram returns True, GPS will consider that the key
has already been handled and will not do its standard processing with it. By default, we simply let the key
through and let GPS handle it.

Parameters key – the unicode character (numeric value) that was entered by the user. _modi-
fier_ is a mask of the control and shift keys that were pressed at the same time. See the Mask
constants above. keycode is the code of the key, which is useful for non-printable characters.
It is set to 0 in some cases if the input is simulated after the user has copied some text into
the console

This function is also called for each character pasted by the user in the console. If it returns True, then the
selection will not be inserted in the console.

on_output(matched, unmatched)
This method is called when the process has emitted some output. The output is then printed to the console

on_resize(console, rows, columns=None)
This method is called when the console is being resized. We then let the process know about the size of
its terminal, so that it can adapt its output accordingly. This is especially useful with processes like gdb or
unix shells

18.3 Plugins for external tools

18.3.1 QGen

The QGen Debugger manual can be found within the QGen User guide.

18.3. Plugins for external tools 421

http://docs.adacore.com/qgen-docs/html/

GPS User’s Guide, Release 2018

422 Chapter 18. Useful plugins

CHAPTER

NINETEEN

GNU FREE DOCUMENTATION LICENSE

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

19.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document ‘free’ in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

19.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. The ‘Document’, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as ‘you’.

A ‘Modified Version’ of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being those of Invariant Sec-
tions, in the notice that says that the Document is released under this License.

423

GPS User’s Guide, Release 2018

The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License.

A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not ‘Transparent’ is called
‘Opaque’.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, La-
TeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output purposes only.

The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, ‘Title Page’ means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

19.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

19.4 COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy of the Document, free of added mate-
rial, which the general network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

424 Chapter 19. GNU Free Documentation License

GPS User’s Guide, Release 2018

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

19.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving the public permission to use the Modi-
fied Version under the terms of this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Docu-
ment’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled ‘History’, and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled ‘History’
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the ‘History’ section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• In any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve the section’s title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

• Delete any section entitled ‘Endorsements’. Such a section may not be included in the Modified Version.

• Do not retitle any existing section as ‘Endorsements’ or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled ‘Endorsements’, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties – for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

19.5. MODIFICATIONS 425

GPS User’s Guide, Release 2018

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

19.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ‘History’ in the various original documents, forming
one section entitled ‘History’; likewise combine any sections entitled ‘Acknowledgements’, and any sections entitled
‘Dedications’. You must delete all sections entitled ‘Endorsements.’

19.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

19.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a compilation is called an ‘aggregate’, and
this License does not apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

426 Chapter 19. GNU Free Documentation License

GPS User’s Guide, Release 2018

19.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version of this License, the
original English version will prevail.

19.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

19.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License ‘or any later version’ applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

19.12 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled 'GNU
Free Documentation License'.

If you have no Invariant Sections, write ‘with no Invariant Sections’ instead of saying which ones are invariant. If
you have no Front-Cover Texts, write ‘no Front-Cover Texts’ instead of ‘Front-Cover Texts being LIST’; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

19.9. TRANSLATION 427

http://www.gnu.org/copyleft/

GPS User’s Guide, Release 2018

428 Chapter 19. GNU Free Documentation License

CHAPTER

TWENTY

INDICES AND TABLES

• genindex

This document may be copied, in whole or in part, in any form or by any means, as is or with alterations, provided that
(1) alterations are clearly marked as alterations and (2) this copyright notice is included unmodified in any copy.

429

GPS User’s Guide, Release 2018

430 Chapter 20. Indices and tables

PYTHON MODULE INDEX

a
auto_highlight_occurrences, 413

d
dispatching, 413

g
GPS, 249
GPS.Browsers, 393
gps_utils, 414
gps_utils.console_process, 420
gps_utils.highlighter, 416

h
highlighter.interface, 185

431

INDEX

Symbols
–eval, 224
–load, 223
.gdbinit, 117
__init__() (GPS.Action method), 259
__init__() (GPS.Bookmark method), 262
__init__() (GPS.Browsers.Diagram method), 394
__init__() (GPS.Browsers.EditableTextItem method),

398
__init__() (GPS.Browsers.EllipseItem method), 399
__init__() (GPS.Browsers.HrItem method), 399
__init__() (GPS.Browsers.ImageItem method), 400
__init__() (GPS.Browsers.Item method), 401
__init__() (GPS.Browsers.Link method), 403
__init__() (GPS.Browsers.PolylineItem method), 404
__init__() (GPS.Browsers.RectItem method), 405
__init__() (GPS.Browsers.Style method), 405
__init__() (GPS.Browsers.TextItem method), 407
__init__() (GPS.Browsers.View method), 409
__init__() (GPS.BuildTarget method), 263
__init__() (GPS.CodeAnalysis method), 265
__init__() (GPS.Codefix method), 267
__init__() (GPS.CodefixError method), 268
__init__() (GPS.CommandWindow method), 270
__init__() (GPS.Console method), 273
__init__() (GPS.Construct method), 277
__init__() (GPS.Context method), 278
__init__() (GPS.Contextual method), 279
__init__() (GPS.Cursor method), 282
__init__() (GPS.Debugger method), 283
__init__() (GPS.DebuggerBreakpoint method), 287
__init__() (GPS.EditorBuffer method), 296
__init__() (GPS.EditorHighlighter method), 303
__init__() (GPS.EditorLocation method), 304
__init__() (GPS.EditorMark method), 308
__init__() (GPS.EditorOverlay method), 309
__init__() (GPS.EditorView method), 311
__init__() (GPS.Entity method), 312
__init__() (GPS.File method), 318
__init__() (GPS.FileLocation method), 322
__init__() (GPS.GUI method), 325
__init__() (GPS.Help method), 327

__init__() (GPS.History method), 328
__init__() (GPS.Hook method), 328
__init__() (GPS.Language method), 346
__init__() (GPS.Logger method), 349
__init__() (GPS.MDIWindow method), 354
__init__() (GPS.Menu method), 356
__init__() (GPS.Message method), 356
__init__() (GPS.OutputParserWrapper method), 360
__init__() (GPS.Preference method), 360
__init__() (GPS.Process method), 364
__init__() (GPS.Project method), 367
__init__() (GPS.Search method), 380
__init__() (GPS.Search_Result method), 381
__init__() (GPS.SemanticTree method), 381
__init__() (GPS.Style method), 382
__init__() (GPS.SwitchesChooser method), 383
__init__() (GPS.Task method), 383
__init__() (GPS.Timeout method), 385
__init__() (GPS.Vdiff static method), 389
__init__() (GPS.XMLViewer method), 390
<Language>, 189
<action>, 165
<alias>, 193
<button>, 180
<case_exceptions>, 202
<check>, 216
<choice>, 198
<combo-entry>, 216
<combo>, 216
<contextual>, 179
<default-value-dependency>, 217
<dependency>, 217
<doc_path>, 203
<documentation_file>, 202
<entry>, 180, 217
<expansion>, 217
<external>, 165
<field>, 216
<filter_and>, 174
<filter_or>, 174
<filter>, 165, 174
<index>, 199

432

GPS User’s Guide, Release 2018

<initial-cmd-line>, 214
<key>, 181
<language>, 213
<menu>, 177
<popup>, 217
<pref>, 183
<preference>, 182
<project_attribute>, 196
<radio>, 216
<shell>, 165, 198
<specialized_index>, 199
<spin>, 216
<string>, 198
<submenu>, 177
<switches>, 214
<theme>, 183
<title>, 177, 216
<tool>, 213
<vsearch-pattern>, 184

A
AbstractItem (class in GPS.Browsers), 393
accept_input() (GPS.Console method), 275
action, 165

repeat next, 69
Action (class in GPS), 259
action (GPS.Menu attribute), 356
action_hooks, 236
ACTIONS (GPS.Search attribute), 379
Actions (GPS.VCS2 attribute), 386
active (GPS.Logger attribute), 349
active_vcs() (GPS.VCS2 static method), 386
activity_checked_hook() (GPS.Predefined_Hooks

method), 330
Ada, 98

cross-references, 79
ADA_PROJECT_PATH, 85
Add To Extending Project, 91
add() (GPS.Browsers.Diagram method), 394
add() (GPS.Browsers.Item method), 401
add() (GPS.History static method), 328
add() (GPS.Hook method), 328
add() (GPS.Locations static method), 347
add() (GPS.MDI static method), 351
add_all_gcov_project_info() (GPS.CodeAnalysis

method), 265
add_attribute_values() (GPS.Project method), 367
add_blank_lines() (GPS.Editor static method), 287
add_case_exception() (GPS.Editor static method), 287
add_construct() (GPS.ConstructsList method), 278
add_cursor() (GPS.EditorBuffer method), 296
add_debounce() (GPS.Hook method), 328
add_dependency() (GPS.Project method), 368
add_doc_directory() (GPS.HTML static method), 326

add_gcov_file_info() (GPS.CodeAnalysis method), 265
add_gcov_project_info() (GPS.CodeAnalysis method),

265
add_input() (GPS.Console method), 275
add_link() (GPS.Revision static method), 378
add_location_command() (in module GPS), 250
add_log() (GPS.Revision static method), 378
add_main_unit() (GPS.Project method), 368
add_predefined_paths() (GPS.Project static method), 368
add_revision() (GPS.Revision static method), 378
add_source_dir() (GPS.Project method), 368
add_special_line() (GPS.EditorBuffer method), 296
add_templates_dir() (GPS.ProjectTemplate static

method), 377
after_character_added() (GPS.Predefined_Hooks

method), 330
after_file_changed_detected() (GPS.Predefined_Hooks

method), 330
Alias (class in GPS), 262
aliases, 193, 243
Align (GPS.Browsers.Item attribute), 400
Align (GPS.Browsers.Style attribute), 405
analyze, 55
ancestor_deps() (GPS.Project method), 368
animate_item_position() (GPS.Browsers.View method),

409
annotation_parsed_hook() (GPS.Predefined_Hooks

method), 330
annotations() (GPS.VCS2_Task_Visitor method), 387
ANSI_Console_Process (class in

gps_utils.console_process), 420
apply() (gps_utils.highlighter.OverlayStyle method), 418
apply_overlay() (GPS.EditorBuffer method), 296
argument, 168
Arrow (GPS.Browsers.Style attribute), 405
artifacts_dir() (GPS.Project method), 368
as-directory, 216
as-file, 216
ASCII, 68, 112
at() (GPS.EditorBuffer method), 296
attributes() (GPS.Entity method), 312
auto_highlight_occurrences (module), 413
automatic casing

exceptions, 70

B
Background (GPS.Browsers.View attribute), 409
Background_Highlighter (class in gps_utils.highlighter),

416
backward_overlay() (GPS.EditorLocation method), 304
base_name() (in module GPS), 250
bash, 37
before_exit_action_hook() (GPS.Predefined_Hooks

method), 330

Index 433

GPS User’s Guide, Release 2018

before_file_saved() (GPS.Predefined_Hooks method),
331

beginning_of_buffer() (GPS.EditorBuffer method), 296
beginning_of_line() (GPS.EditorLocation method), 304
block_end() (GPS.EditorLocation method), 304
block_end_line() (GPS.EditorLocation method), 304
block_exit() (GPS.Task method), 384
block_fold() (GPS.Editor static method), 287
block_fold() (GPS.EditorLocation method), 304
block_get_end() (GPS.Editor static method), 288
block_get_level() (GPS.Editor static method), 288
block_get_name() (GPS.Editor static method), 288
block_get_start() (GPS.Editor static method), 288
block_get_type() (GPS.Editor static method), 288
block_level() (GPS.EditorLocation method), 305
block_name() (GPS.EditorLocation method), 305
block_start() (GPS.EditorLocation method), 305
block_start_line() (GPS.EditorLocation method), 305
block_type() (GPS.EditorLocation method), 305
block_unfold() (GPS.Editor static method), 289
block_unfold() (GPS.EditorLocation method), 305
blocks_fold() (GPS.EditorBuffer method), 296
blocks_unfold() (GPS.EditorBuffer method), 297
body() (GPS.Entity method), 312
bookmark, 32
Bookmark (class in GPS), 262
bookmark_added() (GPS.Predefined_Hooks method),

331
bookmark_removed() (GPS.Predefined_Hooks method),

331
BOOKMARKS (GPS.Search attribute), 379
Branch (GPS.VCS2 attribute), 386
branches() (GPS.VCS2_Task_Visitor method), 387
break_at_location() (GPS.Debugger method), 283
breakpoint, 112
breakpoints, 111
breakpoints (GPS.Debugger attribute), 283
browse() (GPS.HTML static method), 326
browsers, 90
buffer() (GPS.EditorLocation method), 305
buffer() (GPS.EditorView method), 311
buffer_edited() (GPS.Predefined_Hooks method), 331
build, 55, 100

auto fix errors, 14
build modes, 22
elaboration circularities, 40
executing application, 37
hiding warning messages, 14
multiple compilers, 104
toolbar buttons, 9
toolchains, 104

build modes, 104
build targets, 101

build_mode_changed() (GPS.Predefined_Hooks
method), 331

build_server_connected_hook() (GPS.Predefined_Hooks
method), 331

BUILDS (GPS.Search attribute), 379
BuildTarget (class in GPS), 263
button() (GPS.Action method), 259

C
C, 112

cross-references, 79
C++, 98

cross-references, 79
call graph, 90
called_by() (GPS.Entity method), 313
called_by_browser() (GPS.Entity method), 313
callgraph, 30

export, 5
callgrind_dump_stats() (GPS.Valgrind static method),

388
callgrind_start_instrumentation() (GPS.Valgrind static

method), 388
callgrind_stop_instrumentation() (GPS.Valgrind static

method), 388
callgrind_toggle_collect() (GPS.Valgrind static method),

388
callgrind_zero_stats() (GPS.Valgrind static method), 388
calls() (GPS.Entity method), 313
can_execute() (GPS.Action method), 260
cancel_editing() (GPS.Browsers.View method), 409
cancel_subprogram() (GPS.Message method), 357
case sensitive, 97
case_exceptions, 202
CASE_SENSITIVE (GPS.Search attribute), 379
casing

automatic, 70
category() (GPS.Entity method), 313
cd() (in module GPS), 250
center() (GPS.EditorView method), 311
center_on() (GPS.Browsers.View method), 409
Chainmap (class in gps_utils), 414
changed() (GPS.Browsers.Diagram method), 394
character set, 70
character_added() (GPS.Predefined_Hooks method), 331
characters_count() (GPS.EditorBuffer method), 297
check() (GPS.Logger method), 349
child_types() (GPS.Entity method), 313
children (GPS.Browsers.Item attribute), 401
children() (GPS.MDI static method), 351
clear() (GPS.Browsers.Diagram method), 394
clear() (GPS.CodeAnalysis method), 266
clear() (GPS.Console method), 275
clear_attribute_values() (GPS.Project method), 369
clear_input() (GPS.Console method), 275

434 Index

GPS User’s Guide, Release 2018

clear_selection() (GPS.Browsers.Diagram method), 394
clear_view() (GPS.Revision static method), 378
click_on_side_icon() (GPS.EditorBuffer method), 297
client/server, 153
clipboard, 77
Clipboard (class in GPS), 264
clipboard_changed() (GPS.Predefined_Hooks method),

332
clone() (GPS.BuildTarget method), 263
cloning editors, 63
close dialog on match, 98
close() (GPS.Debugger method), 283
close() (GPS.Editor static method), 289
close() (GPS.EditorBuffer method), 297
close() (GPS.MDIWindow method), 354
close_editors() (GPS.Vdiff method), 389
code, 52
Code Coverage, 145
code fixing, 143
CodeAnalysis (class in GPS), 265
codefix, 14
Codefix (class in GPS), 267
Codefix.errors, 221
Codefix.parse, 221
CodefixError (class in GPS), 268
CodefixError.fix, 221
CodefixError.possible_fixes, 221
codepeer, 59
coding standard, 141
column (GPS.EditorMark attribute), 308
column() (GPS.EditorLocation method), 305
column() (GPS.FileLocation method), 323
combo_selection_dialog() (GPS.MDI static method), 351
Command (class in GPS), 269
command line, 241

-P, 8
command() (GPS.Debugger method), 284
CommandWindow (class in GPS), 270
Commit (GPS.VCS2 attribute), 386
compilation, 100
compilation_finished() (GPS.Predefined_Hooks method),

332
compilation_starting() (GPS.Predefined_Hooks method),

332
compile() (GPS.File method), 318
completion, 67
Completion (class in GPS), 271
compute_build_targets() (GPS.Predefined_Hooks

method), 333
compute_xref() (in module GPS), 250
compute_xref_bg() (in module GPS), 250
console, 12
Console (class in GPS), 272

Console_Process (class in gps_utils.console_process),
420

consoles
os shell, 37
python console, 36
shell console, 36

Construct (class in GPS), 277
ConstructsList (class in GPS), 277
contents() (GPS.Clipboard static method), 264
Context (class in GPS), 278
context_changed() (GPS.Predefined_Hooks method), 333
Contextual (class in GPS), 279
contextual menu

browsers –> called by, 31
browsers –> calls, 31
browsers –> calls (recursively), 31
called by, 30
calls, 30

contextual menus, 234
contextual() (GPS.Action method), 260
contextual_context() (in module GPS), 251
contextual_menu_close() (GPS.Predefined_Hooks

method), 333
contextual_menu_open() (GPS.Predefined_Hooks

method), 334
copy, 77
copy() (GPS.Clipboard static method), 264
copy() (GPS.Editor static method), 289
copy() (GPS.EditorBuffer method), 297
copy_clipboard() (GPS.Console method), 275
count (GPS.Logger attribute), 349
create() (GPS.Action method), 260
create() (GPS.Bookmark static method), 262
create() (GPS.Browsers.View method), 409
create() (GPS.Preference method), 360
create() (GPS.PreferencesPage static method), 362
create() (GPS.Vdiff static method), 389
create_dynamic() (GPS.Contextual method), 280
create_link() (GPS.Console method), 275
create_mark() (GPS.Editor static method), 289
create_mark() (GPS.EditorLocation method), 305
create_metric() (GPS.XMLViewer static method), 391
create_nested_message() (GPS.Message method), 357
create_overlay() (GPS.EditorBuffer method), 297
create_style() (GPS.Preference method), 361
create_with_priority() (GPS.Preference method), 361
creating, 237
cross environment, 151
cross-references, 79

runtime files, 81
CSS, 243
current line, 68
current() (GPS.Clipboard static method), 265
current() (GPS.MDI static method), 352

Index 435

GPS User’s Guide, Release 2018

current_context() (in module GPS), 252
current_file (GPS.Debugger attribute), 283
current_frame() (GPS.Debugger method), 284
current_line (GPS.Debugger attribute), 283
current_perspective() (GPS.MDI static method), 352
current_view() (GPS.EditorBuffer method), 298
Cursor (class in GPS), 282
cursor() (GPS.EditorView method), 311
cursor_center() (GPS.Editor static method), 289
cursor_get_column() (GPS.Editor static method), 289
cursor_get_line() (GPS.Editor static method), 289
cursor_set_position() (GPS.Editor static method), 290
cursors() (GPS.EditorBuffer method), 298
customization, 159, 162
cut, 77
cut() (GPS.Editor static method), 290
cut() (GPS.EditorBuffer method), 298
CVS, 119
cvs, 138

D
debug, 57
debugger, 152, 246

call stack, 107
toolbar buttons, 9
variables view, 108

Debugger (class in GPS), 282
debugger console, 115
debugger_breakpoint_added() (GPS.Predefined_Hooks

method), 334
debugger_breakpoint_changed() (GPS.Predefined_Hooks

method), 334
debugger_breakpoint_deleted() (GPS.Predefined_Hooks

method), 334
debugger_breakpoints_changed()

(GPS.Predefined_Hooks method), 334
debugger_command_action_hook()

(GPS.Predefined_Hooks method), 335
debugger_context_changed() (GPS.Predefined_Hooks

method), 335
debugger_executable_changed() (GPS.Predefined_Hooks

method), 335
debugger_location_changed() (GPS.Predefined_Hooks

method), 335
debugger_process_stopped() (GPS.Predefined_Hooks

method), 335
debugger_process_terminated() (GPS.Predefined_Hooks

method), 336
debugger_question_action_hook()

(GPS.Predefined_Hooks method), 336
debugger_started() (GPS.Predefined_Hooks method),

336
debugger_state_changed() (GPS.Predefined_Hooks

method), 336

debugger_terminated() (GPS.Predefined_Hooks method),
337

DebuggerBreakpoint (class in GPS), 287
debugging, 105
declaration() (GPS.Entity method), 313
default, 245
default desktop, 245
delete() (GPS.Bookmark method), 262
delete() (GPS.EditorBuffer method), 298
delete() (GPS.EditorMark method), 308
delete() (in module GPS), 253
delete_cursor() (GPS.EditorBuffer method), 298
delete_links() (GPS.Console method), 276
delimiter, 67
dependencies() (GPS.Project method), 369
derived_types() (GPS.Entity method), 314
describe_functions() (GPS.Hook method), 328
description, 168
desktop, see Multiple Document Interface, 245
desktop_loaded() (GPS.Predefined_Hooks method), 337
destroy() (GPS.GUI method), 325
destroy_ui() (GPS.Action method), 261
Diagram (class in GPS.Browsers), 394
diagram (GPS.Browsers.View attribute), 409
dialog() (GPS.MDI static method), 352
diff_action_hook() (GPS.Predefined_Hooks method),

337
diff_computed() (GPS.VCS2_Task_Visitor method), 387
dir() (in module GPS), 253
dir_name() (in module GPS), 253
directory() (GPS.Context method), 278
directory() (GPS.File method), 319
directory_selector() (GPS.MDI static method), 352
disable() (GPS.Action method), 261
discriminants() (GPS.Entity method), 314
dispatching, 83
dispatching (module), 413
documentation generation, 143
documentation() (GPS.Entity method), 314
drag-and-drop, 16, 62
dump() (GPS.Locations static method), 347
dump() (in module GPS), 253
dump_file() (in module GPS), 253
dump_to_file() (GPS.CodeAnalysis method), 266

E
edit, 47
edit() (GPS.Editor static method), 290
editable (GPS.Browsers.EditableTextItem attribute), 398
EditableTextItem (class in GPS.Browsers), 398
editing, 65, 68
editing_in_progress (GPS.Browsers.View attribute), 409
editor, 70
Editor (class in GPS), 287

436 Index

GPS User’s Guide, Release 2018

EditorBuffer (class in GPS), 295
EditorHighlighter (class in GPS), 303
EditorLocation (class in GPS), 304
EditorMark (class in GPS), 308
EditorOverlay (class in GPS), 309
EditorView (class in GPS), 311
EllipseItem (class in GPS.Browsers), 399
emacs, 68, 76
Emacs key theme, 161
emacsclient, 76
enable_input() (GPS.Console method), 276
enabled (GPS.DebuggerBreakpoint attribute), 287
end_line() (GPS.Context method), 278
end_of_buffer() (GPS.EditorBuffer method), 298
end_of_line() (GPS.EditorLocation method), 306
end_of_scope() (GPS.Entity method), 314
ends_word() (GPS.EditorLocation method), 306
ensure_status_for_all_source_files() (GPS.VCS2

method), 386
ensure_status_for_files() (GPS.VCS2 method), 386
ensure_status_for_project() (GPS.VCS2 method), 386
ENTITIES (GPS.Search attribute), 379
entities() (GPS.File method), 319
Entity (class in GPS), 312
entity() (GPS.Context method), 278
entity_name() (GPS.Context method), 279
environment, 241
environment variables, 241
error_at() (GPS.Codefix method), 267
errors() (GPS.Codefix method), 267
Exception (class in GPS), 318
exec_dir() (GPS.Project method), 369
exec_in_console() (in module GPS), 253
executable_path (GPS.File attribute), 318
execute() (GPS.BuildTarget method), 263
execute_action, 224
execute_action() (GPS.Message method), 357
execute_action() (in module GPS), 253
EXECUTE_AGAIN (GPS.Task attribute), 383
execute_asynchronous_action() (in module GPS), 254
execute_for_all_cursors() (in module gps_utils), 414
execute_if_possible() (GPS.Action method), 261
existing_style() (in module highlighter.interface), 187
exists() (GPS.Action method), 261
exit() (in module GPS), 254
expand_alias() (GPS.EditorBuffer method), 298
expand_line_cov_info() (GPS.CodeAnalysis static

method), 266
expect() (GPS.Process method), 365
export_pdf() (GPS.Browsers.View method), 410
extend_existing_selection (GPS.EditorBuffer attribute),

295
external, 166
external editor, 76

external tool, 213
external_sources() (GPS.Project method), 369

F
FAILURE (GPS.Task attribute), 383
fields() (GPS.Entity method), 314
file, 45
File (class in GPS), 318
file (GPS.Construct attribute), 277
file (GPS.DebuggerBreakpoint attribute), 287
file (GPS.EditorMark attribute), 308
file selector, 43
file() (GPS.Context method), 279
file() (GPS.EditorBuffer method), 298
file() (GPS.FileLocation method), 323
file() (GPS.Help method), 327
file() (GPS.Project method), 369
file_changed_detected() (GPS.Predefined_Hooks

method), 337
file_changed_on_disk() (GPS.Predefined_Hooks

method), 338
file_closed() (GPS.Predefined_Hooks method), 338
file_computed() (GPS.VCS2_Task_Visitor method), 388
file_deleted() (GPS.Predefined_Hooks method), 338
file_deleting() (GPS.Predefined_Hooks method), 338
file_edited() (GPS.Predefined_Hooks method), 338
file_line_action_hook() (GPS.Predefined_Hooks

method), 339
FILE_NAMES (GPS.Search attribute), 380
file_renamed() (GPS.Predefined_Hooks method), 339
file_saved() (GPS.Predefined_Hooks method), 339
file_selector() (GPS.MDI static method), 352
file_status_changed() (GPS.Predefined_Hooks method),

339
FileLocation (class in GPS), 322
files() (GPS.Context method), 279
files() (GPS.Vdiff method), 389
FileTemplate (class in GPS), 323
filter, 168
Filter (class in GPS), 324
find, 49
find_all_refs() (GPS.Entity method), 314
fix() (GPS.CodefixError method), 268
float() (GPS.MDIWindow method), 354
flush() (GPS.Console method), 276
fonts, 159
forward_char() (GPS.EditorLocation method), 306
forward_line() (GPS.EditorLocation method), 306
forward_overlay() (GPS.EditorLocation method), 306
forward_word() (GPS.EditorLocation method), 306
frame_down() (GPS.Debugger method), 284
frame_up() (GPS.Debugger method), 284
frames() (GPS.Debugger method), 284
freeze_prefs() (in module GPS), 254

Index 437

GPS User’s Guide, Release 2018

freeze_prefs() (in module gps_utils), 414
fromLabel (GPS.Browsers.Link attribute), 403
full_name() (GPS.Entity method), 314
FUZZY (GPS.Search attribute), 380

G
gcc

-fdump-xref, 79
generate_doc() (GPS.File method), 319
generate_doc() (GPS.Project method), 369
get() (GPS.Alias static method), 262
get() (GPS.Bookmark static method), 262
get() (GPS.CodeAnalysis static method), 266
get() (GPS.Command static method), 269
get() (GPS.Debugger static method), 284
get() (GPS.EditorBuffer static method), 298
get() (GPS.Language static method), 346
get() (GPS.MDI static method), 352
get() (GPS.Menu static method), 356
get() (GPS.Preference method), 362
get() (GPS.Search method), 380
get() (GPS.VCS2 static method), 386
get() (GPS.Vdiff static method), 389
get_analysis_unit() (GPS.EditorBuffer method), 299
get_attribute_as_list, 219
get_attribute_as_list() (GPS.Project method), 369
get_attribute_as_string, 219
get_attribute_as_string() (GPS.Project method), 370
get_background() (GPS.Style method), 382
get_buffer() (GPS.Editor static method), 290
get_build_mode() (in module GPS), 254
get_build_output() (in module GPS), 254
get_by_child() (GPS.MDI static method), 352
get_called_entities() (GPS.Entity method), 314
get_category() (GPS.Message method), 357
get_char() (GPS.EditorLocation method), 306
get_chars() (GPS.Editor static method), 290
get_chars() (GPS.EditorBuffer method), 299
get_child() (GPS.MDIWindow method), 354
get_cmd_line() (GPS.SwitchesChooser method), 383
get_column() (GPS.Message method), 357
get_command_line() (GPS.BuildTarget method), 264
get_console() (GPS.Debugger method), 284
get_cursors() (GPS.EditorBuffer method), 299
get_executable() (GPS.Debugger method), 284
get_executable_name() (GPS.Project method), 371
get_existing() (GPS.XMLViewer static method), 391
get_file() (GPS.Message method), 357
get_file_status() (GPS.VCS2 method), 386
get_flags() (GPS.Message method), 357
get_foreground() (GPS.Style method), 382
get_gnat_driver_cmd() (in module gps_utils), 414
get_home_dir() (in module GPS), 255
get_in_speedbar() (GPS.Style method), 382

get_lang() (GPS.EditorBuffer method), 299
get_last_line() (GPS.Editor static method), 291
get_line() (GPS.Message method), 358
get_mark() (GPS.EditorBuffer method), 300
get_mark() (GPS.Message method), 358
get_name() (GPS.Style method), 382
get_new() (GPS.EditorBuffer static method), 300
get_num() (GPS.Debugger method), 284
get_overlays() (GPS.EditorLocation method), 307
get_parent_with_id() (GPS.Browsers.Item method), 401
get_property() (GPS.EditorOverlay method), 309
get_property() (GPS.File method), 319
get_property() (GPS.Project method), 371
get_result() (GPS.Command method), 269
get_result() (GPS.Process method), 366
get_result() (GPS.ReferencesCommand method), 377
get_runtime() (in module GPS), 255
get_system_dir() (in module GPS), 255
get_target() (in module GPS), 255
get_text() (GPS.Console method), 276
get_text() (GPS.Message method), 358
get_tmp_dir() (in module GPS), 255
get_tool_switches_as_list, 219
get_tool_switches_as_list() (GPS.Project method), 371
get_tool_switches_as_string, 219
get_tool_switches_as_string() (GPS.Project method), 372
getdoc() (GPS.Help method), 327
getenv() (in module GPS), 255
Git, 120
git, 136
GNAT

-g, 246
-gnatQ, 79
-k, 79
ALI files, 79

GNAT_CODE_PAGE, 242
gnatkr, 79
gnatmake, 246
gnuclient, 76
goto() (GPS.Bookmark method), 263
goto() (GPS.EditorView method), 311
goto_mark() (GPS.Editor static method), 291
GPR_PROJECT_PATH, 85
GPS (module), 249
gps shell, 224
GPS.Browsers (module), 393
GPS_CHANGELOG_USER, 242
GPS_CUSTOM_PATH, 203, 242
GPS_DOC_PATH, 242
GPS_HOME, 242
GPS_MEMORY_MONITOR, 242
GPS_PYTHONHOME, 242
GPS_ROOT, 242
gps_started() (GPS.Predefined_Hooks method), 339

438 Index

GPS User’s Guide, Release 2018

GPS_STARTUP_LD_LIBRARY_PATH, 242
GPS_STARTUP_PATH, 242
gps_utils (module), 414
gps_utils.console_process (module), 420
gps_utils.highlighter (module), 416
graph disable, 116
graph display, 115
graph enable, 116
graph print, 115
graph undisplay, 116
GROUP_CONSOLES (GPS.MDI attribute), 350
GROUP_DEBUGGER_DATA (GPS.MDI attribute), 350
GROUP_DEBUGGER_STACK (GPS.MDI attribute),

350
GROUP_DEFAULT (GPS.MDI attribute), 350
GROUP_GRAPHS (GPS.MDI attribute), 350
GROUP_VCS_ACTIVITIES (GPS.MDI attribute), 350
GROUP_VCS_EXPLORER (GPS.MDI attribute), 350
GROUP_VIEW (GPS.MDI attribute), 350
GUI (class in GPS), 325

H
has_overlay() (GPS.EditorLocation method), 307
has_slave_cursors() (GPS.EditorBuffer method), 300
height (GPS.Browsers.AbstractItem attribute), 393
help, 60
Help (class in GPS), 327
hexadecimal, 68, 112
hide() (GPS.Browsers.AbstractItem method), 393
hide() (GPS.BuildTarget method), 264
hide() (GPS.Contextual method), 281
hide() (GPS.GUI method), 325
hide() (GPS.MDI static method), 353
hide_coverage_information() (GPS.CodeAnalysis

method), 266
highlight() (GPS.Editor static method), 291
highlight_range() (GPS.Editor static method), 291
highlight_range() (GPS.Predefined_Hooks method), 340
highlighter.interface (module), 185
Highlighters, 185
history, 243
History (class in GPS), 328
history_lines() (GPS.VCS2_Task_Visitor method), 388
HOME, 243
Hook (class in GPS), 328
hook (class in gps_utils), 414
Hook.describe, 235
Hook.list, 235
Hook.list_types, 235
Hook.register, 237
Hook.run, 237
hooks, 235–237
HrItem (class in GPS.Browsers), 399
HTML (class in GPS), 326

html_action_hook() (GPS.Predefined_Hooks method),
340

hyperlinks, 83

I
icons, 180
id (GPS.Construct attribute), 277
ImageItem (class in GPS.Browsers), 400
images, 180
imported entities, 82
imported_by() (GPS.File method), 319
imports() (GPS.File method), 319
in, 98
in_ada_file() (in module gps_utils), 414
in_xml_file() (in module gps_utils), 414
incremental search, 98
indent() (GPS.Editor static method), 292
indent() (GPS.EditorBuffer method), 300
indent_buffer() (GPS.Editor static method), 292
indentation, 67
indexed, 199
indexed project attributes, 199
information_popup() (GPS.MDI static method), 353
input_dialog, 220
input_dialog() (GPS.MDI static method), 353
insert_link() (GPS.Console method), 276
insert_text() (GPS.Editor static method), 292
inside_word() (GPS.EditorLocation method), 307
insmod() (in module GPS), 255
instance_of() (GPS.Entity method), 314
interactive (class in gps_utils), 414
interactive command, 167
interrupt() (GPS.Command method), 269
interrupt() (GPS.Process method), 366
interrupt() (GPS.Task method), 384
Invalid_Argument (class in GPS), 345
invalidate_status_cache() (GPS.VCS2 method), 387
is_access() (GPS.Entity method), 315
is_array() (GPS.Entity method), 315
is_break_command() (GPS.Debugger method), 284
is_busy() (GPS.Debugger method), 284
is_container() (GPS.Entity method), 315
is_context_command() (GPS.Debugger method), 285
is_exec_command() (GPS.Debugger method), 285
is_floating() (GPS.MDIWindow method), 354
is_generic() (GPS.Entity method), 315
is_global() (GPS.Entity method), 315
is_harness_project() (GPS.Project method), 372
is_link (GPS.Browsers.AbstractItem attribute), 393
is_modified() (GPS.EditorBuffer method), 300
is_modified() (GPS.Project method), 372
is_predefined() (GPS.Entity method), 315
is_present() (GPS.EditorMark method), 308
is_read_only() (GPS.EditorBuffer method), 300

Index 439

GPS User’s Guide, Release 2018

is_read_only() (GPS.EditorView method), 311
is_ready() (GPS.SemanticTree method), 381
is_selected() (GPS.Browsers.Diagram method), 394
is_sensitive() (GPS.GUI method), 325
is_server_local() (in module GPS), 256
is_subprogram() (GPS.Entity method), 315
is_type() (GPS.Entity method), 315
is_writable() (in module gps_utils), 414
isatty() (GPS.Console method), 276
Item (class in GPS.Browsers), 400
items (GPS.Browsers.Diagram attribute), 394

K
key, 68, 181
key shortcuts

editing, 159
key() (GPS.Action method), 261
keywords (GPS.LanguageInfo attribute), 347
kill() (GPS.Process method), 366

L
label (GPS.Browsers.Link attribute), 403
language, 70
Language (class in GPS), 345
language() (GPS.File method), 320
LanguageInfo (class in GPS), 347
languages() (GPS.Project method), 372
last_command() (in module GPS), 256
Layout (GPS.Browsers.Item attribute), 400
line (GPS.DebuggerBreakpoint attribute), 287
line (GPS.EditorMark attribute), 308
line() (GPS.EditorLocation method), 307
line() (GPS.FileLocation method), 323
lines_count() (GPS.EditorBuffer method), 300
Link (class in GPS.Browsers), 402
links() (GPS.Browsers.Diagram method), 394
list() (GPS.Bookmark static method), 263
list() (GPS.Command static method), 269
list() (GPS.Contextual static method), 281
list() (GPS.Debugger static method), 285
list() (GPS.EditorBuffer static method), 300
list() (GPS.Filter static method), 324
list() (GPS.Hook static method), 329
list() (GPS.Message static method), 358
list() (GPS.Style static method), 382
list() (GPS.Task static method), 384
list() (GPS.Vdiff static method), 389
list_categories() (GPS.Locations static method), 348
list_locations() (GPS.Locations static method), 348
list_types() (GPS.Hook static method), 329
literals() (GPS.Entity method), 315
load() (GPS.Project static method), 372
load_from_file() (GPS.CodeAnalysis method), 266
load_json() (GPS.Browsers.Diagram static method), 395

load_json_data() (GPS.Browsers.Diagram static method),
398

load_perspective() (GPS.MDI static method), 353
locate in project view, 17
location() (GPS.CodefixError method), 269
location() (GPS.Context method), 279
location() (GPS.EditorMark method), 308
location_changed() (GPS.Predefined_Hooks method),

340
Location_Highlighter (class in gps_utils.highlighter), 417
Locations (class in GPS), 347
Locations.parse, 221
log file, 243
log() (GPS.Logger method), 349
log_parsed_hook() (GPS.Predefined_Hooks method),

340
Logger (class in GPS), 349
long (GPS.Search_Result attribute), 381
lookup() (GPS.Search static method), 380
lookup_actions() (in module GPS), 256
lookup_actions_from_key() (in module GPS), 256
lower_item() (GPS.Browsers.Diagram method), 398
ls() (in module GPS), 257
lsmod() (in module GPS), 257

M
macros, 69
main_cursor() (GPS.EditorBuffer method), 301
make() (GPS.File method), 320
make_interactive() (in module gps_utils), 414
Makefile, 161
mark() (GPS.Cursor method), 282
mark_current_location() (GPS.Editor static method), 292
marker_added_to_history() (GPS.Predefined_Hooks

method), 340
MDI, see Multiple Document Interface, 60

closing windows, 61
floating windows, 62
perspectives, 63
selecting windows, 61

MDI (class in GPS), 350
MDI.save_all, 219
mdi_child_selected() (GPS.Predefined_Hooks method),

340
MDIWindow (class in GPS), 354
memory view, 111
MemoryUsageProvider (class in GPS), 355
MemoryUsageProviderVisitor (class in GPS), 355
menu, 168

analyze –> coding standard –> check root project, 56
analyze –> coding standard –> check root project &

subprojects, 56
analyze –> coding standard –> edit rules file, 56

440 Index

GPS User’s Guide, Release 2018

analyze –> coverage –> clear coverage from mem-
ory, 56

analyze –> coverage –> gcov –> compute coverage
files, 56

analyze –> coverage –> gcov –> remove coverage
files, 56

analyze –> coverage –> load data for all projects, 56
analyze –> coverage –> load data for current file, 56
analyze –> coverage –> load data for current project,

56
analyze –> coverage –> show report, 56
analyze –> documentation –> generate current file,

57
analyze –> documentation –> generate project, 57
analyze –> documentation –> generate project &

subprojects, 57
analyze –> gnathub –> display gnathub analysis, 56
analyze –> gnathub –> run..., 56
analyze –> gnattest –> exit from harness project, 57
analyze –> gnattest –> generate unit test setup, 56
analyze –> gnattest –> open harness project, 57
analyze –> gnattest –> show not implemented tests,

56
analyze –> metrics –> compute metrics on current

file, 56
analyze –> metrics –> compute metrics on current

project, 56
analyze –> metrics –> compute metrics on current

project & subprojects, 56
analyze –> stack analysis –> analyze stack usage, 56
analyze –> stack analysis –> clear stack usage infor-

mation, 56
analyze –> stack analysis –> load last stack usage,

56
analyze –> stack analysis –> open undefined subpro-

grams editor, 56
build –> check semantic, 55
build –> check syntax, 55
build –> clean –> clean all, 55
build –> clean –> clean root, 55
build –> compile file, 55
build –> project –> build <current file>, 55
build –> project –> build all, 55
build –> project –> compile all sources, 55
build –> project –> custom build..., 55
build –> recompute xref info, 55
build –> run, 37
build –> run –> custom..., 55
build –> settings –> toolchains, 55, 104
code –> aliases..., 54
code –> edit with external editor, 54
code –> fold all blocks, 54
code –> format selection, 53
code –> generate body, 54

code –> more completion –> complete block, 54
code –> more completion –> complete identifier, 54
code –> more completion –> expand alias, 53
code –> pretty print, 54
code –> selection –> comment box, 53
code –> selection –> comment lines, 53
code –> selection –> move left, 53
code –> selection –> move right, 53
code –> selection –> print, 53
code –> selection –> refill, 53
code –> selection –> sort, 53
code –> selection –> sort reverse, 53
code –> selection –> uncomment lines, 53
code –> selection –> untabify, 53
code –> smart completion, 53
code –> unfold all blocks, 54
codepeer, 59
debug –> continue, 59
debug –> data –> assembly, 58, 114
debug –> data –> breakpoints, 58
debug –> data –> call stack, 57, 108
debug –> Data –> display any expression, 115
debug –> data –> display any expression..., 58
debug –> data –> display arguments, 58
debug –> data –> display local variables, 58
debug –> data –> display registers, 114
debug –> data –> edit breakpoints, 109
debug –> data –> examine memory, 58
debug –> data –> execution, 58
debug –> data –> protection domains, 58
debug –> data –> registers, 58
debug –> data –> tasks, 58
debug –> data –> threads, 58
debug –> data –> variables, 57
debug –> debug –> add symbols..., 57
debug –> debug –> attach..., 57
debug –> debug –> connect to board..., 57
debug –> debug –> debug core file..., 57
debug –> debug –> detach, 57
debug –> debug –> kill, 57
debug –> debug –> load file, 107
debug –> debug –> load file..., 57
debug –> finish, 59
debug –> initialize, 107
debug –> initialize –> no main file, 57
debug –> interrupt, 59
debug –> next, 58
debug –> next instruction, 58
debug –> run..., 58
debug –> step, 58
debug –> step instruction, 58
debug –> terminate, 59, 107
debug –> terminate current, 59, 107
edit –> compare –> three files..., 48

Index 441

GPS User’s Guide, Release 2018

edit –> compare –> two files..., 48
edit –> copy, 29, 47
edit –> cursors –> add cursor and go down, 47
edit –> cursors –> add cursor and go up, 48
edit –> cursors –> add cursors to all references of

entity, 48
edit –> cursors –> cursor select next occurence of

selection, 48
edit –> cursors –> cursor skip next occurence of se-

lection, 48
edit –> cut, 29, 47
edit –> decrease text size, 48
edit –> increase text size, 48
edit –> insert file..., 48
edit –> paste, 29, 47
edit –> paste previous, 29, 47
edit –> preferences..., 48
edit –> project properties, 93
edit –> project properties..., 48
edit –> redo, 47
edit –> select all, 47
edit –> undo, 47
file –> change directory..., 46
file –> close, 46
file –> close all, 47
file –> close all editors, 47
file –> close all editors except current, 47
file –> exit, 47
file –> locations –> export locations to editor, 46
file –> new file, 46
file –> new file view, 46
file –> new project..., 45
file –> open file from host..., 46
file –> open file..., 46
file –> open from project, 11, 87
file –> open project from host..., 45
file –> open project..., 45
file –> print, 46
file –> project –> add complex file naming conven-

tions..., 46
file –> project –> reload project, 46
file –> reset all perspectives, 47
file –> save, 46, 77
file –> save as, 77
file –> save as..., 46
file –> save more –> all, 46, 77
file –> save more –> desktop, 46
file –> save more –> projects, 46
find –> find action, 50
find –> find all references, 51
find –> find bookmark, 50
find –> find build target, 50
find –> find entity, 11, 50
Find –> find file in project, 11

find –> find file in project, 50
find –> find in current source, 50
find –> find next, 50
find –> find open window, 50
find –> find plugin, 50
find –> find preference, 51
find –> find previous, 50
find –> find text in all sources, 51
find –> find..., 50
find –> replace..., 50
help –> about, 60
help –> contents, 60
help –> gnat runtime, 60
help –> gps –> gps user’s guide, 60
help –> gps –> python extensions, 60
help –> gps –> release notes, 60
help –> gps –> tutorial, 60
help –> gps –> welcome, 60
help –> python –> pygtk reference manual, 60
help –> python –> pygtk tutorial, 60
help –> python –> python library, 60
help –> python –> python tutorial, 60
help –> welcome, 60
menus, 44
navigate –> add bookmark, 49
navigate –> back, 48
navigate –> end of statement, 49
navigate –> find or replace, 17, 97
navigate –> forward, 48
navigate –> goto body, 48
navigate –> goto declaration, 48
navigate –> goto file spec<->body, 49
navigate –> goto line..., 49
navigate –> goto matching delimiter, 49
navigate –> locate in files view, 49
navigate –> next locations message, 49
navigate –> next subprogram, 49
navigate –> next tag, 14
navigate –> previous locations message, 49
navigate –> previous subprogram, 49
navigate –> previous tag, 14
navigate –> start of statement, 49
project –> edit project properties, 18
project –> project view, 16
project –> save_all, 18
spark, 59
tools, 3
tools –> consoles –> auxiliary builds, 105
tools –> consoles –> background builds, 104
tools –> consoles –> OS Shell, 37
tools –> consoles –> Python, 36
tools –> views, 3
tools –> views –> clipboard, 29
tools –> views –> files, 23

442 Index

GPS User’s Guide, Release 2018

tools –> views –> messages, 13
tools –> views –> outline, 28
tools –> views –> project, 16
tools –> views –> windows, 25
vcs –> branches, 54
vcs –> commits, 54
vcs –> hide last modification for lines, 55
vcs –> pull, 54
vcs –> pull & rebase, 54
vcs –> push, 54
vcs –> review, 54
vcs –> show all local changes, 55
vcs –> show last modification for lines, 55
vcs –> show local changes for file, 54
vcs –> show local changes for file (in editor), 54
vcs –> view file history, 54
vcs –> view global history, 54
view –> auxiliary builds, 52
view –> background builds, 52
view –> bookmarks, 51
view –> call graph browser, 52
view –> call trees, 51
view –> clipboard, 51
view –> dependency browser, 52
view –> elaboration circularities browser, 52
view –> entity browser, 52
view –> file switches, 51
view –> files, 51
view –> learn, 51
view –> locations, 51
view –> memory usage, 51
view –> messages, 51
view –> metrics, 51
view –> os shell, 52
view –> outline, 51
view –> project, 51
view –> project browser, 52
view –> python console, 52
view –> remote, 52
view –> scenario, 52
view –> tasks, 38, 52
view –> vcs –> branches, 52
view –> vcs –> commits, 52
view –> vcs –> history, 52
view –> windows, 52
window –> close, 60, 62
window –> floating, 60, 62
window –> perspectives, 63
window –> perspectives –> <create new>, 59
window –> perspectives –> analyze, 59
window –> perspectives –> codepeer, 59
window –> perspectives –> create new, 63
window –> perspectives –> debug, 59
window –> perspectives –> default, 59

window –> perspectives –> maximized editors, 59
window –> perspectives –> vcs, 59
window –> split side-by-side, 60
window –> split up-down, 60
windows –> split horizontally, 62
windows –> split vertically, 62

Menu (class in GPS), 356
menu separator, 178
menu() (GPS.Action method), 261
menus, 177
merge() (GPS.Clipboard static method), 265
Message (class in GPS), 356
message() (GPS.CodefixError method), 269
message() (GPS.Context method), 279
message_selected() (GPS.Predefined_Hooks method),

341
messages, 12
methods, 82
methods() (GPS.Entity method), 315
Metrics, 144
Missing_Arguments (class in GPS), 359
Mode, 211
Model, 207
module_name (GPS.Context attribute), 278
move() (GPS.Cursor method), 282
move() (GPS.EditorMark method), 309
Multiple Document Interface, 3, see MDI, 100
must_highlight() (gps_utils.highlighter.On_The_Fly_Highlighter

method), 418

N
name (GPS.Construct attribute), 277
name (GPS.Contextual attribute), 279
name (GPS.LanguageInfo attribute), 347
name (GPS.VCS2 attribute), 386
name() (GPS.Bookmark method), 263
name() (GPS.Command method), 269
name() (GPS.EditorOverlay method), 309
name() (GPS.Entity method), 315
name() (GPS.File method), 320
name() (GPS.MDIWindow method), 354
name() (GPS.Project method), 373
name() (GPS.Task method), 384
name_parameters() (GPS.Entity method), 316
navigate, 48
navigation, 79
network, 153
new_style() (in module highlighter.interface), 187
next() (GPS.MDIWindow method), 355
next() (GPS.Search method), 380
non_blocking_send() (GPS.Debugger method), 285
note (GPS.Bookmark attribute), 262
num (GPS.DebuggerBreakpoint attribute), 287

Index 443

GPS User’s Guide, Release 2018

O
object_dirs() (GPS.Project method), 373
offset() (GPS.EditorLocation method), 307
omni-search, 9
on-failure, 167
on_completion() (gps_utils.console_process.Console_Process

method), 420
on_destroy() (gps_utils.console_process.Console_Process

method), 421
on_exit() (GPS.OutputParserWrapper method), 360
on_exit() (gps_utils.console_process.Console_Process

method), 421
on_input() (gps_utils.console_process.Console_Process

method), 421
on_interrupt() (gps_utils.console_process.Console_Process

method), 421
on_key() (gps_utils.console_process.Console_Process

method), 421
on_memory_usage_data_fetched()

(GPS.MemoryUsageProviderVisitor method),
355

on_output() (gps_utils.console_process.Console_Process
method), 421

on_resize() (gps_utils.console_process.Console_Process
method), 421

on_start_buffer() (gps_utils.highlighter.Background_Highlighter
method), 416

on_stderr() (GPS.OutputParserWrapper method), 360
on_stdout() (GPS.OutputParserWrapper method), 360
On_The_Fly_Highlighter (class in gps_utils.highlighter),

418
open_file_action_hook, 236
open_file_action_hook() (GPS.Predefined_Hooks

method), 341
OPENED (GPS.Search attribute), 380
options, see command line
original_project() (GPS.Project method), 373
other_file() (GPS.File method), 320
outline, 25
outline view, 25
OutlineView (class in GPS), 359
output, 220
OutputParserWrapper (class in GPS), 359
Overflow (GPS.Browsers.Item attribute), 400
OverlayStyle (class in gps_utils.highlighter), 418
overrides() (GPS.Entity method), 316
overriding operations, 82

P
parameters() (GPS.Entity method), 316
parent (GPS.Browsers.AbstractItem attribute), 393
parent_types() (GPS.Entity method), 316
parse() (GPS.Codefix static method), 267
parse() (GPS.Locations static method), 348

parse() (GPS.XMLViewer method), 391
parse_string() (GPS.XMLViewer method), 391
parse_xml() (in module GPS), 257
password, 120, 153, 166
paste, 77
paste() (GPS.Editor static method), 292
paste() (GPS.EditorBuffer method), 301
path, 207
path (GPS.File attribute), 318
pause() (GPS.Task method), 384
perspectives, 63
plugins, 161

auto_highlight_occurrences.py, 68
dispatching.py, 83
methods.py, 81, 82
shell.py, 37

pointed_type() (GPS.Entity method), 316
PolylineItem (class in GPS.Browsers), 404
POSITION_AUTOMATIC (GPS.MDI attribute), 350
POSITION_BOTTOM (GPS.MDI attribute), 350
POSITION_LEFT (GPS.MDI attribute), 351
POSITION_RIGHT (GPS.MDI attribute), 351
POSITION_TOP (GPS.MDI attribute), 351
possible_fixes() (GPS.CodefixError method), 269
predefined patterns, 184
Predefined_Hooks (class in GPS), 330
Preference (class in GPS), 360
preferences, 244

browsers –> show elaboration cycles, 41
clipboard size, 29
debugger –> preserve state on exit, 111
documentation –> leading documentation, 67
editor –> ada –> casing policy, 71
editor –> ada –> identifier casing, 71
editor –> ada –> reserved word casing, 71
editor –> always use external editor, 77
editor –> autosave delay, 77
editor –> block folding, 68
editor –> block highlighting, 68
editor –> custom editor command, 77
editor –> display line numbers, 66
editor –> display subprogram names, 66
editor –> external editor, 76
editor –> fonts & colors –> current line color, 68
editor –> highlight delimiters, 67
editor –> speed column policy, 66
editor –> tooltips, 67
general –> hyper links, 83
general –> save desktop on exit, 64
search –> preserve search context, 99
windows –> all floating, 62
windows –> destroy floats, 62

preferences assistant, 6

444 Index

GPS User’s Guide, Release 2018

preferences_changed() (GPS.Predefined_Hooks method),
341

PreferencesPage (class in GPS), 362
present_main_window() (GPS.MDI static method), 353
primitive operations, 82
primitive_of() (GPS.Entity method), 316
print_line_info() (GPS.Editor static method), 292
problems, 245
Process (class in GPS), 363
process() (gps_utils.highlighter.Background_Highlighter

method), 416
process_all_events() (in module GPS), 257
progress bar, 9
progress() (GPS.Command method), 269
progress() (GPS.Task method), 384
project, 151

attribute, 88
comments, 86
creating scenario variables, 88
cross environment, 87
default, 8
default project, 245
dependencies, 39
description, 85
editing, 91, 93
editing scenario variable, 89
exec directory, 86
extending, 91
imported project, 86
languages, 87
load existing project, 8
main units, 87
naming schemes, 87
normalization, 85
object directory, 86
reload, 17
saving, 18
scenario variable, 20, 87
scenario variables, 20
source directory, 86
source files, 86
startup, 8
subprojects, 86
switches, 87
viewing dependencies, 38
wizard, 93

Project (class in GPS), 367
project attributes, 196, 199
project templates, 239
project view, 14, 97

absolute paths, 17
flat view, 17

project() (GPS.Context method), 279
project() (GPS.File method), 320

project_changed() (GPS.Predefined_Hooks method), 342
project_changing() (GPS.Predefined_Hooks method),

342
project_editor() (GPS.Predefined_Hooks method), 342
project_saved() (GPS.Predefined_Hooks method), 342
project_view_changed() (GPS.Predefined_Hooks

method), 342
projects

limited with, 17
ProjectTemplate (class in GPS), 377
properties_editor() (GPS.Project method), 373
protection domain, 110
pwd() (in module GPS), 257
pygobject, 235
python, 224, 230

console, 36
pywidget() (GPS.GUI method), 325

Q
qgen, 421

R
raise_item() (GPS.Browsers.Diagram method), 398
raise_window() (GPS.MDIWindow method), 355
read() (GPS.CommandWindow method), 271
read() (GPS.Console method), 276
readline() (GPS.Console method), 276
recompute() (GPS.Project static method), 373
recompute() (GPS.Vdiff method), 390
recompute_refs() (gps_utils.highlighter.Location_Highlighter

method), 417
RectItem (class in GPS.Browsers), 405
recurse() (GPS.Browsers.Item method), 401
recurse() (GPS.Browsers.Link method), 404
redo() (GPS.Editor static method), 292
redo() (GPS.EditorBuffer method), 301
refactoring, 71
references() (GPS.Entity method), 316
references() (GPS.File method), 321
ReferencesCommand (class in GPS), 377
refill() (GPS.Editor static method), 292
refill() (GPS.EditorBuffer method), 301
REGEXP (GPS.Search attribute), 380
Regexp_Highlighter (class in gps_utils.highlighter), 419
region() (in module highlighter.interface), 188
region_ref() (in module highlighter.interface), 188
region_template() (in module highlighter.interface), 188
register() (GPS.Completion static method), 271
register() (GPS.FileTemplate static method), 323
register() (GPS.Hook static method), 329
register() (GPS.Language static method), 346
register() (GPS.Search static method), 380
register_highlighter() (in module highlighter.interface),

189

Index 445

GPS User’s Guide, Release 2018

register_highlighting() (GPS.Editor static method), 292
regular expression, 97
remote, 153, 204, 206, 207
remote project, 156
remote_protocol (GPS.Debugger attribute), 283
remote_target (GPS.Debugger attribute), 283
remove() (GPS.Browsers.Diagram method), 398
remove() (GPS.BuildTarget method), 264
remove() (GPS.EditorHighlighter method), 304
remove() (GPS.Hook method), 329
remove() (GPS.Message method), 358
remove() (GPS.Timeout method), 385
remove() (gps_utils.highlighter.OverlayStyle method),

419
remove_all_slave_cursors() (GPS.EditorBuffer method),

301
remove_attribute_values() (GPS.Project method), 373
remove_blank_lines() (GPS.Editor static method), 293
remove_case_exception() (GPS.Editor static method),

293
remove_category() (GPS.Locations static method), 349
remove_dependency() (GPS.Project method), 374
remove_highlight() (gps_utils.highlighter.Background_Highlighter

method), 417
remove_overlay() (GPS.EditorBuffer method), 301
remove_property() (GPS.File method), 321
remove_property() (GPS.Project method), 374
remove_source_dir() (GPS.Project method), 374
remove_special_lines() (GPS.EditorBuffer method), 301
removing variable, 90
rename() (GPS.Bookmark method), 263
rename() (GPS.Entity method), 317
rename() (GPS.MDIWindow method), 355
rename() (GPS.Project method), 374
renaming entities

in callgraph, 31
repeat_next() (in module GPS), 257
replace, 99
replace_text() (GPS.Editor static method), 293
reset() (GPS.Help method), 327
reset_xref_db() (in module GPS), 257
resume() (GPS.Task method), 384
return_type() (GPS.Entity method), 317
Revision (class in GPS), 378
revision_parsed_hook() (GPS.Predefined_Hooks

method), 342
root() (GPS.Project static method), 374
Routing (GPS.Browsers.Link attribute), 403
rsync, 206
rsync_action_hook() (GPS.Predefined_Hooks method),

342
rsync_finished() (GPS.Predefined_Hooks method), 343
run, 37
run() (GPS.Hook method), 329

run_until_failure() (GPS.Hook method), 329
run_until_success() (GPS.Hook method), 330

S
save() (GPS.Editor static method), 293
save() (GPS.EditorBuffer method), 301
save() (GPS.Project method), 374
save_all() (GPS.MDI static method), 353
save_buffer() (GPS.Editor static method), 293
save_current_window() (in module gps_utils), 415
save_dir() (in module gps_utils), 415
save_excursion() (in module gps_utils), 416
save_persistent_properties() (in module GPS), 257
saving, 77, 111

automatic, 77
saving breakpoints, 111
scale (GPS.Browsers.View attribute), 409
scale_to_fit() (GPS.Browsers.View method), 410
scenario_variables() (GPS.Project static method), 375
scenario_variables_cmd_line() (GPS.Project static

method), 375
scenario_variables_values() (GPS.Project static method),

375
screen shot, 142, 146, 147, 149, 154, 157, 193
scripts, 223
scroll_into_view() (GPS.Browsers.View method), 410
search, see omni-search, 98

interactive search in trees, 16
project view, 17

Search (class in GPS), 378
search context, 97, 98
search() (GPS.EditorLocation method), 307
search() (GPS.File method), 321
search() (GPS.Project method), 375
search() (GPS.Search static method), 380
search_for_capturing_groups() (in module high-

lighter.interface), 189
search_functions_changed() (GPS.Predefined_Hooks

method), 343
search_next() (GPS.File method), 321
search_regexps_changed() (GPS.Predefined_Hooks

method), 343
search_reset() (GPS.Predefined_Hooks method), 343
Search_Result (class in GPS), 381
sel_mark() (GPS.Cursor method), 282
select window on match, 98
select() (GPS.Browsers.Diagram method), 398
select() (GPS.EditorBuffer method), 302
select_all() (GPS.Console method), 276
select_all() (GPS.Editor static method), 294
select_construct() (GPS.OutlineView static method), 359
select_frame() (GPS.Debugger method), 285
select_text() (GPS.Editor static method), 294
selected (GPS.Browsers.Diagram attribute), 394

446 Index

GPS User’s Guide, Release 2018

Selection (GPS.Browsers.Diagram attribute), 394
selection_end() (GPS.EditorBuffer method), 302
selection_start() (GPS.EditorBuffer method), 302
semantic_tree_updated() (GPS.Predefined_Hooks

method), 343
SemanticTree (class in GPS), 381
send() (GPS.Debugger method), 285
send() (GPS.Process method), 366
send_button_event() (in module GPS), 257
send_crossing_event() (in module GPS), 258
send_key_event() (in module GPS), 258
separate unit, 79
server, 206, 207, 238
server_config_hook() (GPS.Predefined_Hooks method),

343
server_list_hook() (GPS.Predefined_Hooks method), 343
sessions() (GPS.Codefix static method), 268
set() (GPS.Preference method), 362
set_action() (GPS.Message method), 358
set_active() (GPS.Logger method), 350
set_attribute_as_string() (GPS.Project method), 375
set_background() (GPS.Browsers.View method), 410
set_background() (GPS.CommandWindow method), 271
set_background() (GPS.Style method), 382
set_background_color() (GPS.Editor static method), 294
set_build_mode() (in module GPS), 258
set_child_layout() (GPS.Browsers.Item method), 401
set_cmd_line() (GPS.SwitchesChooser method), 383
set_cursors_auto_sync() (GPS.EditorBuffer method), 302
set_details() (GPS.VCS2_Task_Visitor method), 388
set_file() (GPS.Context method), 279
set_foreground() (GPS.Style method), 382
set_height_range() (GPS.Browsers.Item method), 401
set_in_speedbar() (GPS.Style method), 382
set_lang() (GPS.EditorBuffer method), 302
set_last_command() (in module GPS), 258
set_manual_sync() (GPS.Cursor method), 282
set_pattern() (GPS.Search method), 380
set_position() (GPS.Browsers.Item method), 402
set_progress() (GPS.Task method), 384
set_prompt() (GPS.CommandWindow method), 271
set_property() (GPS.EditorOverlay method), 309
set_property() (GPS.File method), 322
set_property() (GPS.Project method), 376
set_read_only() (GPS.Browsers.View method), 411
set_read_only() (GPS.EditorBuffer method), 302
set_read_only() (GPS.EditorView method), 312
set_run_in_background() (GPS.VCS2 method), 387
set_scenario_variable() (GPS.Project static method), 376
set_selection_mode() (GPS.Browsers.Diagram method),

398
set_selection_style() (GPS.Browsers.View method), 411
set_sensitive() (GPS.Contextual method), 281
set_sensitive() (GPS.GUI method), 325

set_size() (GPS.Browsers.Item method), 402
set_size() (GPS.Process method), 366
set_sort_order_hint() (GPS.Locations static method), 349
set_sort_order_hint() (GPS.Message static method), 358
set_style() (GPS.Message method), 358
set_style() (gps_utils.highlighter.Background_Highlighter

method), 417
set_subprogram() (GPS.Message method), 358
set_synchronized_scrolling() (GPS.Editor static method),

294
set_title() (GPS.Editor static method), 294
set_variable() (GPS.Debugger method), 286
set_waypoints() (GPS.Browsers.Link method), 404
set_width_range() (GPS.Browsers.Item method), 402
set_writable() (GPS.Editor static method), 294
setenv() (in module GPS), 258
shell, 167, 205
short (GPS.Search_Result attribute), 381
Show hidden directories, 17
show() (GPS.Browsers.AbstractItem method), 394
show() (GPS.BuildTarget method), 264
show() (GPS.Contextual method), 281
show() (GPS.Entity method), 317
show() (GPS.GUI method), 326
show() (GPS.MDI static method), 353
show() (GPS.Search_Result method), 381
show_analysis_report() (GPS.CodeAnalysis method),

267
show_coverage_information() (GPS.CodeAnalysis

method), 267
Side (GPS.Browsers.Link attribute), 403
simple() (in module highlighter.interface), 189
Size (GPS.Browsers.Item attribute), 400
solving problems, 245
source (GPS.Browsers.Link attribute), 403
source file, 68
source navigation, 79
source_dirs() (GPS.Project method), 376
source_lines_folded() (GPS.Predefined_Hooks method),

343
source_lines_unfolded() (GPS.Predefined_Hooks

method), 344
SOURCES (GPS.Search attribute), 380
sources() (GPS.Project method), 377
spark, 59
spawn() (GPS.Debugger static method), 286
split() (GPS.MDIWindow method), 355
Stack Analysis, 148
start (GPS.Construct attribute), 277
start() (gps_utils.highlighter.On_The_Fly_Highlighter

method), 418
start_editing() (GPS.Browsers.View method), 411
start_highlight() (gps_utils.highlighter.Background_Highlighter

method), 417

Index 447

GPS User’s Guide, Release 2018

start_line() (GPS.Context method), 279
starts_word() (GPS.EditorLocation method), 308
Status (GPS.VCS2 attribute), 386
status() (GPS.Task method), 384
status_parsed_hook() (GPS.Predefined_Hooks method),

344
stop() (gps_utils.highlighter.On_The_Fly_Highlighter

method), 418
stop_highlight() (gps_utils.highlighter.Background_Highlighter

method), 417
stop_macro_action_hook() (GPS.Predefined_Hooks

method), 344
Style (class in GPS), 381
Style (class in GPS.Browsers), 405
style (GPS.Browsers.AbstractItem attribute), 393
submitting bugs, 245
subprogram parameters, 226
subprogram_name() (GPS.Editor static method), 294
subprogram_name() (GPS.EditorLocation method), 308
substitution, 168
SUBSTRINGS (GPS.Search attribute), 380
Subversion, 120
subversion, 138
SUCCESS (GPS.Task attribute), 383
success() (GPS.VCS2_Task_Visitor method), 388
suggestions, 245
supported_languages() (in module GPS), 258
supported_systems() (GPS.VCS2 static method), 387
svn, 138
SwitchesChooser (class in GPS), 382
Symbol (GPS.Browsers.Style attribute), 405
syntax highlighting, 113

T
Target, 209
target (GPS.Browsers.Link attribute), 403
target (GPS.Project attribute), 367
targets, 243
Task (class in GPS), 383
task_finished() (GPS.Predefined_Hooks method), 344
task_started() (GPS.Predefined_Hooks method), 344
tasks, 37
text (GPS.Browsers.TextItem attribute), 407
Text_Highlighter (class in gps_utils.highlighter), 419
TextArrow (GPS.Browsers.TextItem attribute), 407
TextItem (class in GPS.Browsers), 407
thaw_prefs() (in module GPS), 259
themes, 159
themes creation, 183
Timeout (class in GPS), 384
title() (GPS.EditorView method), 312
toLabel (GPS.Browsers.Link attribute), 403
tool bar, 8, 180

progress bar, 9

tooltip, 67, 113
tooltip() (GPS.VCS2_Task_Visitor method), 388
topleft (GPS.Browsers.View attribute), 409
toplevel() (GPS.Browsers.Item method), 402
tree display, 115
type, 235
type (GPS.DebuggerBreakpoint attribute), 287
type hierarchy, 81
type() (GPS.Entity method), 317

U
unbreak_at_location() (GPS.Debugger method), 286
Underline (GPS.Browsers.Style attribute), 405
undo local changes, 126
undo() (GPS.Editor static method), 295
undo() (GPS.EditorBuffer method), 303
Unexpected_Exception (class in GPS), 385
unhighlight() (GPS.Editor static method), 295
unhighlight_range() (GPS.Editor static method), 295
unit() (GPS.File method), 322
Unix, 246
unselect() (GPS.Browsers.Diagram method), 398
unselect() (GPS.EditorBuffer method), 303
update() (GPS.SemanticTree method), 381
update_cursors_selection() (GPS.EditorBuffer method),

303
use_messages() (gps_utils.highlighter.OverlayStyle

method), 419
used_by() (GPS.File method), 322
uses() (GPS.File method), 322

V
Valgrind (class in GPS), 388
value_of() (GPS.Debugger method), 286
variable_changed() (GPS.Predefined_Hooks method),

344
VCS, 119, 120
vcs, 54
VCS2 (class in GPS), 385
VCS2_Task_Visitor (class in GPS), 387
vcs_active_changed() (GPS.Predefined_Hooks method),

344
vcs_file_status_changed() (GPS.Predefined_Hooks

method), 344
vcs_in_use() (GPS.VCS2 static method), 387
vcs_refresh() (GPS.Predefined_Hooks method), 344
Vdiff (class in GPS), 389
version control, 119
version() (in module GPS), 259
vi, 37, 76
view, 51
View (class in GPS.Browsers), 407
views

dependency browser, 39

448 Index

GPS User’s Guide, Release 2018

locations, 13
messages, 12

views() (GPS.EditorBuffer method), 303
visible (GPS.Task attribute), 383
visual diff, 141
VxWorks, 87
VxWorks AE, 110

W
wait() (GPS.Process method), 366
watched (GPS.DebuggerBreakpoint attribute), 287
welcome dialog, 7
where, 98
whole word, 97
WHOLE_WORD (GPS.Search attribute), 380
width (GPS.Browsers.AbstractItem attribute), 393
window, 59
Windows, 43, 242, 243, 246
windows, 23, 25

bookmarks, 32
call trees, 30
callgraph browser, 30
clipboard, 29
elaboration circularities, 40
entity browser, 41
execution window, 37
files view, 22
filter, 4
learn view, 19
local settings menu, 4
local toolbar, 3
main, 2
preferences assistant, 6
project browser, 38
project view, 14
scenario view, 20
tasks view, 37
welcome dialog, 7
workspace, 3

windows view, 23
with_save_current_window() (in module gps_utils), 416
with_save_excursion() (in module gps_utils), 416
word_added() (GPS.Predefined_Hooks method), 345
words() (in module highlighter.interface), 189
wrench icon, 143
write() (GPS.CommandWindow method), 271
write() (GPS.Console method), 276
write_with_links() (GPS.Console method), 277

X
x (GPS.Browsers.AbstractItem attribute), 393
XMLViewer (class in GPS), 390
xref_db() (in module GPS), 259
xref_updated() (GPS.Predefined_Hooks method), 345

Y
y (GPS.Browsers.AbstractItem attribute), 393
yank, 77
yes_no_dialog, 220
yes_no_dialog() (GPS.MDI static method), 353

Index 449

	Description of the Main Window
	The Workspace
	Common features of the views
	Common features of browsers

	The Preferences Assistant
	The Welcome Dialog
	The Tool Bar
	The omni-search
	The Messages view
	The Locations View
	The Project view
	The Learn view
	The Scenario view
	The Files View
	The Windows view
	The Outline view
	The Clipboard view
	The Call trees view and Callgraph browser
	Call Trees
	Callgraph browser

	The Bookmarks view
	Basic usage: Creating a new bookmark
	Adding more bookmarks
	Organizing bookmarks into groups
	Adding notes
	Add note with drag and drop
	Filtering bookmarks
	Favorite files

	The Python Console
	The OS Shell Console
	The Execution window
	The Tasks view
	The Project Browser
	The Dependency Browser
	The Elaboration Circularities browser
	The Entity browser
	The File Selector

	The Menu Bar
	The File Menu
	The Edit Menu
	The Navigate Menu
	The Find Menu
	The View Menu
	The Code Menu
	The VCS Menu
	The Build Menu
	The Analyze Menu
	The Debug Menu
	The SPARK Menu
	The CodePeer Menu
	The Window Menu
	The Help Menu

	Multiple Document Interface
	Window layout
	Selecting Windows
	Closing Windows
	Splitting Windows
	Floating Windows
	Moving Windows
	Perspectives

	Editing Files
	General Information
	Editing Sources
	Key bindings

	Recording and replaying macros
	Contextual Menus for Editing Files
	Handling of casing
	Refactoring
	Rename Entity
	Name Parameters
	Extract Subprogram

	Using an External Editor
	Using the Clipboard
	Saving Files
	Printing Files

	Source Navigation
	Support for Cross-References
	Ada cross-reference heuristics
	The cross-reference database
	Cross-references and partially compiled projects
	Cross-reference and GNAT runtime

	Contextual Menus for Source Navigation
	Navigating with hyperlinks
	Highlighting dispatching calls

	Project Handling
	Description of the Projects
	Project files and GNAT tools
	Contents of project files

	Supported Languages
	Scenarios and Configuration Variables
	Creating new scenario variables
	Editing existing scenario variables

	Extending Projects
	Description of project extensions
	Creating project extensions
	Adding files to project extensions

	Aggregate projects
	Disabling Editing of the Project File
	The Project Wizard
	The Project Properties Editor
	The Switches Editor

	Searching and Replacing
	Searching
	Replacing
	Searching in current file

	Compilation/Build
	The Target Configuration Editor
	The Targets tree
	The configuration panel
	Background compilations

	The Build Mode
	Working with two compilers
	Interaction with the remote mode

	Debugging
	The Call Stack View
	The Variables View
	The Breakpoint Editor
	The Memory View
	Using the Source Editor when Debugging
	The Assembly Window
	The Debugger Console
	Customizing the Debugger
	Command line interface

	Version Control System
	Setting up projects for version control
	Finding file status (Project view)
	The VCS Perspective
	The Commits view
	Viewing modified files
	Committing files
	Actions in the Commits view
	The Commits view local toolbar

	The History view
	List of all past commits
	Graph of past history
	Details on selected commits

	The Branches view
	Git and the Branches view
	CVS and the Branches view
	Subversion and the Branches view

	The Diff View

	Tools
	Coding Standard
	Visual Comparison
	Code Fixing
	Documentation Generation
	Working With Unit Tests
	The GNATtest Menu
	The Contextual Menu
	Project Properties

	Metrics
	The Metrics Menu
	The Contextual Menu

	Code Coverage
	Coverage Menu
	The Contextual Menu
	The Coverage Report

	Stack Analysis
	The Stack Analysis Menu
	The Contextual Menu
	The Stack Usage Report
	The Stack Usage Editor

	Working in a Cross Environment
	Customizing your Projects
	Debugger Issues

	Using GPS for Remote Development
	Requirements
	Setup the remote servers
	The remote configuration dialog
	Connection settings
	Path settings

	Setup a remote project
	Remote operations
	The remote view
	Loading a remote project

	Limitations

	Customizing and Extending GPS
	Color Themes
	Custom Fonts
	The Key Shortcuts Editor
	Editing Plugins
	Customizing through XML and Python files
	Customization files and plugins
	Defining Actions
	Macro arguments
	Filtering actions
	Adding new menus
	Adding contextual menus
	Adding tool bar buttons
	Binding actions to keys
	Configuring preferences
	Creating themes
	Defining new search patterns
	Defining custom highlighters
	Adding support for new languages
	Defining text aliases
	Alias files
	Defining project attributes
	Adding casing exceptions
	Adding documentation
	Adding custom icons
	Customizing Remote Programming
	Customizing Build Targets and Models
	Customizing Toolchains

	Adding support for new tools
	Defining supported languages
	Defining the default command line
	Defining tool switches
	Executing external tools

	Customization examples
	Menu example
	Tool example

	Scripting GPS
	Scripts
	Scripts and GPS actions
	The GPS Shell
	The Python Interpreter
	Python modules
	Subprogram parameters
	Python FAQ
	Hooks

	The Server Mode
	Adding project templates

	Environment
	Command Line Options
	Environment Variables
	Files
	Reporting Suggestions and Bugs
	Solving Problems

	Scripting API reference for GPS
	Function description
	User data in instances
	Hooks
	Functions
	Classes
	GPS.Action
	GPS.Alias
	GPS.Bookmark
	GPS.BuildTarget
	GPS.Button
	GPS.Clipboard
	GPS.CodeAnalysis
	GPS.Codefix
	GPS.CodefixError
	GPS.Command
	GPS.CommandWindow
	GPS.Completion
	GPS.Console
	GPS.Construct
	GPS.ConstructsList
	GPS.Context
	GPS.Contextual
	GPS.Cursor
	GPS.Debugger
	GPS.DebuggerBreakpoint
	GPS.Editor
	GPS.EditorBuffer
	GPS.EditorHighlighter
	GPS.EditorLocation
	GPS.EditorMark
	GPS.EditorOverlay
	GPS.EditorView
	GPS.Entity
	GPS.Exception
	GPS.File
	GPS.FileLocation
	GPS.FileTemplate
	GPS.Filter
	GPS.GUI
	GPS.HTML
	GPS.Help
	GPS.History
	GPS.Hook
	GPS.Predefined_Hooks
	GPS.Invalid_Argument
	GPS.Language
	GPS.LanguageInfo
	GPS.Libclang
	GPS.Locations
	GPS.Logger
	GPS.MDI
	GPS.MDIWindow
	GPS.MemoryUsageProvider
	GPS.MemoryUsageProviderVisitor
	GPS.Menu
	GPS.Message
	GPS.Missing_Arguments
	GPS.OutlineView
	GPS.OutputParserWrapper
	GPS.Preference
	GPS.PreferencesPage
	GPS.Process
	GPS.Project
	GPS.ProjectTemplate
	GPS.ReferencesCommand
	GPS.Revision
	GPS.Search
	GPS.Search_Result
	GPS.SemanticTree
	GPS.Style
	GPS.SwitchesChooser
	GPS.Task
	GPS.Timeout
	GPS.ToolButton
	GPS.Toolbar
	GPS.Unexpected_Exception
	GPS.VCS2
	GPS.VCS2_Task_Visitor
	GPS.Valgrind
	GPS.Vdiff
	GPS.XMLViewer

	Scripting API reference for GPS.Browsers
	Classes
	GPS.Browsers.AbstractItem
	GPS.Browsers.Diagram
	GPS.Browsers.EditableTextItem
	GPS.Browsers.EllipseItem
	GPS.Browsers.HrItem
	GPS.Browsers.ImageItem
	GPS.Browsers.Item
	GPS.Browsers.Link
	GPS.Browsers.PolylineItem
	GPS.Browsers.RectItem
	GPS.Browsers.Style
	GPS.Browsers.TextItem
	GPS.Browsers.View

	Useful plugins
	User plugins
	The auto_highlight_occurrences.py module
	The dispatching.py module

	Helper plugins
	The gps_utils module
	The gps_utils.highlighter.py module
	The gps_utils.console_process.py module

	Plugins for external tools
	QGen

	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

	Indices and tables
	Python Module Index

