
PolyORB User’s Guide
Version GPL gpl-2014-20140405 (rev. 225650)

2013-12-10

Robert Duff, Jérôme Hugues, Laurent Pautet,
Thomas Quinot, Samuel Tardieu

Copyright c© 2003-2013, Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU Free Documenta-
tion License”, with the Front-Cover Texts being “PolyORB User’s Guide”, and with no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

About This Guide 1

About This Guide

This guide describes the use of PolyORB, a middleware that enables the construction of
distributed Ada applications.

It describes the features of the middleware and related APIs and tools, and details how
to use them to build Ada applications.

What This Guide Contains

This guide contains the following chapters:

• 〈undefined〉 [Introduction to PolyORB], page 〈undefined〉 provides a brief description
of middleware and PolyORB’s architecture.

• 〈undefined〉 [Installation], page 〈undefined〉 details how to configure and install Poly-
ORB on your system.

• 〈undefined〉 [Overview of PolyORB personalities], page 〈undefined〉 enumerates the
different personalities, or distribution mechanisms, PolyORB provides.

• 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 presents the
different steps to build a distributed application using PolyORB.

• 〈undefined〉 [Tasking model in PolyORB], page 〈undefined〉 details the use of tasking
constructs within PolyORB.

• 〈undefined〉 [CORBA], page 〈undefined〉 describes PolyORB’s implementation of
OMG’s CORBA.

• 〈undefined〉 [RT-CORBA], page 〈undefined〉 describes PolyORB’s implementation of
RT-CORBA, the real-time extensions of OMG’s CORBA.

• 〈undefined〉 [DSA], page 〈undefined〉 describes PolyORB’s implementation of the Ada
Distributed Systems Annex.

• 〈undefined〉 [MOMA], page 〈undefined〉 describes PolyORB’s implementation of
MOMA, the Message Oriented Middleware for Ada.

• 〈undefined〉 [GIOP], page 〈undefined〉 describes PolyORB’s implementation of GIOP,
the protocol defined as part of CORBA.

• 〈undefined〉 [SOAP], page 〈undefined〉 describes PolyORB’s implementation of SOAP.

• 〈undefined〉 [Tools], page 〈undefined〉 describes PolyORB’s tools.

• 〈undefined〉 [Conformance to standards], page 〈undefined〉 discusses the conformance
of the PolyORB’s personalities to the CORBA and SOAP standards.

• 〈undefined〉 [References], page 〈undefined〉 provides a list of useful references to com-
plete this documentation.

• 〈undefined〉 [GNU Free Documentation License], page 〈undefined〉 contains the text of
the license under which this document is being distributed.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

• Functions, utility program names, standard names, and classes.

• ‘Option flags’

2 PolyORB User’s Guide

• ‘File Names’, ‘button names’, and ‘field names’.

• Variables.

• Emphasis.

• [optional information or parameters]

• Examples are described by text
and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ”
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt you
are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

Chapter 1: Introduction to PolyORB 3

1 Introduction to PolyORB

1.1 Introduction to distributed systems

A distributed system architecture comprises a network of computers and the software com-
ponents that execute on those computers. Such architectures are commonly used to improve
the performance, reliability, and reusability of complex applications. Typically, there is no
shared address space available to remotely-located components (that is to say, components
running on different nodes of the network), and therefore these components must commu-
nicate using some form of message-passing.

1.1.1 Using OS Network Services

There are several programming techniques for developing distributed applications. These
applications have traditionally been developed using network programming interfaces such
as sockets. Programmers have to perform explicit calls to operating system services, a
task that can be tedious and error-prone. This includes initializing socket connections
and determining peer location, marshalling and unmarshalling data structures, sending and
receiving messages, debugging and testing several programs at the same time, and porting
the application to several platforms to uncover subtle differences between various network
interfaces.

Of course, this communication code can be encapsulated in wrappers to reduce its com-
plexity, but it is clear that most of it can be automatically generated. Message passing
diverts developer’s attention from the application domain. The query and reply scenario is
a classical scheme in distributed applications; using message passing for such a scheme can
be compared to only using the “goto” mechanism in a non-distributed application. This is
considered unacceptable methodology in modern software engineering. A cleaner and more
structured approach consists in using subprograms.

In some respects, network programming can be compared to parallel programming. The
user can decide to split his code into several pieces and to multiplex the execution of threads
himself, using a table-driven model. The scheduling code ends up embedded in the user
code. This solution is error-prone and fragile in regard to any future modification. Relying
on an implementation of threads such as provided in a POSIX operating environment is
a better solution. Relying on language primitives that support concurrency, such as Ada
tasks, is best, as the underlying parallelism support is thus entirely abstracted.

1.1.2 Using a Middleware Environment

A middleware environment is intended to provide high level abstractions in order to easily
develop user applications. Environments like CORBA or Distributed Computing Environ-
ment (DCE) provide a framework to develop client/server applications based on the Remote
Procedure Call model (RPC). The RPC model is inspired by the query and reply scheme.
In rough analogy to a regular procedure call, arguments are pushed onto a stream, along
with some data specifying the remote procedure to be executed. The stream is transmit-
ted over the network to the server. The server decodes the stream, performs the regular
subprogram call locally, and then puts the output parameters into another stream, along
with the exception (if any) raised by the subprogram execution. The server then sends this

4 PolyORB User’s Guide

stream back to the caller. The caller decodes the stream and raises the exception locally if
needed.

CORBA provides the same enhancements to the remote procedure model that object-
oriented languages provide to classical procedural languages. These enhancements in-
clude encapsulation, inheritance, type checking, and exceptions. These features are offered
through an Interface Definition Language (IDL).

The middleware communication framework provides all the machinery to perform, some-
what transparently, remote procedure calls or remote object method invocations. For in-
stance, each CORBA interface communicates through an Object Request Broker (ORB).
A communication subsystem such as an ORB is intended to allow applications to use ob-
jects without being aware of their underlying message-passing implementation. In addition.
the user may also require a number of more complex services to develop his distributed
application. Some of these services are indispensable, for example a location service that
allows clients to reference remote services via high level names (as opposed to a low level
addressing scheme involving transport-specific endpoint addresses such as IP addresses and
port numbers). Other services provide domain-independent interfaces that are frequently
used by distributed applications.

If we return to the multi-threaded programming comparison, the middleware solution
is close to what a POSIX library or a language like Esterel1 would provide for developing
concurrent applications. A middleware framework like DCE is close to a POSIX library in
terms of abstraction levels. Functionalities are very low-level and very complex. CORBA
is closer to Esterel in terms of development process. The control part of the application
can be specified in a description language. The developer then has to fill in automatically
generated source code templates (stubs and skeletons) to build the computational part of the
application. The distribution is a pre-compilation process and the distributed boundaries
are always explicit. Using CORBA, the distributed part is written in IDL and the core of
the application is written in a host language such as C++.

1.1.3 Using a Distributed Language

Rather than defining a new language like the CORBA IDL, an alternative is to extend an
existing programming language with distributed features. The distributed object paradigm
provides a more object-oriented approach to programming distributed systems. The notion
of a distributed object is an extension to the abstract data type that allows the services
provided in the type interface to be called independently of where the actual service is
executed. When combined with object-oriented features such as inheritance and polymor-
phism, distributed objects offer a more dynamic and structured computational environment
for distributed applications.

The Distributed Systems Annex (DSA) of Ada defines several extensions that allow the
user to write a distributed system entirely in Ada. The types of distributed objects, the
services they provide, and the bodies of the remote methods to be executed are all defined in
conventional Ada packages. The Ada model is analogous to the Java/RMI model. In both
languages, the IDL is replaced by well-defined language constructs. Therefore, the language
supports both remote procedure calls and remote object method invocations transparently,
and the semantics of distribution are consistent with the rest of the language.

1 Esterel is an imperative synchronous language designed for the specification and the development of
reactive systems.

Chapter 1: Introduction to PolyORB 5

A program written in such a language is intended to communicate with a program written
in the same language, but this apparent restriction has several useful consequences. The
language can provide more powerful features because it is not constrained by the common
features available in all host languages. In Ada, the user will define a specification of remote
services and implement them exactly as he would for ordinary, non-distributed services. His
Ada environment will compile them to produce a stub file (on the caller side) and a skeleton
file that automatically includes the body of the services (on the receiver side). Creating
objects, obtaining or registering object references or adapting the object skeleton to the
user object implementation are made transparent because the language environment has a
full control over the development process.

Comparing with multi-threaded programming once again, the language extension solu-
tion is equivalent to the solution adopted for tasking facilities in Ada. Writing a distributed
application is as simple as writing a concurrent application: there is no binding considera-
tion and no code to wrap. The language and its run-time system take care of most issues
that would divert the programmer’s attention from the application domain.

1.2 Distribution models and middleware standards

Middleware provides a framework that hides the complex issues of distribution, and offers
the programmer high-level abstractions that allow easy and transparent construction of
distributed applications. A number of different standards exist for creating object-oriented
distributed applications. These standards define two subsystems that enable interaction
between application partitions:

• the API seen by the developer’s applicative objects;

• the protocol used by the middleware environment to interact with other nodes in the
distributed application.

Middleware implementations also offer programming guidelines and development tools to
ease the construction of large heterogeneous distributed systems. Many issues typical to
distributed programming may still arise: application architectural choice, configuration
or deployment. Since there is no “one size fits all” architecture, choosing the adequate
distribution middleware in its most appropriate configuration is a key design point that
dramatically impacts the design and performance of an application.

Consequently, applications need to rapidly tailor middleware to the specific distribution
model they require. A distribution model is defined by the combination of distribution
mechanisms made available to the application. Common examples of such mechanisms are
Remote Procedure Call (RPC), Distributed Objects or Message Passing. A distribution
infrastructure or middleware refers to software that supports one distribution model (or
several), e.g.: OMG CORBA, Java Remote Method Invocation (RMI), the Distributed
Systems Annex of Ada, Java Message Service (MOM).

1.3 The PolyORB generic middleware

Typical middleware implementations for one platform support only one set of such inter-
faces, predefined configuration capabilities and cannot interoperate with other platforms.
In addition to traditional middleware implementations, PolyORB provides an original ar-
chitecture to enable support for multiple interoperating distribution models in a uniform
canvas.

6 PolyORB User’s Guide

PolyORB is a polymorphic, reusable infrastructure for building or prototyping new mid-
dleware adapted to specific application needs. It provides a set of components on top of
which various instances can be elaborated. These instances (or personalities) are views on
PolyORB facilities that are compliant to existing standards, either at the API level (appli-
cation personality) or at the protocol level (protocol personality). These personalities are
mutually exclusive views of the same architecture.

The decoupling of application and protocol personalities, and the support for multiple
simultaneous personalities within the same running middleware, are key features required
for the construction of interoperable distributed applications. This allows PolyORB to
communicate with middleware that implements different distribution standards: PolyORB
provides middleware-to-middleware interoperability (M2M).

PolyORB’s modularity allows for easy extension and replacement of its core and per-
sonality components, in order to meet specific requirements. In this way, standard or
application-specific personalities can be created in a streamlined process, from early stage
prototyping to full-featured implementation. The PolyORB architecture also allows the
automatic, just-in-time creation of proxies between incompatible environments.

You may find additional technical literature on PolyORB, including research papers and
implementation notes, on the project websites: http://libre.adacore.com/libre/tools/polyorb/
and http://polyorb.objectweb.org/.

Note: PolyORB is the project formerly known as DROOPI, a Distributed Reusable
Object-Oriented Polymorphic Infrastructure

http://libre.adacore.com/libre/tools/polyorb/
http://polyorb.objectweb.org/

Chapter 2: Installation 7

2 Installation

2.1 Supported Platforms

PolyORB has been compiled and successfully tested on the following platforms:

• AIX

• FreeBSD

• HP-UX

• Linux

• MacOS X

• Solaris

• Tru64

• VxWorks

• Windows

Note: PolyORB should compile and run on every target for which GNAT and the
GNAT.Sockets package are available.

2.2 Build requirements

GNU tar is required to unpack PolyORB source packages.

Ada compiler:

• GNAT Pro 6.2.* or later

• GNAT GPL 2009 or later

• FSF GCC 4.4 or later

For builds for cross targets, both a native and a cross compiler are required, as some
tools (like an IDL-to-Ada compiler) are meant for use on the build host.

A Python interpreter is required for installation.

Optional:

• (Only for older versions of GNAT, and only if you want to build the CORBA application
personality): A C++ compiler. The OMG IDL specification mandates that IDL source
files be preprocessed according to standard C++ preprocessing rules. Newer versions
of GNAT provide an integrated IDL preprocessor. This feature is detected and used
automatically. However, for older versions of GNAT, PolyORB relies on an external
preprocessor provided by a suitable C++ compiler. Please refer to the documentation
of your particular version of GNAT to know if it supports this feature.

• XML/Ada (http://libre.adacore.com/libre/tools/xmlada/) if you want to build
the SOAP protocol personality.

Note: per construction, the macro configure used to find your GNAT compiler looks first
for the executable gnatgcc, then adagcc and finally gcc to find out which Ada compiler to
use. You should be very careful with your path and executables if you have multiple GNAT
versions installed. See the explanation below on the ADA environment variable if you need
to override the default guess.

http://libre.adacore.com/libre/tools/xmlada/

8 PolyORB User’s Guide

2.3 Build instructions

To compile and install PolyORB, execute:

$./configure [some options]

$ make

$ make install

This will install files in standard locations. If you want to choose a prefix other than
‘/usr/local’, give configure a ‘--prefix=whereveryouwant’ argument.

NOTE: you must use GNU make (version 3.80 or later) to build PolyORB.

2.4 Additional instructions for cross platforms

The ‘RANLIB’ environment variable must be set to the path of the cross ‘ranlib’ prior to
running ‘configure’ with the appropriate --target option.

For example, for VxWorks 5 execute:

$ export RANLIB=ranlibppc

$./configure --target=powerpc-wrs-vxworks [some options]

$ make

$ make install

Only one PolyORB installation (native or cross) is currently possible with a given --

prefix. If both a native and a cross installation are needed on the same machine, distinct
prefixes must be used.

Use ./configure --help for a full list of available configuration switches.

2.5 Building the documentation and PolyORB’s examples

PolyORB’s documentation and examples are built separately.

To build the examples, run make examples in the root directory. The build process
will only build examples that correspond to the personalities you configured. Note that
some examples require the CORBA COS Naming and IR services to be enabled (using
--enable-corba-services="naming ir" on the configure command line).

Similarly, to build the documentation, run make docs.

You may install PolyORB’s documentation in a standard location using make install.

2.6 Build Options

Available options for the ’configure’ script include:

• ‘--with-appli-perso="..."’: application personalities to build

Available personalities: CORBA, DSA, MOMA

e.g. ‘--with-appli-perso="corba moma"’ to build both the CORBA and MOMA
personalities

• ‘--with-proto-perso="..."’: protocol personalities to build

Available personalities: GIOP, SOAP

e.g. ‘--with-proto-perso="giop soap"’ to build both the GIOP and SOAP person-
alities

Chapter 2: Installation 9

• ‘--with-idl-compiler="..."’: select IDL compiler

Available IDL compilers: iac (default), idlac

e.g. ‘--with-idl-compiler=’’iac’’’ to build iac

• ‘--with-corba-services="..."’: CORBA COS services to build

Available services: event, ir, naming, notification, time

e.g. ‘--with-corba-services="event naming"’ to build only COS Event and COS
Naming.

By default, only the CORBA and GIOP personalities are built, and no CORBA Services
are built.

• ‘--with-openssl’: build SSL support and SSL dependent features, including the
IIOP/SSLIOP personality

• ‘--help’: list all options available

• ‘--enable-shared’: build shared libraries.

• ‘--enable-debug’: enable debugging information generation and supplementary run-
time checks. Note that this option has a significant space and time cost, and is not
recommended for production use.

2.7 Compiler, Tools and Run-Time libraries Options

The following environment variables can be used to override configure’s guess at what
compilers to use:

• CC: the C compiler

• ADA: the Ada compiler (e.g. gcc, gnatgcc or adagcc)

• CXXCPP, CXXCPPFLAGS: the preprocessor used by the IDL-to-Ada compiler (only when
setting up the CORBA application personality). CORBA specifications require this
preprocessor to be compatible with the preprocessing rules defined in the C++ pro-
gramming language specifications.

For example, if you have two versions of GNAT installed and available in your PATH, and
configure picks the wrong one, you can indicate what compiler should be used with the
following (assuming Bourne shell syntax):

$ ADA=/path/to/good/compiler/gcc ./configure [options]

PolyORB will be compiled with GNAT build host’s configuration, including run-time
library. You may override this setting using ADA_INCLUDE_PATH and ADA_OBJECTS_PATH

environment variables. See GNAT User’s Guide for more details.

You can add specific build options to GNAT using the EXTRA_GNATMAKE_FLAGS variable:

$ EXTRA_GNATMAKE_FLAGS=--RTS=rts-sjlj ./configure [options]

You can also pass compiler-only flags using the ADAFLAGS variable.

NOTE: Developers building PolyORB from the version control repository will need to
rebuild the configure script and other files. To do so, from the top-level source directory,
run the support/reconfig script after each update from the repository. In addition to the
requirements above, developers will need autoconf 2.57 or newer, automake 1.6.3 or newer,
and libtool 1.5.8 or newer.

10 PolyORB User’s Guide

2.8 Platform notes

Solaris (all versions):

/usr/ucb/tr and /usr/bin/tr are not suitable to build PolyORB. Your PATH must be
set to that tr(1) is /use/xpg4/bin/tr or GNU tr. (However note that if you have GNU make
in /usr/local/bin, then /usr/xpg4/bin must occur after /usr/local/bin in your PATH, since
/usr/xpg4/bin/make is not suitable to build PolyORB.

So, assuming GNU make is installed in /usr/local/bin, a suitable PATH setting would
be: PATH=/usr/local/bin:/usr/xpg4/bin:/usr/ccs/bin:/usr/bin.

Tru64 5.1A:

The default maximal data segment size may not be sufficient to compile PolyORB. If a
GNAT heap exhausted error message occurs during build, try raising this limit using:

ulimit -d unlimited

AIX 5.2:

PolyORB must be compiled with the -mminimal-toc compiler switch. This is taken care
of automatically by the PolyORB configure script.

The ’ulimit’ command may be needed as for Tru64 (see above).

HP-UX 11.00:

The version of install(1) from /opt/imake/bin on HP-UX is not suitable for installing
PolyORB. Make sure that /opt/imake/bin is not on the PATH when building and installing
PolyORB.

Chapter 3: Overview of PolyORB personalities 11

3 Overview of PolyORB personalities

A personality is an instantiation of specific PolyORB components. It provides the mecha-
nisms specified by a distribution model, e.g. an API, a code generator or a protocol stack.

This section provides a brief overview of existing personalities.

Note: some of these personalities are available only through PolyORB’s repository.

3.1 Application personalities

Application personalities constitute the adaptation layer between application components
and middleware. They provide APIs and/or a code generator to register application entities
with PolyORB’s core, and interoperate with the core to allow the exchange of requests with
remote entities.

3.1.1 CORBA

CORBA is the OMG specification of a Distributed Object Computing (DOC) distribution
model ([OMG04]). It is now a well-known and well-established specification, used in a wide
range of industrial applications.

PolyORB provides a CORBA-compatible implementation based on a mapping of the
IDL language version 1.2 described in [OMG01] and CORBA core specifications. PolyORB
also provides an implementation of various additional specifications described by the OMG,
including COS Services: COS Naming, Notification, Event, Time, and additional spec-
ifications: RT-CORBA, PortableInterceptors, DynamicAny.

3.1.2 Distributed Systems Annex of Ada (DSA)

The Distributed Systems Annex of Ada (DSA) [ISO06] is a normative part of the language
specification. It was first introduced in the “Ada 95” revision of the language ([ISO95]). It
describes remote invocation schemes applied to most language constructs.

3.1.3 Message Oriented Middleware for Ada (MOMA)

MOMA (Message Oriented Middleware for Ada) provides message passing mechanisms. It
is an Ada adaptation of Sun’s Java Message Service (JMS) [SUN99], a standardized API
for common message passing models.

3.2 Protocol personalities

Protocol personalities handle the mapping of requests (representing interactions between
application entities) onto messages exchanged through a communication network, according
to a specific protocol.

3.2.1 GIOP

GIOP is the transport layer of the CORBA specifications. GIOP is a generic protocol. This
personality implements GIOP versions from 1.0 to 1.2 along with the CDR representation
scheme to map data types between the neutral core layer and CDR streams. It also provides
the following dedicated instances:

• IIOP supports synchronous request semantics over TCP/IP,

12 PolyORB User’s Guide

• IIOP/SSIOP supports synchronous request semantics using SSL sockets,

• MIOP instantiation of GIOP enables group communication over IP multicast,

• DIOP relies on UDP/IP communications to transmit one-way requests only.

3.2.2 SOAP

The SOAP protocol [W3C03] enables the exchange of structured and typed information
between peers. It is a self-describing XML document [W3C03] that defines both its data
and semantics. Basically, SOAP with HTTP bindings is used as a communication protocol
for Web Services.

Chapter 4: Building an application with PolyORB 13

4 Building an application with PolyORB

4.1 Compile-time configuration

The user may configure some elements of a PolyORB application at compile-time.

4.1.1 Tasking runtimes

PolyORB provides several tasking runtimes. The user may select the most appropriate one,
depending on application requirements. The tasking runtimes determine the constructs
PolyORB may use for its internal synchronizations.

• No_Tasking: There is no dependency on the Ada tasking runtime, middleware is mono-
task.

• Full_Tasking: Middleware uses Ada tasking constructs, middleware can be configured
for multi-tasking.

• Ravenscar : Middleware uses Ada tasking constructs, with the limitations of the
Ravenscar profile [DB98]. Middleware can be configured for multi-tasking.

See 〈undefined〉 [Tasking model in PolyORB], page 〈undefined〉 for more information on
this point.

4.1.2 Middleware tasking policies

PolyORB provides several tasking policies. A tasking policy defines how tasks are used by
the middleware to process incoming requests.

• No_Tasking: There is only one task in middleware, processing all requests.

• Thread_Per_Session: One task monitors communication entities. One task is spawned
for each active connection. This task handles all incoming requests on this connection.

• Thread_Per_Request: One task monitors communication entities. One task is spawned
for each incoming request.

• Thread_Pool: A set of tasks cooperate to handle all incoming requests.

See 〈undefined〉 [Tasking model in PolyORB], page 〈undefined〉 for more information on
this point.

4.1.3 Sample files

PolyORB provides a set of predefined setup packages. You must ‘with’ one of them in your
application node to activate the corresponding setup.

• PolyORB.Setup.No_Tasking_Client: a client node, without any tasking support, con-
figured to use all protocol personalities built with PolyORB. Note that this configura-
tion should not be used with multiple application tasks.

• PolyORB.Setup.Thread_Pool_Client: a client node, with tasking enabled, configured
to use all protocol personalities built with PolyORB. This configuration places no
restriction on the use of tasking by application code. Middleware tasking policy is
Thread_Pool.

• PolyORB.Setup.Ravenscar_TP_Server: a server node, with tasking enabled, config-
ured to use all protocol personalities built with PolyORB. Middleware tasking runtime
follows Ravenscar’s profile restrictions. Middleware tasking policy is Thread_Pool.

14 PolyORB User’s Guide

• PolyORB.Setup.Thread_Per_Request_Server: a server node, with tasking enabled,
configured to use all protocol personalities built with PolyORB. Middleware tasking
policy is Thread_Per_Request.

• PolyORB.Setup.Thread_Per_Session_Server: a server node, with tasking enabled,
configured to use all protocol personalities built with PolyORB. Middleware tasking
policy is Thread_Per_Session.

• PolyORB.Setup.Thread_Pool_Server: a server node, with tasking enabled, configured
to use all protocol personalities built with PolyORB. Middleware tasking policy is
Thread_Pool.

To use one of these configurations, add a dependency on one of these packages, for example,
with PolyORB.Setup.Thread_Pool_Server;. The elaboration of the application (based
on Ada rules) and the initialization of the partition (based on the application personalities
mechanisms) will properly set up your application.

4.2 Run-time configuration

The user may configure some elements of a PolyORB application at run time.

Using the default configurations provided by PolyORB, the parameters are read in the
following order: command line, environment variables, configuration file. PolyORB will use
the first value that matches the searched parameter.

4.2.1 Using a configuration file

A configuration file may be used to configure a PolyORB node. A sample configuration file
may be found in ‘src/polyorb.conf’.

The syntax of the configuration file is:

• empty lines and lines that have a ’#’ in column 1 are ignored;

• sections can be started by lines of the form [SECTION-NAME];

• variable assignments can be performed by lines of the form VARIABLE-NAME = VALUE.

Any variable assignment is local to a section.

Assignments that occur before the first section declaration are relative to section [en-
vironment]. Section and variable names are case sensitive.

Furthermore, each time a value starts with "file:", the contents of the file are used
instead.

Default search path for ‘polyorb.conf’ is current directory. Environment variable
POLYORB_CONF may be used to set up information on configuration file.

PolyORB’s configuration file allows the user to

1. enable/disable the output of debug information

2. set up default reference on naming service

3. select the default protocol personality

4. set up each protocol personality

The configuration file is read once when running a node, during initialization. Look in the
sample configuration file ‘src/polyorb.conf’ to see the available sections and variables.

Chapter 4: Building an application with PolyORB 15

4.2.2 Using environment variables

A variable Var.Iable in section [Sec] can be overridden by setting environment variable
"POLYORB_SEC_VAR_IABLE".

4.2.3 Using the command line

PolyORB allows to set up configuration variables on the command line. The syntax is close
to the one described in configuration files. A variable Var.Iable in section [Sec] can be
overridden with flag --polyorb-<sec>-<var>-<iable>[=<value>].

4.2.4 Using a source file

Many embedded systems do not have a filesystem or a shell, so the previous run-time
configuration methods cannot be used on these targets. On these platforms, a PolyORB
node can also be configured using the API of package PolyORB.Parameters.Static. An
example configuration file may be found in ‘examples/static/po_static_conf.ads’.

An array of PolyORB parameters of type Static_Parameters_Array is first declared
containing a list of pairs of Variable and Value strings. The syntax is close to the one
described in configuration files. A variable Var.Iable in section [Sec] is specified as the
pair of strings "[sec]var.iable", "<value>".

There is no need to with this ‘po_static_conf.ads’ in the application source code, the
only requirement is that the array is exported with the external name "__polyorbconf_

optional". This allows to modify PolyORB parameters without recompiling the applica-
tion, just relinking it. For example:

$ gnatmake -c po_static_conf.ads ‘polyorb-config‘

$ gnatmake -b -l server.adb ‘polyorb-config‘ -largs po_static_conf.o

Note the -l flag to gnatmake for linking only, and the need to specify to the linker the
object file with the array using -largs if no package withs it.

It should be noticed that this static array of parameters is read at elaboration time only,
this API cannot be used to modify the PolyORB configuration at run-time.

4.2.5 Macros

If PolyORB is compiled with GNATCOLL support, macros can be used in the configuration
file, and will be expanded automatically.

Macros can be defined by setting parameters in the [macros] section of the runtime
configuration. The following macros are predefined:

hostname The local host name

Macro references can appear anywhere in runtime parameter values and are of the form
$macro-name or ${macro-name}.

For example, in order for a single setting to control all GIOP-based binding modules,
one can specify:

[macros]

giop_enable=true

... or false

[modules]

binding_data.iiop=$giop_enable

16 PolyORB User’s Guide

binding_data.iiop.ssliop=$giop_enable

binding_data.diop=$giop_enable

binding_data.uipmc=$giop_enable

4.3 Setting up protocol personalities

PolyORB allows the user to activate some of the available protocol personalities and to
set up the preferred protocol. Protocol-specific parameters are defined in their respective
sections.

4.3.1 Activating/Deactivating protocol personalities

Protocol activation is controlled by PolyORB’s configuration file.

The section [access_points] controls the initialization of access points. An access
point is a node entry point that may serve incoming requests.

[access_points]

soap=enable

iiop=enable

diop=disable

uipmc=disable

This example activates SOAP and IIOP, but deactivates DIOP and MIOP.

The section [modules] controls the activation/deactivation of some modules within
PolyORB. It is used to enable bindings to remote entities.

[modules]

binding_data.soap=enable

binding_data.iiop=enable

binding_data.diop=disable

binding_data.uipmc=disable

This example enables the creation of bindings to remote objects using SOAP or IIOP.
Objects cannot be reached using DIOP or UIPMC.

Note: by default, all configured personalities are activated.

4.3.2 Configuring protocol personality preferences

The user may affect a preference to each protocol personality. The protocol with the higher
preference will be selected among possible protocols to send a request to a remote node.

See polyorb.binding_data.<protocol>.preference in section [protocol] to set up
protocol’s preference.

Possible protocols are defined as the protocols available on the remote node, as advertised
in its object reference. IOR or corbaloc references may support multiple protocols; URI
references support only one protocol.

Each protocol supports a variety of configuration parameters, please refer to the proto-
cols’ sections for more details.

4.4 Activating debugging traces

To activate the output of debug information, you must first configure and compile PolyORB
with debugging traces activated (which is the default, unless your build is configured with
--enable-debug-policy=ignore).

Chapter 4: Building an application with PolyORB 17

To output debugging traces on a selected package, create a configuration file with a
[log] section and the name of the packages for which you want debug information:

Sample configuration file, output debug for PolyORB.A_Package

[log]

polyorb.a_package=debug

Note that some packages may not provide such information. See the sample configuration
file ‘src/polyorb.conf’ for the complete list of packages that provide traces.

A default logging level may be specified using a line of the form
default=<level>

Time stamps may optionally be prepended to every generated trace. This is enabled
using:

timestamp=true

4.5 Tracing exceptions

To trace exception propagation in PolyORB’s source code, activate debugging traces for
package PolyORB.Exceptions.

4.6 polyorb.gpr

This section describes how to build your program using project files. An alternative method,
using polyorb-config, is described in the following section. polyorb-config is intended
primarily for Unix-like systems. The project-file method will work on all supported systems.

To build your application, create a project file as usual. Import the polyorb.gpr project
by putting with "polyorb"; in your project file.

Set the ADA PROJECT PATH environment variable to point to the directory
containing polyorb.gpr, which is <prefix>/lib/gnat. If SOAP is being used,
ADA PROJECT PATH must also be set so we can find xmlada.gpr.

If your project file is my_proj.gpr, you can build it by saying:
$ gnatmake -P my_proj

See the GNAT User’s Guide and the GNAT Reference Manual for more information on
project files.

4.7 polyorb-config

polyorb-config returns path and library information on PolyORB’s installation. It can
be used on the gnatmake command line, like this:

$ gnatmake my_program.adb ‘polyorb-config‘

NAME

polyorb-config - script to get information about the installed version

of PolyORB.

SYNOPSIS

polyorb-config [--prefix[=DIR]] [--exec-prefix[=DIR]] [--version|-v]

[--config] [--libs] [--cflags] [--idls] [--help]

DESCRIPTION

18 PolyORB User’s Guide

polyorb-config is a tool that is used to determine the compiler and

linker flags that should be used to compile and link programs that use

PolyORB.

OPTIONS

polyorb-config accepts the following options:

--prefix[=DIR]

Output the directory in which PolyORB architecture-independent

files are installed, or set this directory to DIR.

--exec-prefix[=DIR]

Output the directory in which PolyORB architecture-dependent

files are installed, or set this directory to DIR.

--version

Print the currently installed version of PolyORB on the stan-

dard output.

--config

Print the configuration of the currently installed version of

PolyORB on the standard output.

--libs Print the linker flags that are necessary to link a PolyORB

program.

--cflags

Print the compiler flags that are necessary to compile a Poly-

ORB program.

--idls

Output flags to set up path to CORBA’s IDL for idlac.

--with-appli-perso=P,P,P

Restrict output to only those flags relevant to the listed

applicative personalities.

--with-proto-perso=P,P,P

Restrict output to only those flags relevant to the listed

protocol personalities.

--with-corba-services=S,S,S

Restrict output to only those flags relevant to the listed

services.

--help Print help message.

Chapter 5: Tasking model in PolyORB 19

5 Tasking model in PolyORB

5.1 PolyORB Tasking runtimes

PolyORB may use any of three different tasking runtimes to manage and synchronize tasks,
if any. Tasking runtime capabilities are defined in the Ada Reference Manual [ISO06].

The choice of a specific tasking runtime is a compile-time parameter, 〈undefined〉 [Task-
ing runtimes], page 〈undefined〉 for more details on their configuration.

5.1.1 Full tasking runtime

Full tasking runtime refers to the configuration in which there are dependencies on the
tasking constructs defined in chapter 9 of [ISO06]. It makes use of all capabilities defined
in this section to manage and synchronize tasks.

In this configuration, a PolyORB application must be compiled and linked with a tasking-
capable Ada runtime.

5.1.2 No tasking runtime

No tasking runtime refers to the configuration in which there is no dependency on tasking
constructs. Thus, no tasking is required.

In this configuration, a PolyORB application may be compiled and linked with a tasking-
capable Ada runtime or a no-tasking Ada runtime.

5.1.3 Ravenscar tasking runtime

Ravenscar tasking runtime refers to the configuration in which tasking constructs are com-
pliant with the Ravenscar tasking restricted profile.

In this configuration, a PolyORB application may be compiled and linked with a tasking-
capable Ada runtime or a Ravenscar Ada runtime.

To configure tasking constructs used by PolyORB, one must instantiate the
PolyORB.Setup.Tasking.Ravenscar generic package shown below to set up tasks and
protected objects used by PolyORB core.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . S E T U P . T A S K I N G . R A V E N S C A R --

-- --

-- S p e c --

-- --

-- Copyright (C) 2002-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

20 PolyORB User’s Guide

-- --

-- As a special exception under Section 7 of GPL version 3, you are granted --

-- additional permissions described in the GCC Runtime Library Exception, --

-- version 3.1, as published by the Free Software Foundation. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

-- You should instantiate this package to set up a ravenscar profile.

with System;

with PolyORB.Tasking.Profiles.Ravenscar.Threads.Annotations;

with PolyORB.Tasking.Profiles.Ravenscar.Threads;

with PolyORB.Tasking.Profiles.Ravenscar.Mutexes;

with PolyORB.Tasking.Profiles.Ravenscar.Condition_Variables;

generic
Number_Of_Application_Tasks : Integer;

-- Number of tasks created by the user.

Number_Of_System_Tasks : Integer;

-- Number of tasks created by the PolyORB run-time library.

Number_Of_Conditions : Integer;

-- Number of preallocated conditions.

Number_Of_Mutexes : Integer;

-- Number of preallocated mutexes.

Task_Priority : System.Priority;

-- Priority of the tasks of the pool.

Storage_Size : Natural;

-- Stack size of the system tasks.

package PolyORB.Setup.Tasking.Ravenscar is

package Threads_Package is
new PolyORB.Tasking.Profiles.Ravenscar.Threads

(Number_Of_Application_Tasks,

Number_Of_System_Tasks,

Task_Priority,

Storage_Size);

package Thread_Annotations_Package is new Threads_Package.Annotations;

package Conditions_Package is
new PolyORB.Tasking.Profiles.Ravenscar.Condition_Variables

(Threads_Package,

Chapter 5: Tasking model in PolyORB 21

Number_Of_Conditions);

package Mutexes_Package is
new PolyORB.Tasking.Profiles.Ravenscar.Mutexes

(Threads_Package,

Number_Of_Mutexes);

end PolyORB.Setup.Tasking.Ravenscar;

5.2 PolyORB ORB Tasking policies

PolyORB ORB Tasking policies control the creation of tasks to process all middleware
internal jobs, e.g. request processing, I/O monitoring.

Note: there is a dependency between ORB Tasking policies, and the runtime used, as detailed
below.

5.2.1 No Tasking

Under the No Tasking ORB policy, no tasks are created within the middleware instance: it
uses the environment task to process all jobs. Note that this policy is not thread safe and
is compatible with the No tasking runtime only.

5.2.2 Thread Pool

Under the Thread Pool ORB policy, the middleware creates a pool of threads during ini-
tialization of PolyORB. This pool processes all jobs. The number of tasks in the thread
pool can be configured by three parameters in the [tasking] configuration section.

• min_spare_threads indicates the number of tasks created at startup.

• max_spare_threads is a ceiling. When a remote subprogram call is completed, its
anonymous task is deallocated if the number of unused tasks already in the pool is
greater than the ceiling. If not, then the task is queued in the pool.

• max_threads indicates the maximum number of tasks in the pool.

See 〈undefined〉 [PolyORB Tasking configuration], page 〈undefined〉, for more informa-
tion on how to configure the number of tasks in the thread pool.

5.2.3 Thread Per Session

Under the Thread Per Session ORB policy, the middleware creates one task when a new
session (one active connection) is opened. The task terminates when the session is closed.

5.2.4 Thread Per Request

Under the Thread Per Request ORB policy, the middleware creates one task per incoming
request. The task terminates when the request is completed.

5.3 PolyORB Tasking configuration

The following parameters allow the user to set up some of the tasking parameters.

###

Parameters for tasking

22 PolyORB User’s Guide

#

[tasking]

Default storage size for all threads spawned by PolyORB

#storage_size=262144

Number of threads by Thread Pool tasking policy

#min_spare_threads=4

#max_spare_threads=4

#max_threads=4

5.4 PolyORB ORB Controller policies

The PolyORB ORB Controller policies are responsible for the management of the global
state of the middleware: they assign middleware internal jobs, or I/Os monitoring to mid-
dleware tasks.

ORB Controller policies grant access to middleware internals and affect one action for
each middleware task. They ensure that all tasks work concurrently in a thread-safe manner.

5.4.1 No Tasking

The No Tasking ORB Controller policy is dedicated to no-tasking middleware configura-
tions; the middleware task executes the following loop: process internal jobs, then monitor
I/Os.

5.4.2 Workers

The Workers ORB Controller policy is a simple controller policy: all tasks are equal, they
may alternatively and randomly process requests or wait for I/O sources.

Note: this is the default configuration provided by PolyORB sample setup files, See 〈un-
defined〉 [Sample files], page 〈undefined〉.

5.4.3 Half Sync/Half Async

The Half Sync/Half Async ORB Controller policy implements the “Half Sync/Half Async”
design pattern: it discriminates between one thread dedicated to I/O monitoring that queue
middleware jobs; another pool of threads dequeue jobs and process them.

Note: this pattern is well-suited to process computation-intensive requests.

5.4.4 Leader/Followers

The Leader/Followers ORB Controller policy implements the “Leader/Followers ” design
pattern: multiple tasks take turns to monitor I/O sources and then process requests that
occur on the event sources.

Note: this pattern is adapted to process a lot of light requests.

5.5 PolyORB ORB Controller configuration

The following parameters allow the user to set up parameters for ORB Controllers.

###

Parameters for ORB Controllers

Chapter 5: Tasking model in PolyORB 23

#

[orb_controller]

Interval between two polling actions on one monitor

#polyorb.orb_controller.polling_interval=0

Timeout when polling on one monitor

#polyorb.orb_controller.polling_timeout=0

Chapter 6: CORBA 25

6 CORBA

6.1 What you should know before Reading this section

This section assumes that the reader is familiar with the CORBA specifications described
in [OMG04] and the IDL-to-Ada mapping defined in [OMG01].

6.2 Installing CORBA application personality

Ensure PolyORB has been configured and then compiled with the CORBA application
personality. See 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 for
more details on how to check installed personalities.

To build the CORBA application personality, see 〈undefined〉 [Installation], page 〈unde-
fined〉.

6.3 IDL-to-Ada compiler

PolyORB provides two IDL-to-Ada compilers:

1. iac is the new, optimized PolyORB IDL-to-Ada compiler.

2. idlac is the legacy PolyORB IDL-to-Ada compiler,

6.3.1 Usage of iac

iac is PolyORB’s new IDL-to-Ada compiler. It supports many command line parameters to
control code generation optimizations such as use of static hashing for deterministic request
dispatching, and optimized GIOP marshalling for CORBA applications.

NAME

iac - PolyORB’s IDL-to-Ada compiler

SYNOPSIS

iac [options] file [-cppargs args...]

DESCRIPTION

iac is an IDL-to-Ada compiler, compliant with version 1.2 of the

‘‘Ada Language Mapping Specification’’ produced by the OMG.

OPTIONS

iac accepts the following options:

-h Print this help message, and do nothing else

file is the name of the .idl file (.idl suffix optional)

-E Preprocess only

-k Keep temporary files

-o DIR Output directory (DIR must exist)

-p Produce source on standard output

-q Quiet mode

-dm Generate debug messages when analyzing scopes

26 PolyORB User’s Guide

-df Dump the frontend tree (the IDL tree)

-cppargs Pass arguments to the C++ preprocessor

-I <dir> Shortcut -cppargs -I directory. Use this flag

for the imported entities

-nocpp Do not preprocess input

-gnatW8 Use UTF-8 character encoding in Ada output.

(Default is Latin-1.)

-<lang> Generate code for one of the following languages:

types Generate a list of all types present in the IDL file

-p Print the list generated

ada (default) Generate Ada source code

-i Generate implementation packages

-c Generate code for client side only

-s Generate code for server side only

-d Generate delegation package (defunct)

-ir Generate code for interface repository

-noir Do not generate code for interface repository (default)

-hc Minimize CPU time in perfect hash tables in skels

-hm Minimize memory use in perfect hash tables in skels

This is the default.

-rs Use the SII/SSI to handle requests

-rd Use the DII/DSI to handle requests (default)

-da Dump the Ada tree

-db Generate only the package bodies

-ds Generate only the package specs

-dw Output the withed entities

-dt Output tree warnings

-di Generate code for imported entities

idl Dump parsed IDL file

-b n Base to output integer literals

As a default (zero) use base from input

-e Expand IDL Tree

-df Dump IDL Tree (may be used in conjunction with -e

to dump the expanded IDL tree)

-di Output IDL code of imported entities (may be

used in conjunction with -e to output the

expanded IDL code)

EXIT STATUS

iac returns one of the following values upon exit:

0 Successful completion

1 Usage error

2 Illegal IDL specification

iac creates several files :

• myinterface.ads, myinterface.adb : these files contain the mapping for user defined
types (client and server side).

Chapter 6: CORBA 27

• myinterface-impl.ads, myinterface-impl.adb : these files are to be filled in by the
user. They contain the implementation of the server. They are generated only if the -i
flag is specified.

• myinterface.ads, myinterface.adb : these files contain the client stubs for the in-
terface.

• myinterface-skel.ads, myinterface-skel.adb : these files contain the server-side
skeletons for the interface.

• myinterface-helper.ads, myinterface-helper.adb : these files contain subpro-
grams to marshal data into CORBA Any containers.

• myinterface-ir_info.ads, myinterface-ir_info.adb : these files contain code for
registering IDL definitions in the CORBA Interface Repository. They are generated
only if the ’-ir’ flag is specified.

• myinterface-cdr.ads, myinterface-cdr.adb : these files contain code for optimized
CDR marshalling of GIOP messages. They are generated only if the ’-rs’ flag is
specified.

6.3.2 Usage of idlac

idlac is PolyORB’s IDL-to-Ada compiler.

NAME

idlac - PolyORB’s IDL-to-Ada compiler

SYNOPSIS

idlac [-Edikpqv] [-[no]ir] [-gnatW8] [-o DIR] idl_file [-cppargs ...]

DESCRIPTION

idlac is an IDL-to-Ada compiler, compliant with version 1.2 of the

‘‘Ada Language Mapping Specification’’ produced by the OMG.

OPTIONS

idlac accepts the following options:

-E Preprocess only.

-d Generate delegation package.

-i Generate implementation template.

-s Generate server side code.

-c Generate client side code.

-k Keep temporary files.

-p Produce source on standard output.

-q Be quiet (default).

-v Be verbose.

-ir Generate code for interface repository.

28 PolyORB User’s Guide

-noir Don’t generate code for interface repository (default).

-gnatW8

Use UTF8 character encoding

-o DIR Specify output directory

-cppargs ARGS

Pass ARGS to the C++ preprocessor.

-I dir Shortcut for -cppargs -I dir.

EXIT STATUS

idlac returns one of the following values upon exit:

0 Successful completion

1 Usage error

2 Illegal IDL specification

idlac creates several files :

• myinterface.ads, myinterface.adb : these files contain the mapping for user defined
types (client and server side).

• myinterface-impl.ads, myinterface-impl.adb : these files are to be filled in by the
user. They contain the implementation of the server. They are generated only if the -i
flag is specified.

• myinterface.ads, myinterface.adb : these files contain the client stubs for the in-
terface.

• myinterface-skel.ads, myinterface-skel.adb : these files contain the server-side
skeletons for the interface.

• myinterface-helper.ads, myinterface-helper.adb : these files contain subpro-
grams to marshal data into CORBA Any containers.

• myinterface-ir_info.ads, myinterface-ir_info.adb : these files contain code for
registering IDL definitions in the CORBA Interface Repository. They are generated
only if the ’-ir’ flag is specified.

6.3.3 Difference between idlac and iac

This section lists the main differences between idlac and iac

• iac is backward compatible with idlac, but lacks the following feature:

1. generation of delegation files.

iac implements additional name clash resolution rules. When the name of an IDL
operation clashes with a primitive operation of Ada.Finalization.Controlled (of which
CORBA.Object.Ref is a derived type), it is prefixed with "IDL " in generated sources.

6.4 Resolving names in a CORBA application

PolyORB implements the CORBA COS Naming service.

Chapter 6: CORBA 29

6.4.1 po_cos_naming

po_cos_naming is a standalone server that supports the CORBA COS Naming specification.
When launched, it returns its IOR and corbaloc, which can then be used by other CORBA
applications.

If you want po_cos_naming to return the same IOR or corbaloc at each startup, you
must set a default listen port for the protocol personalities you use. See 〈undefined〉 [Con-
figuring protocol personality preferences], page 〈undefined〉 for more details.

po_cos_naming can output its IOR directly to a file using the -file <filename> flag.
This, in conjonction with the ’file://’ naming scheme provided by CORBA, provides a
convenient way to store initial references to the Naming Service.

Usage: po_cos_naming

-file <filename> : output COS Naming IOR to ’filename’

-help : print this help

[PolyORB command line configuration variables]

6.4.2 Registering the reference to the COS Naming server

You have two ways to register the reference to the root context of the COS Naming server
the application will use:

• Setting up the name_service entry in the [corba] section in your configuration file,
name_service is the IOR or corbaloc of the COS Naming server to use. See 〈unde-
fined〉 [Using a configuration file], page 〈undefined〉 for more details.

• Registering an initial reference using the -ORBInitRef NamingService=<IOR> or -

ORBInitRef NamingService=<corbaloc> command-line argument. See the CORBA
specifications for more details.

• Registering an initial reference for NamingService using the CORBA.ORB.Register_

Initial_Reference function. See the CORBA specifications for more details.

6.4.3 Using the COS Naming

PolyORB provides a helper package to manipulate the COS Naming in your applications.
See 〈undefined〉 [PolyORB specific APIs], page 〈undefined〉 for more details.

6.5 The CORBA Interface Repository

PolyORB implements the CORBA Interface Repository.

6.5.1 po_ir

po_ir is a standalone server that supports the CORBA Interface Repository. When
launched, it returns its IOR and corbaloc, which can then be used by other CORBA
applications.

If you want po_ir to return the same IOR or corbaloc at each startup, you must set
a default listen port for the protocol personalities you use. See 〈undefined〉 [Configuring
protocol personality preferences], page 〈undefined〉 for more details.

6.5.2 Using the Interface Repository

The IDL-to-Ada compiler generates a helper package that allows you to register all entities
defined in your IDL specification in the Interface Repository.

30 PolyORB User’s Guide

6.6 Building a CORBA application with PolyORB

6.6.1 echo example

We consider building a simple “Echo” CORBA server and client. This application echoes a
string. The source code for this example is located in the ‘examples/corba/echo’ directory
in the PolyORB distribution. This applications uses only basic elements of CORBA.

To build this application, you need the following pieces of code:

1. IDL definition of an echo object

2. Implementation code for the echo object

3. Code for client and server nodes

6.6.1.1 IDL definition of an echo object

This interface defines an echo object with a unique method echoString. Per construction,
this method returns its argument.� �

interface Echo {

string echoString (in string Mesg);

};
 	
6.6.1.2 Implementation code for the echo object

Package Echo.Impl is an implementation of this interface. This implementation follows the
IDL-to-Ada mapping.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- E C H O . I M P L --

-- --

-- S p e c --

-- --

-- Copyright (C) 2002-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

Chapter 6: CORBA 31

--

with CORBA;

with PortableServer;

package Echo.Impl is

-- My own implementation of echo object.

-- This is simply used to define the operations.

type Object is new PortableServer.Servant_Base with null record;

type Object_Acc is access Object;

function EchoString

(Self : access Object;

Mesg : CORBA.String)

return CORBA.String;

end Echo.Impl;

--

-- --

-- POLYORB COMPONENTS --

-- --

-- E C H O . I M P L --

-- --

-- B o d y --

-- --

-- Copyright (C) 2002-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

with Ada.Text_IO;

with Echo.Skel;

pragma Warnings (Off, Echo.Skel);

-- No entity from Echo.Skel is referenced.

package body Echo.Impl is

32 PolyORB User’s Guide

-- EchoString --

function EchoString

(Self : access Object;

Mesg : CORBA.String)

return CORBA.String

is
pragma Warnings (Off);

pragma Unreferenced (Self);

pragma Warnings (On);

S : String := CORBA.To_Standard_String (Mesg);

L : Natural := S’Last;

begin
if S’Length > 13 then

L := S’First + 12;

S (L - 2 .. L) := (others => ’.’);

end if;
Ada.Text_IO.Put_Line

("Echoing string: " & S (S’First .. L) & " ");

return Mesg;

end EchoString;

end Echo.Impl;

Note: Echo.Impl body requires a dependency on Echo.Skel to ensure the elaboration of
skeleton code and the correct setup of PolyORB’s internals.

6.6.1.3 Test code for client and server nodes

Client and server code demonstrate how to make a remote invocation on a CORBA object,
and how to set up an object on a server node.

Note: the dependency on PolyORB.Setup.Client or PolyORB.Setup.No_

Tasking_Server enforces compile-time configuration, see 〈undefined〉 [Sample files],
page 〈undefined〉.
• Client code tests a simple remote invocation on an object. It is a no-tasking client. A

reference to the object is built from a stringified reference (or IOR), which is passed on
command line.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- C L I E N T --

-- --

-- B o d y --

-- --

-- Copyright (C) 2002-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

Chapter 6: CORBA 33

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

-- Echo client

with Ada.Command_Line;

with Ada.Text_IO;

with CORBA.ORB;

with Echo;

with PolyORB.Setup.Client;

pragma Warnings (Off, PolyORB.Setup.Client);

with PolyORB.Utils.Report;

procedure Client is
use Ada.Command_Line;

use Ada.Text_IO;

use PolyORB.Utils.Report;

use type CORBA.String;

Sent_Msg, Rcvd_Msg : CORBA.String;

myecho : Echo.Ref;

Length : Natural := 0;

Calls : Natural := 1;

begin
New_Test ("Echo client");

CORBA.ORB.Initialize ("ORB");

if Argument_Count not in 1 .. 3 then
Put_Line

("usage: client <IOR_string_from_server>|-i [strlen [num of calls]]");

return;
end if;

-- Getting the CORBA.Object

CORBA.ORB.String_To_Object

(CORBA.To_CORBA_String (Ada.Command_Line.Argument (1)), myecho);

-- Get optional arguments Length and Calls

if Argument_Count >= 2 then
Length := Natural’Value (Ada.Command_Line.Argument (2));

end if;

34 PolyORB User’s Guide

if Argument_Count >= 3 then
Calls := Natural’Value (Ada.Command_Line.Argument (3));

end if;

-- Checking if it worked

if Echo.Is_Nil (myecho) then
Put_Line ("main : cannot invoke on a nil reference");

return;
end if;

-- Sending message

if Length = 0 then
Sent_Msg := CORBA.To_CORBA_String (Standard.String’("Hello Ada !"));

else
Sent_Msg := CORBA.To_CORBA_String

(Standard.String’(1 .. Length => ’X’));

end if;

for J in 1 .. Calls loop
Rcvd_Msg := Echo.echoString (myecho, Sent_Msg);

end loop;

if Rcvd_Msg /= Sent_Msg then
raise Program_Error with "incorrect string returned by server";

end if;

-- Printing result

if Length = 0 then
Put_Line ("I said : " & CORBA.To_Standard_String (Sent_Msg));

Put_Line

("The object answered : " & CORBA.To_Standard_String (Rcvd_Msg));

else
Put_Line ("I said : ’X’ *" & Length’Img);

Put_Line ("The object answered the same.");

end if;

End_Report;

exception
when E : CORBA.Transient =>

Output ("echo test", False);

declare
Memb : CORBA.System_Exception_Members;

begin
CORBA.Get_Members (E, Memb);

Put ("received exception transient, minor");

Put (CORBA.Unsigned_Long’Image (Memb.Minor));

Put (", completion status: ");

Put_Line (CORBA.Completion_Status’Image (Memb.Completed));

End_Report;

end;
end Client;

Chapter 6: CORBA 35

• The server code sets up a no-tasking node. The object is registered to the RootPOA.
Then an IOR reference is built to enable interaction with other nodes.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- S E R V E R --

-- --

-- B o d y --

-- --

-- Copyright (C) 2002-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

with Ada.Exceptions;

with Ada.Text_IO; use Ada.Text_IO;

with CORBA.Impl;

with CORBA.Object;

with CORBA.ORB;

with PortableServer.POA.Helper;

with PortableServer.POAManager;

with Echo.Impl;

with PolyORB.CORBA_P.CORBALOC;

-- Setup server node: use no tasking default configuration

with PolyORB.Setup.No_Tasking_Server;

pragma Warnings (Off, PolyORB.Setup.No_Tasking_Server);

procedure Server is
begin

declare
Argv : CORBA.ORB.Arg_List := CORBA.ORB.Command_Line_Arguments;

36 PolyORB User’s Guide

begin
CORBA.ORB.Init (CORBA.ORB.To_CORBA_String ("ORB"), Argv);

declare
Root_POA : PortableServer.POA.Local_Ref;

Ref : CORBA.Object.Ref;

Obj : constant CORBA.Impl.Object_Ptr := new Echo.Impl.Object;

begin

-- Retrieve Root POA

Root_POA := PortableServer.POA.Helper.To_Local_Ref

(CORBA.ORB.Resolve_Initial_References

(CORBA.ORB.To_CORBA_String ("RootPOA")));

PortableServer.POAManager.Activate

(PortableServer.POA.Get_The_POAManager (Root_POA));

-- Set up new object

Ref := PortableServer.POA.Servant_To_Reference

(Root_POA, PortableServer.Servant (Obj));

-- Output IOR

Put_Line

("’"

& CORBA.To_Standard_String (CORBA.Object.Object_To_String (Ref))

& "’");

New_Line;

-- Output corbaloc

Put_Line

("’"

& CORBA.To_Standard_String

(PolyORB.CORBA_P.CORBALOC.Object_To_Corbaloc (Ref))

& "’");

-- Launch the server. CORBA.ORB.Run is supposed to never return,

-- print a message if it does.

CORBA.ORB.Run;

Put_Line ("ORB main loop terminated!");
end;

end;
exception

when E : others =>

Put_Line

("Echo server raised " & Ada.Exceptions.Exception_Information (E));

raise;
end Server;

Chapter 6: CORBA 37

6.6.1.4 Compilation and execution

To compile this demo,

1. Process the IDL file with idlac (or iac)
$ idlac echo.idl

2. Compile the client node
$ gnatmake client.adb ‘polyorb-config‘

3. Compile the server node
$ gnatmake server.adb ‘polyorb-config‘

Note the use of backticks (‘). This means that polyorb-config is first executed, and then
the command line is replaced with the output of the script, setting up library and include
paths and library names.

To run this demo:

• run ‘server’, the server outputs its IOR, a hexadecimal string with the IOR: prefix:
$./server

Loading configuration from polyorb.conf

No polyorb.conf configuration file.

’IOR:01534f410d00000049444c3[..]’

• In another shell, run ‘client’, passing cut-and-pasting the complete IOR on the com-
mand line:

$./client ’IOR:01534f410d00000049444c3[..]’

Echoing string: " Hello Ada ! "

I said : Hello Ada !

The object answered : Hello Ada !

6.6.2 Other examples

PolyORB provides other examples to test other CORBA features. These examples are
located in the ‘example/corba’ directory in the PolyORB distribution.

• ‘all_functions’ tests CORBA parameter passing modes (in, out, ..);

• ‘all_types’ tests CORBA types;

• ‘echo’ is a simple CORBA demo;

• ‘random’ is a random number generator;

• ‘send’ tests MIOP specific API.

6.7 Configuring a CORBA application

To configure a CORBA application, you need to separately configure PolyORB and the
GIOP protocol (or any other protocol personality you wish to use).

6.7.1 Configuring PolyORB

Please refer to 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 for
more information on PolyORB’s configuration.

6.7.2 Configuring GIOP protocol stack for PolyORB

The GIOP protocol is separated from the CORBA application personality. See 〈unde-
fined〉 [Configuring the GIOP personality], page 〈undefined〉 for more information on GIOP’s
configuration.

38 PolyORB User’s Guide

6.7.3 Configuring Security services for PolyORB

PolyORB provides support for some elements of the CORBA Security mechanisms. This
sections lists the corresponding configuration parameters.

6.7.3.1 Supported mechasnisms

PolyORB provides support for the following security mechanisms:

1. SSL/TLS protected transport;

2. GSSUP (user/password) authentication mechanism;

3. identity assertion and backward trust evaluation.

6.7.3.2 Compile-time configuration

To enable security support, applications must ‘with’ one of the predefined setup packages:

1. PolyORB.Setup.Secure_Client - for client side support only;

2. PolyORB.Setup.Secure_Server - for both client and server side support.

6.7.3.3 Run-time configuration

1. Capsule configuration

This section details the configuration parameters for capsule configuration.

[security_manager]

List of sections for configure client’s credentials

#own_credentials=my_credentials

#

Client requires integrity proteced messages

#integrity_required=true

#

Client requires confiodentiality protected messages

#confidentiality_required=true

#

Client requires security association to detect replay (not supported

for now)

#detect_replay_required=true

#

Client requires security association to detect message sequence

errors (not

supported for now)

#detect_misordering_required=true

#

Client requires target authentication

#establish_trust_in_target_required=true

#

Client requires client authentication (usually not applicable at

all)

#establish_trust_in_client_required=true

#

(rare useful)

#identity_assertion_required=true

#

(rare useful)

#delegation_by_client_required=true

Chapter 6: CORBA 39

2. Credentials configuration

This section details configuration parameters for defining a program’s credentials. De-
pending on the mechanisms used for the transport and authentication layers, the cre-
dentials configuration section may define configuration only for one transport mecha-
nism and/or one authentication mechanism.

#[my_credentials]

#

TLS protected transport mechanism used as transport mechanism

#transport_credentials_type=tls

#

Connection method. Available methods: tls1, ssl3, ssl2

#tls.method=tls1

#

Certificate file name

#tls.certificate_file=my.crt

#

Certificate chain file name

#tls.certificate_chain_file=

#

Private key file name

#tls.private_key_file=my.key

#

Name of file, at which CA certificates for verification purposes are

#located

#tls.certificate_authority_file=root.crt

#

Name of directory, at which CA certificates for verification

#purposes are

located

#tls.certificate_authority_path=

#

List of available ciphers

#tls.ciphers=ALL

#

Verify peer certificate

#tls.verify_peer=true

#

Fail if client don’t provide ceritificate (server only)

#tls.verify_fail_if_no_peer_certificate=true

#

GSSUP (user/password) mechanism as authentication mechanism

#authentication_credentials_type=gssup

#

User name

#gssup.username=username@domain

#

User password

#gssup.password=password

#

Target name for which user/password pair is applicable

#gssup.target_name=@domain

3. POA configuration

This section details configuration parameters for defining security characteristics of
objects managed by POA. The POA’s name is used as the section name.

#[MySecurePOA]

#

40 PolyORB User’s Guide

Unprotected invocations is allowed

#unprotected_invocation_allowed=true

#

Section name for configuration of used protected transport mechanism

#(if any)

#transport_mechanism=tlsiop

#

Section name for configuration of used authentication mechanism (if

#any)

#authentication_mechanism=my_gssup

#

Target require client authentication at authentication layer (in

#addition

to authentication at transport layer)

#authentication_required=true

#

Name of file for backward trust evalutation rules

#backward_trust_rules_file=file.btr

#

Section name for configuration of authorization tokens authority

#privilege_authorities=

4. TLS protected transport mechanism configuration

This section details configuration parameters for the TLS protected transport mecha-
nism. The section name for mechanism configuration is defined in the POA configura-
tion.

[tlsiop]

List of access points

#addresses=127.0.0.1:3456

5. GSSUP authentication mechanism

This section details configuration parameters for the GSSUP authentication mecha-
nism. The section name for mechanism configuration is defined in the POA configura-
tion.

#[my_gssup]

#

Authentication mechanism

#mechanism=gssup

#

Target name

#gssup.target_name=@domain

#

User name/password mapping file

#gssup.passwd_file=passwd.pwd

6.7.4 Command line arguments

The CORBA specifications define a mechanism to pass command line arguments to your
application, using the CORBA::ORB:Init method.

For now, PolyORB supports the following list of arguments:

• InitRef to pass initial reference.

Chapter 6: CORBA 41

6.8 Implementation Notes

PolyORB strives to support CORBA specifications as closely as possible. However, on rare
occasions, the implementation adapts the specifications to actually enable its completion.
This section provides information on the various modifications we made.

6.8.1 Tasking

PolyORB provides support for tasking and no-tasking, using configuration parameters.
Please refer to 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 for
more information on PolyORB’s configuration.

When selecting a tasking-capable runtime, ORB-related functions are thread safe, fol-
lowing the IDL-to-Ada mapping recommendations.

6.8.2 Implementation of CORBA specifications

In some cases, the CORBA specifications do not describe the semantics of the interface
in sufficient detail. We add an Implementation Notes tag to the package specification to
indicate the modifications or enhancements we made to the standard.

In some cases, the IDL-to-Ada mapping specifications and the CORBA specifications
conflict. We add an Implementation Notes tag to the package specification to indicate
this issue. Whenever possible, PolyORB follows the CORBA specifications.

6.8.3 Additions to the CORBA specifications

In some cases, the specifications lack features that may be useful. We add an
Implementation Notes tag to the package specification to detail the additions we made to
the standard.

In addition to the above, PolyORB follows some of the recommendations
derived from the OMG Issues for Ada 2003 Revision Task Force mailing list (see
http://www.omg.org/issues/ada-rtf.html for more information).

6.8.4 Interface repository

The documentation of the PolyORB’s CORBA Interface Repository will appear in a future
revision of PolyORB.

6.8.5 Policy Domain Managers

You have two ways to register the reference to the CORBA Policy Domain Manager the
application will use:

• Setting up the policy_domain_manager entry in the [corba] section in your configu-
ration file, policy_domain_manager is the IOR or corbaloc of the COS Naming server
to use. See 〈undefined〉 [Using a configuration file], page 〈undefined〉 for more details.

• Registering an initial reference using the -ORB InitRef PolyORBPolicyDomainManager=<IOR>

or -ORB InitRef PolyORBPolicyDomainManager=<corbaloc> command-line argu-
ment. See the CORBA specifications for more details.

• Registering an initial reference for PolyORBPolicyDomainManager using the
CORBA.ORB.Register_Initial_Reference function. See the CORBA specifications
for more details.

http://www.omg.org/issues/ada-rtf.html

42 PolyORB User’s Guide

6.8.6 Mapping of exceptions

For each exception defined in the CORBA specifications, PolyORB provides the Raise_

<excp_name> function, a utility function that raises the exception <excp_name>, along with
its exception member. PolyORB also defines the Get_Members function (as defined in the
IDL-to-Ada mapping) to provide accessors to retrieve information on the exception.

In addition, for each exception defined in a user-defined IDL specification, the IDL-to-
Ada compiler will generate a Raise_<excp_name> function in the Helper package. It is a
utility function that raises the exception <excp_name>, along with its exception member.

6.8.7 Additional information to CORBA::Unknown

When a CORBA application raises an Ada exception that is not part of the IDL specifi-
cations, nor defined by the CORBA specifications, then this exception is translated into a
CORBA::UNKNOWN exception.

To help debugging CORBA applications, PolyORB supports a specific service context
to the GIOP protocol personality that conveys exception information. When displaying ex-
ception information, server-side specific exception information is delimited by “<Invocation
Exception Info: ...>”

Here is an example from the all_types example provided by PolyORB.
Exception name: CORBA.UNKNOWN

Message: 4F4D0001M

<Invocation Exception Info: Exception name: CONSTRAINT_ERROR

Message: all_types-impl.adb:315 explicit raise

Call stack traceback locations:

0x84d279c 0x84c1e78 0x84b92c6 0x84b8e9>

Call stack traceback locations:

0x81d0425 0x81d0554 0x81d6d8c 0x81fd02b 0x81fc091 0x82eea12 0x83e4c22 0x807b69a 0xb7a15e3e

Note that call stack tracebacks can be translated into symbolic form using the addr2line
utility that comes with GNAT.

6.8.8 Internals packages

PolyORB sometimes declares internal types and routines inside CORBA packages. These
entities are gathered into an Internals child package. You should not use these functions:
they are not portable, and may be changed in future releases.

6.9 PolyORB’s specific APIs

PolyORB defines packages to help in the development of CORBA programs.

• 〈undefined〉 [PolyORB.CORBA P.CORBALOC], page 〈undefined〉:
This package defines a helper function to build a corbaloc stringified reference from a
CORBA object reference.

• 〈undefined〉 [PolyORB.CORBA P.Naming Tools], page 〈undefined〉:
This package defines helper functions to ease interaction with CORBA COS Naming.

• 〈undefined〉 [PolyORB.CORBA P.Server Tools], page 〈undefined〉:
This package defines helper functions to ease set up of a simple CORBA Server.

Chapter 6: CORBA 43

6.9.1 PolyORB.CORBA_P.CORBALOC

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . C O R B A L O C --

-- --

-- S p e c --

-- --

-- Copyright (C) 2004-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- As a special exception under Section 7 of GPL version 3, you are granted --

-- additional permissions described in the GCC Runtime Library Exception, --

-- version 3.1, as published by the Free Software Foundation. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

-- Helper functions to manage CORBA corbaloc references

with CORBA.Object;

package PolyORB.CORBA_P.CORBALOC is

function Object_To_Corbaloc

(Obj : CORBA.Object.Ref’Class)

return CORBA.String;

-- Convert reference to corbaloc, return corbaloc of best profile

end PolyORB.CORBA_P.CORBALOC;

44 PolyORB User’s Guide

6.9.2 PolyORB.CORBA_P.Naming_Tools

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . N A M I N G _ T O O L S --

-- --

-- S p e c --

-- --

-- Copyright (C) 2001-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- As a special exception under Section 7 of GPL version 3, you are granted --

-- additional permissions described in the GCC Runtime Library Exception, --

-- version 3.1, as published by the Free Software Foundation. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

-- Wrappers for the COS Naming service to facilitate retrievel of object

-- references by IOR or by name.

with Ada.Finalization;

with CORBA.Object;

with CosNaming.NamingContext;

package PolyORB.CORBA_P.Naming_Tools is

function Locate (Name : CosNaming.Name) return CORBA.Object.Ref;

function Locate

(Context : CosNaming.NamingContext.Ref;

Name : CosNaming.Name) return CORBA.Object.Ref;

-- Locate an object given its name, given as an array of name components.

function Locate

(IOR_Or_Name : String; Sep : Character := ’/’) return CORBA.Object.Ref;

function Locate

(Context : CosNaming.NamingContext.Ref;

IOR_Or_Name : String;

Sep : Character := ’/’) return CORBA.Object.Ref;

Chapter 6: CORBA 45

-- Locate an object by IOR or name. If the string does not start with

-- "IOR:", the name will be parsed before it is looked up, using

-- Parse_Name below.

procedure Register

(Name : String;

Ref : CORBA.Object.Ref;

Rebind : Boolean := False;

Sep : Character := ’/’);

-- Register an object by its name by binding or rebinding.

-- The name will be parsed by Parse_Name below; any necessary contexts

-- will be created on the name server.

-- If Rebind is True, then a rebind will be performed if the name

-- is already bound.

procedure Unregister (Name : String);

-- Unregister an object by its name by unbinding it

type Server_Guard is limited private;
procedure Register

(Guard : in out Server_Guard;

Name : String;

Ref : CORBA.Object.Ref;

Rebind : Boolean := False;

Sep : Character := ’/’);

-- A Server_Guard object is an object which is able to register a server

-- reference in a naming service (see Register above), and destroy this

-- name using Unregister when the object disappears (the program terminates

-- or the Server_Guard object lifetime has expired).

function Parse_Name

(Name : String;

Sep : Character := ’/’) return CosNaming.Name;

-- Split a sequence of name component specifications separated with Sep

-- characters into a name component array. Any leading Sep is ignored.

private
-- implementation removed

end PolyORB.CORBA_P.Naming_Tools;

46 PolyORB User’s Guide

6.9.3 PolyORB.CORBA_P.Server_Tools

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . S E R V E R _ T O O L S --

-- --

-- S p e c --

-- --

-- Copyright (C) 2001-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- As a special exception under Section 7 of GPL version 3, you are granted --

-- additional permissions described in the GCC Runtime Library Exception, --

-- version 3.1, as published by the Free Software Foundation. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

-- Helper functions for CORBA servers. Note that using this unit implies

-- using the Portable Object Adapter.

with CORBA.Object;

with PortableServer.POA;

package PolyORB.CORBA_P.Server_Tools is

pragma Elaborate_Body;

type Hook_Type is access procedure;
Initiate_Server_Hook : Hook_Type;

-- Access to a procedure to be called upon start up.

-- See Initiate_Server for more details.

procedure Activate_Server;

-- Start a new ORB, and initialize the Root POA.

--

-- If the Initiate_Server_Hook variable is not null, the designated

-- procedure will be called after initializing the ORB.

procedure Initiate_Server (Start_New_Task : Boolean := False);

-- Calls Activate_Server then starts ORB main loop.

-- If Start_New_Task is True, a new task will be created and control will

Chapter 6: CORBA 47

-- be returned to the caller. Otherwise, the ORB main loop will be executed

-- in the current context.

function Get_Root_POA return PortableServer.POA.Local_Ref;

-- Return the Root_POA attached to the current ORB instance.

procedure Initiate_Servant

(S : PortableServer.Servant;

R : out CORBA.Object.Ref’Class);

-- Initiate a servant: register a servant to the Root POA.

-- If the Root POA has not been initialized, initialize it.

procedure Reference_To_Servant

(R : CORBA.Object.Ref’Class;

S : out PortableServer.Servant);

-- Convert a CORBA.Object.Ref into a PortableServer.Servant.

procedure Servant_To_Reference

(S : PortableServer.Servant;

R : out CORBA.Object.Ref’Class);

-- Convert a PortableServer.Servant into CORBA.Object.Ref.

procedure Initiate_Well_Known_Service

(S : PortableServer.Servant;

Name : String;

R : out CORBA.Object.Ref’Class);

-- Make S accessible through a reference appropriate for

-- generation of a corbaloc URI with a named key of Name.

end PolyORB.CORBA_P.Server_Tools;

Chapter 7: RT-CORBA 49

7 RT-CORBA

7.1 What you should know before Reading this section

This section assumes that the reader is familiar with the Real-Time CORBA specifications
described in [OMG02a] and [OMG03].

7.2 Installing RT-CORBA

The RT-CORBA library is installed as part of the installation of the CORBA personality.
Note that you may have to select specific run-time options to enable full compliance with
RT-CORBA specifications and ensure real time behavior.

7.3 Configuring RT-CORBA

This section details how to configure your application to use the RT-CORBA library.

7.3.1 PolyORB.RTCORBA_P.Setup

The RT-CORBA specifications mandate that the implementation provide a mechanism to
set up some of its internals.

The package PolyORB.RTCORBA_P.Setup provides an API to set up the
PriorityMapping and PriorityTransform objects.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . R T C O R B A _ P . S E T U P --

-- --

-- S p e c --

-- --

-- Copyright (C) 2003-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- As a special exception under Section 7 of GPL version 3, you are granted --

-- additional permissions described in the GCC Runtime Library Exception, --

-- version 3.1, as published by the Free Software Foundation. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

50 PolyORB User’s Guide

--

-- Implementation Notes: RTCORBA specifications defines objects that

-- are (Ada) programming language objects rather than CORBA

-- objects. Therefore the normal mechanism for coupling an

-- implementation to the code that uses it (an object reference) does

-- not apply. The implementation must provide specific mechanisms to

-- enable this coupling.

--

-- This package provides accessors to configure them. It supports the

-- following objects:

-- * PriorityMapping

-- * PriorityTransform

with RTCORBA.PriorityMapping;

with RTCORBA.PriorityTransform;

package PolyORB.RTCORBA_P.Setup is

-- PriorityMapping

type PriorityMapping_Access is
access all RTCORBA.PriorityMapping.Object’Class;

procedure Set_Priority_Mapping

(Mapping : RTCORBA.PriorityMapping.Object’Class);

pragma Inline (Set_Priority_Mapping);

-- Set RT-ORB PriorityMapping object,

-- overrides previous settings, if any.

function Get_Priority_Mapping return PriorityMapping_Access;

pragma Inline (Get_Priority_Mapping);

-- Return RT-ORB PriorityMapping object.

-- PriorityTransform

type PriorityTransform_Access is
access all RTCORBA.PriorityTransform.Object’Class;

procedure Set_Priority_Transform

(Transform : RTCORBA.PriorityTransform.Object’Class);

pragma Inline (Set_Priority_Transform);

-- Set RT-ORB global Priority Mapping object,

-- overrides previous settings, if any.

function Get_Priority_Transform return PriorityTransform_Access;

pragma Inline (Get_Priority_Transform);

-- Return RT-ORB global Priority Mapping object.

end PolyORB.RTCORBA_P.Setup;

7.4 RTCORBA.PriorityMapping

PolyORB provides different implementations of this specification:

• RTCORBA.PriorityMapping.Direct maps CORBA priorities directly to native priori-

Chapter 7: RT-CORBA 51

ties. If the CORBA priority is not in System.Priority’Range, then the mapping is
not possible.

• RTCORBA.PriorityMapping.Linear maps each individual native priority to a contigu-
ous range of CORBA priorities, so that the complete CORBA priority range is used
up for the mapping. See ‘rtcorba-prioritymapping-linear.adb’ for more details.

7.5 RTCosScheduling Service

7.5.1 Overview

PolyORB provides an implementation of the RTCosScheduling service defined in [OMG02a].

PolyORB uses some permissions stated in the specifications to allow for easy configura-
tion of ClientScheduler and ServerScheduler, defined in the following sections.

Additional information on the use of the API may be found in the RTCosScheduling
example in ‘examples/corba/rtcorba/rtcosscheduling’.

7.5.2 RTCosScheduling::ClientScheduler

Client side activities are defined in a configuration file that can be loaded using
‘RTCosScheduling.ClientScheduler.Impl.Load_Configuration_File’

On the client side, the user can set up

• current task priority, using registered PriorityMapping object.

This file has the following syntax, derived from PolyORB configuration file syntax:

Name of the activity

[activity activity1]

Activity priority, in RTCORBA.Priority’Range

priority=10000

In this example, activity activity1 is defined with priority 10’000.

7.5.3 RTCosScheduling::ServerScheduler

Server side POAs and objects are defined in a configuration file that can be loaded using
‘RTCosScheduling.ClientScheduler.Impl.Load_Configuration_File’

On the server side, the user can set up

• object priority, using registered PriorityMapping object.

• all RT-CORBA-specific POA configuration parameters.

This file has the following syntax, derived from PolyORB configuration file syntax:

Name of the object

[object object1]

Object priority, in RTCORBA.Priority’Range

priority=10000

In this example, object object1 is defined with priority 10’000.

52 PolyORB User’s Guide

Name of the POA

[poa poa1]

PriorityModelPolicy for POA

priority_model=CLIENT_PROPAGATED

default_priority=0 # not meaningful for CLIENT_PROPAGATED

Threadpools attached to POA

threadpool_id=1

Name of the POA

[poa poa2]

PriorityModelPolicy for POA

priority_model=SERVER_DECLARED

default_priority=40

Threadpools attached to POA

threadpool_id=2

Name of the POA

[poa poa3]

POA with no defined policies

In this example, Two POAs are defined: POA poa1 will use the CLIENT_PROPAGATED Pri-
orityModel Policy, default value is not meaningful for this configuration, poa1 will use the
Threadpool #1; POA poa2 will use the SERVER_DECLARED PriorityModel Policy, default
server priority is 40, poa2 will use the Threadpool #2. Note that both policies are optional
and can be omitted.

Chapter 8: Ada Distributed Systems Annex (DSA) 53

8 Ada Distributed Systems Annex (DSA)

8.1 Introduction to the Ada DSA

A critical feature of the Distributed Systems Annex (DSA) is that it allows the user to
develop his application the same way whether this application is going to be executed as
several programs on a distributed system, or as a single program on a non-distributed
system. The DSA has been designed to minimize the source changes needed to convert an
ordinary non-distributed program into a distributed program.

The simplest way to start with DSA is to develop the application on a non-distributed
system. Of course, the design of the application should take into account the fact that some
units are going to be accessed remotely. In order to write a distributed Ada program, it
is necessary for the user to label by means of categorization pragmas some of library level
compilation units of the application program. The units that require categorization are
typically those that are called remotely, and those that provide the types used in remote
invocations.

In order to ensure that distributed execution is possible, these units are restricted to
contain only a limited set of Ada constructs. For instance, if the distributed system has
no shared memory, shared variables must be forbidden. To specify the nature of these
restrictions, the DSA provides several categorization pragmas, each of which excludes some
language constructs from the categorized package.

Of course, the user can develop the non-distributed application with his usual software
engineering environment. It is critical to note that the user needs no specialized tools to
develop his/her distributed application. For instance, he can debug his application with
the usual debugger. Note that a non-distributed program is not to be confused with a
distributed application composed of only one program. The latter is built with the help of
the configuration tool and includes the communication library.

Once the non-distributed version of the program is complete, it has to be configured
into separate partitions. This step is surprisingly simple, compared to that of developing
the application itself. The configuration step consists of mapping sets of compilation units
into individual partitions, and specifying the mapping between partitions and nodes in
the computer network. This mapping is specified and managed by means of a gnatdist
configuration.

The distributed version of the user application should work as is, but even when a pro-
gram can be built both as a non-distributed or a distributed program using the same source
code, there may still be differences in program execution between the distributed and non-
distributed versions. These differences are discussed in subsequent sections (see 〈undefined〉
[Pragma Asynchronous], page 〈undefined〉 and 〈undefined〉 [Pragma All Calls Remote],
page 〈undefined〉).

Developing a non-distributed application in order to distribute it later is the natural
approach for a novice. Of course, it is not always possible to write a distributed application
as a non-distributed application. For instance, a client/server application does not belong
to this category because several instances of the client can be active at the same time. It is
very easy to develop such an application using PolyORB; we shall describe how to do this
in the following sections.

54 PolyORB User’s Guide

8.1.1 Architecture of a Distributed Ada Application

A distributed system is an interconnection of one or more processing nodes and zero or
more storage nodes. A distributed program comprises one or more partitions. A partition
is an aggregate of library units. Partitions communicate through shared data or RPCs.
A passive partition has no thread of control. Only a passive partition can be configured
on a storage node. An active partition has zero or more threads of control and has to be
configured on a processing node.

The library unit is the core component of a distributed Ada application. The user can
explicitly assign library units to a partition. Partitioning is a post-compilation process.
The user identifies interface packages at compile-time. These packages are categorized
using pragmas. Each of these pragmas supports the use of one of the following classical
paradigms:

• Remote subprograms: For the programmer, a remote subprogram call is similar to a
regular subprogram call. Run-time binding using access-to-subprogram types can also
be used with remote subprograms. These remote subprograms are declared in library
units categorized as remote call interface (RCI).

• Distributed objects: Special-purpose access types can designate remote objects. When
a primitive dispatching operation is invoked on an object designated by such a remote
access, a remote call is performed transparently on the partition on which the object
resides. The types of these distributed objects are declared in library units categorized
as remote types (RT).

• Shared objects: Global data can be shared among active partitions, providing a repos-
itory similar to shared memory, a shared file system or a database. Entryless protected
objects allow safe concurrent access and update of shared objects. This feature is
orthogonal to the notion of distributed objects, which are only accessed through ex-
ported services. These shared objects are declared in library units categorized as shared
passive (SP).

The remotely-called subprograms declared in a library unit categorized as remote call
interface (RCI) or remote types (RT) may be either statically or dynamically bound. The
partition on which a statically bound remote subprogram is executed can be determined
before the call. This is a static remote subprogram call. In contrast, a remote method or a
dereference of an access to remote subprogram are dynamically bound remote calls, because
the partition on which the remote subprogram is executed is determined at runtime, by the
actuals of the call.

In the following example, Data 1 and Data 2 are shared passive (SP) library units.
Data 1 is configured on a passive partition mapped on a storage node. Partition 1 and
Partition 2 are active partitions. Note that under some circumstances, a partition, for
instance Partition 2, can be duplicated. To be duplicated, Unit 2 and Unit 3 which are
configured on Partition 2 have to provide only dynamically bound remote subprograms.
Otherwise, a partition calling a remote subprogram on Unit 2 would not be able to statically
determine where to perform the remote call between the two instances of Unit 2.

Chapter 8: Ada Distributed Systems Annex (DSA) 55

8.1.2 Categorization Pragmas

Library units can be categorized according to the role they play in a distributed program.
A categorization pragma is a library unit pragma that restricts the kinds of declarations
that can appear in a library unit and possibly in its child units, as well as the legal semantic
dependences that the categorized unit can have. There are several categorization pragmas:

• Remote Call Interface

• Remote Types

• Shared Passive

• Pure

The following paragraphs do not present the detailed semantics of these pragmas (formal
details will be found in the Ada Reference Manual). Their purpose is to give the reader an
intuitive overview of the purpose of these pragmas. If a library unit is not categorized, this
unit is called a normal unit and plays no special role in the distributed application. Such a
unit is duplicated on any partition in which it is mentioned.

A parenthetical remark: to avoid the need for specific run-time libraries for the DSA,
the notion of remote rendezvous does not exist in Ada: tasks cannot be invoked directly
from one partition to another. Therefore, declarations of task types and general protected
types with entries are not allowed in categorized Ada library units.

8.1.3 Pragma Declared Pure

This pragma is not specific to the Distributed Systems Annex. A pure package can appear
in the context of any package, categorized or not. A pure package is a preelaborable package
that does not contain variable data. It is particularly useful to define types, constants and
subprograms shared by several categorized packages. In contrast, normal packages cannot
appear in the context of categorized package declarations. Because a pure package has no
state, it can be duplicated on several partitions.

8.1.4 Pragma Remote Call Interface

56 PolyORB User’s Guide

8.1.4.1 Overview of Pragma Remote Call Interface

Library units categorized with this pragma declare subprograms that can be called and
executed remotely. An RCI unit acts as a server for remote calls. There is no memory space
shared between server and clients. A subprogram call that invokes one such subprogram
is a classical RPC operation; it is a statically bound operation, because the compiler can
determine the identity of the subprogram being called.

Dynamically bound calls are provided through two mechanisms:

• The dereference of an access-to-subprogram value, i.e. a value whose type is a remote
access-to-subprogram (RAS).

• A dispatching call whose controlling argument is an access-to-class-wide operand. The
formal is a remote access-to-class-wide (RACW) type. These remote access types can
be declared in RCI packages as well.

A remote access type (RAS or RACW) can be viewed as a fat pointer, that is to
say a structure with a remote address and a local address (like an URL: <protocol>://-
<remote-machine>/<local-directory>). The remote address must denote the host of the
partition on which the entity has been created; the local address describes the local memory
address within the host.

It is very unlikely that RCI units can be duplicated in the distributed system. An
implementation may allow separate copies of a RCI unit as long as it ensures that the
copies present a consistent state to all clients. In the general case, preserving consistency
is very costly. For this reason, the implementation may require a RCI unit to be unique in
the distributed system.

8.1.4.2 Regular Remote Subprograms (RCI)

In the following example, a RCIBank offers several remote services: Balance, Transfer,
Deposit and Withdraw. On the caller side, the bank client uses the stub files of unit
RCIBank. On the receiver side, the bank receiver uses the skeleton files of unit RCIBank
including the body of this package.

package Types is
pragma Pure;

type Customer_Type is new String;

type Password_Type is new String;

end Types;

with Types; use Types;

package RCIBank is
pragma Remote_Call_Interface;

function Balance

(Customer : in Customer_Type;

Password : in Password_Type)

return Integer;

procedure Transfer

(Payer : in Customer_Type;

Password : in Password_Type;

Chapter 8: Ada Distributed Systems Annex (DSA) 57

Amount : in Positive;

Payee : in Customer_Type);

procedure Deposit

(Customer : in Customer_Type;

Amount : in Positive);

procedure Withdraw

(Customer : in Customer_Type;

Password : in Password_Type;

Amount : in out Positive);

end RCIBank;

with Types; use Types;

with RCIBank; use RCIBank;

procedure RCIClient is
B : Integer;

C : Customer_Type := "rich";

P : Password_Type := "xxxx";

begin
B := Balance (C, P);

end RCIClient;

8.1.4.3 Remote Access to Subprograms (RAS)

In the following example, several mirroring banks offer their services through the same
database. Each bank registers a reference to each of its services with a central bank. A
client of the central bank requests a service from one of the mirroring banks. To satisfy
requests, the RCI unit RASBank defines Balance Type, a remote access to subprogram.
(Recall that an access type declared in a remote unit has to be either remote access to
subprogram or remote access to class wide type).

Note that to obtain a remote access to subprogram, the subprogram that delivers the
remote access must be remote itself. Therefore, MirrorBank is a RCI library unit.

with Types; use Types;

package RASBank is
pragma Remote_Call_Interface;

type Balance_Type is access function
(Customer : in Customer_Type;

Password : in Password_Type)

return Integer;

procedure Register

(Balance : in Balance_Type);

function Get_Balance

return Balance_Type;

-- [...] Other services

end RASBank;

In the code below, a mirroring bank registers its services to the central bank.

58 PolyORB User’s Guide

with Types; use Types;

package MirrorBank is
pragma Remote_Call_Interface;

function Balance

(Customer : in Customer_Type;

Password : in Password_Type)

return Integer;

-- [...] Other services

end MirrorBank;

with RASBank, Types; use RASBank, Types;

package body MirrorBank is

function Balance

(Customer : in Customer_Type;

Password : in Password_Type)

return Integer is
begin

return Something;

end Balance;

begin
-- Register a dynamically bound remote subprogram (Balance)

-- through a statically bound remote subprogram (Register)

Register (Balance’Access);

-- [...] Register other services

end MirrorBank;

In the code below, a central bank client asks for a mirroring bank and calls the Balance
service of this bank by dereferencing a remote access type.

with Types; use Types;

with RASBank; use RASBank;

procedure BankClient is
B : Integer;

C : Customer_Type := "rich";

P : Password_Type := "xxxx";

begin
-- Through a statically bound remote subprogram (Get_Balance), get

-- a dynamically bound remote subprogram. Dereference it to

-- perform a dynamic invocation.

B := Get_Balance.all (C, P);

end BankClient;

8.1.4.4 Remote Access to Class Wide Types (RACW)

A bank client is now connected to a bank through a terminal. The bank wants to notify
a connected client, by means of a message on its terminal, when another client transfers a
given amount of money to its account. In the following example, a terminal is designed as
a distributed object. Each bank client will register its terminal object to the bank server

Chapter 8: Ada Distributed Systems Annex (DSA) 59

for further use. In the code below, Term Type is the root type of the distributed terminal
hierarchy.

with Types; use Types;

package Terminal is
pragma Pure;

type Term_Type is abstract tagged limited private;

procedure Notify

(MyTerm : access Term_Type;

Payer : in Customer_Type;

Amount : in Integer) is abstract;

private
-- implementation removed

end Terminal;

In the code below, the RCI unit RACWBank defines Term Access, a remote access
to class wide type. Term Access becomes a reference to a distributed object. In the next
section, we will see how to derive and extend Term Type, how to create a distributed object
and how to use a reference to it.

with Terminal, Types; use Terminal, Types;

package RACWBank is
pragma Remote_Call_Interface;

type Term_Access is access all Term_Type’Class;

procedure Register

(MyTerm : in Term_Access;

Customer : in Customer_Type;

Password : in Password_Type);

-- [...] Other services

end RACWBank;

8.1.4.5 Summary of Pragma Remote Call Interface

Remote call interface units:

• Allow subprograms to be called and executed remotely

• Allow statically bound remote calls (remote subprogram)

• Allow dynamically bound remote calls (remote access types)

• Forbid variables and non-remote access types

• Prevent specification from depending on normal units

8.1.5 Pragma Remote Types

8.1.5.1 Overview of Pragma Remote Types

Unlike RCI units, library units categorized with this pragma can define distributed objects
and remote methods on them. Both RCI and RT units can define a remote access type as

60 PolyORB User’s Guide

described above (RACW). A subprogram defined in a RT unit is not a remote subprogram.
Unlike RCI units, a RT unit can be duplicated on several partitions, in which case all its
entities are distinct. This unit is duplicated on each partition in which it is defined.

8.1.5.2 Distributed Object

If we want to implement the notification feature proposed in the previous section, we have to
derive Term Type. Such a derivation is possible in a remote types unit like NewTerminal
(see below). Any object of type New Term Type becomes a distributed object and any
reference to such an object becomes a fat pointer or a reference to a distributed object (see
Term Access declaration in 〈undefined〉 [Remote Access to Class Wide Types (RACW)],
page 〈undefined〉).

with Types, Terminal; use Types, Terminal;

package NewTerminal is
pragma Remote_Types;

type New_Term_Type is
new Term_Type with null record;

procedure Notify

(MyTerm : access New_Term_Type;

Payer : in Customer_Type;

Amount : in Integer);

function Current return Term_Access;

end NewTerminal;

In the code below, a client registers his name and his terminal with RACWBank. There-
fore, when any payer transfers some money to him, RACWBank is able to notify the client
of the transfer of funds.

with NewTerminal, RACWBank, Types; use NewTerminal, RACWBank, Types;

procedure Term1Client is
MyTerm : Term_Access := Current;

Customer : Customer_Type := "poor";

Password : Password_Type := "yyyy";

begin
Register (MyTerm, Customer, Password);

-- [...] Execute other things

end Term1Client;

In the code below, a second client, the payer, registers his terminal to the bank and
executes a transfer to the first client.

with NewTerminal, RACWBank, Types; use NewTerminal, RACWBank, Types;

procedure Term2Client is
MyTerm : Term_Access := Current;

Payer : Customer_Type := "rich";

Password : Password_Type := "xxxx";

Payee : Customer_Type := "poor";

begin
Register (MyTerm, Payer, Password);

Transfer (Payer, Password, 100, Payee);

Chapter 8: Ada Distributed Systems Annex (DSA) 61

end Term2Client;

In the code below, we describe the general design of Transfer. Classical operations of
Withdraw and Deposit are performed. Then, RACWBank retrieves the terminal of the
payee (if present) and invokes a dispatching operation by dereferencing a distributed object
Term. The reference is examined at run-time, and the execution of this operation takes
place on the partition on which the distributed object resides.

with Types; use Types;

package body RACWBank is
procedure Register

(MyTerm : in Term_Access;

Customer : in Customer_Type;

Password : in Password_Type) is
begin

Insert_In_Local_Table (MyTerm, Customer);

end Register;

procedure Transfer

(Payer : in Customer_Type;

Password : in Password_Type;

Amount : in Positive;

Payee : in Customer_Type)

is
-- Find Customer terminal.

Term : Term_Access

:= Find_In_Local_Table (Payee);

begin
Withdraw (Payer, Amount);

Deposit (Payee, Amount);

if Term /= null then
-- Notify on Payee terminal.

Notify (Term, Payer, Amount);

end if;
end Transfer;

-- [...] Other services

end RACWBank;

8.1.5.3 Transmitting Dynamic Structure

with Ada.Streams; use Ada.Streams;

package StringArrayStream is
pragma Remote_Types;

type List is private;
procedure Append (L : access List; O : in String);

function Delete (L : access List) return String;

private
-- implementation removed

end StringArrayStream;

62 PolyORB User’s Guide

Non-remote access types cannot be declared in the public part of a remote types unit.
However, it is possible to define private non-remote access types as long as the user provides
its marshalling procedures, that is to say the mechanism needed to place a value of the type
into a communication stream. The code below describes how to transmit a linked structure.

The package declaration provides a type definition of single-linked lists of unbounded
strings. An implementation of the marshalling operations could be the following:

package body StringArrayStream is
procedure Read

(S : access Root_Stream_Type’Class;

L : out List) is
begin

if Boolean’Input (S) then
L := new Node;

L.Content := new String’(String’Input (S));

List’Read (S, L.Next);

else
L := null;

end if;
end Read;

procedure Write

(S : access Root_Stream_Type’Class;

L : in List) is
begin

if L = null then
Boolean’Output (S, False);

else
Boolean’Output (S, True);

String’Output (S, L.Content.all);
List’Write (S, L.Next);

end if;
end Write;

-- [...] Other services

end StringArrayStream;

8.1.5.4 Summary of Remote Types Units

Remote types units:

• Support the definition of distributed objects

• Allow dynamically bound remote calls (via remote access types)

• Allow non-remote access types (with marshalling subprograms)

• Cannot have a specification that depends on normal units

8.1.6 Pragma Shared Passive

8.1.6.1 Overview of Pragma Shared Passive

The entities declared in such a categorized library unit are intended to be mapped on a
virtual shared address space (file, memory, database). When two partitions use such a
library unit, they can communicate by reading or writing the same variable in the shared
unit. This supports the conventional shared variables paradigm. Entryless protected objects

Chapter 8: Ada Distributed Systems Annex (DSA) 63

can be declared in these units, to provide an atomic access to shared data, thus implementing
a simple transaction mechanism. When the address space is a file or a database, the user
can take advantage of the persistency features provided by these storage nodes.

8.1.6.2 Shared and Protected Objects

In the code below, we define two kinds of shared objects. External Synchronization requires
that the different partitions updating this data synchronize to avoid conflicting operations
on shared objects. Internal Synchronization provides a way to get an atomic operation on
shared objects. Note that only entryless protected types are allowed in a shared passive
unit; synchronization must be done with protected procedures.

package SharedObjects is
pragma Shared_Passive;

Max : Positive := 10;

type Index_Type is range 1 .. Max;

type Rate_Type is new Float;

type Rates_Type is array (Index_Type) of Rate_Type;

External_Synchronization : Rates_Type;

protected Internal_Synchronization is
procedure Set

(Index : in Index_Type;

Rate : in Rate_Type);

procedure Get

(Index : in Index_Type;

Rate : out Rate_Type);

private
-- implementation removed

end SharedObjects;

8.1.6.3 Summary of Pragma Shared Passive

Shared passive units:

• Allow direct access to data from different partitions

• Provide support for shared (distributed) memory

• Support memory protection by means of entryless protected objects

• Prevent specification from depending on normal units

8.1.7 More About Categorization Pragmas

8.1.7.1 Variables and Non-Remote Access Types

In RT or RCI package declarations, variable declarations are forbidden, and non-remote
access types are allowed as long as their marshalling subprograms are explicitly provided
(see 〈undefined〉 [Transmitting Dynamic Structure], page 〈undefined〉).

64 PolyORB User’s Guide

8.1.7.2 RPC Failures

Calls are executed at most once: they are made exactly one time or they fail with an
exception. When a communication error occurs, System.RPC.Communication Error is
raised.

8.1.7.3 Exceptions

Any exception raised in a remote method or subprogram call is propagated back to the
caller. Exception semantics are preserved in the regular Ada way.

package Internal is
Exc : exception;

end Internal;

package RemPkg2 is
pragma Remote_Call_Interface;

procedure Subprogram;

end RemPkg2;

package RemPkg1 is
pragma Remote_Call_Interface;

procedure Subprogram;

end RemPkg1;

Let us say that RemPkg2, Internal and RemExcMain packages are on the same partition
Partition 1 and that RemPkg1 is on partition Partition 2.

with RemPkg1, Ada.Exceptions; use Ada.Exceptions;

package body RemPkg2 is
procedure Subprogram is
begin

RemPkg1.Subprogram;

exception when E : others =>

Raise_Exception (Exception_Identity (E), Exception_Message (E));

end Subprogram;

end RemPkg2;

with Internal, Ada.Exceptions; use Ada.Exceptions;

package body RemPkg1 is
procedure Subprogram is
begin

Raise_Exception (Internal.Exc’Identity, "Message");

end Subprogram;

end RemPkg1;

with Ada.Text_IO, Ada.Exceptions; use Ada.Text_IO, Ada.Exceptions;

with RemPkg2, Internal;

procedure RemExcMain is
begin

Chapter 8: Ada Distributed Systems Annex (DSA) 65

RemPkg2.Subprogram;

exception when E : Internal.Exc =>

Put_Line (Exception_Message (E)); -- Output "Message"

end RemExcMain;

When RemPkg1.Subprogram on Partition 1 raises Internal.Exc, this exception is prop-
agated back to Partition 2. As Internal.Exc is not defined on Partition 2, it is not possible
to catch this exception without an exception handler when others. When this exception
is reraised in RemPkg1.Subprogram, it is propagated back to Partition 1. But this time,
Internal.Exc is visible and can be handled as we would in a single-partition Ada program.
Of course, the exception message is also preserved.

8.1.7.4 Pragma Asynchronous

By default, a remote call is blocking: the caller waits until the remote call is complete
and the output stream is received. Just like a normal (nonremote) call, the caller does
not proceed until the call returns. By contrast, a remote subprogram labeled with pragma
Asynchronous allows statically and dynamically bound remote calls to it to be executed
asynchronously. A call to an asynchronous procedure doesn’t wait for the completion of
the remote call, and lets the caller continue its execution. The remote procedure must have
only in parameters, and any exception raised during the execution of the remote procedure
is lost.

When pragma Asynchronous applies to a regular subprogram with in parameters, any
call to this subprogram will be executed asynchronously. The following declaration of
AsynchronousRCI.Asynchronous gives an example.

package AsynchronousRCI is
pragma Remote_Call_Interface;

procedure Asynchronous (X : Integer);

pragma Asynchronous (Asynchronous);

procedure Synchronous (X : Integer);

type AsynchronousRAS is access procedure (X : Integer);

pragma Asynchronous (AsynchronousRAS);

end AsynchronousRCI;

package AsynchronousRT is
pragma Remote_Types;

type Object is tagged limited private;

type AsynchronousRACW is access all Object’Class;

pragma Asynchronous (AsynchronousRACW);

procedure Asynchronous (X : Object);

procedure Synchronous (X : in out Object);

function Create return AsynchronousRACW;

private
-- implementation removed

66 PolyORB User’s Guide

end AsynchronousRT;

A pragma Asynchronous may apply to a remote access-to-subprogram (RAS) type. An
asynchronous RAS can be both asynchronous and synchronous depending on the designated
subprogram. For instance, in the code below, remote call (1) is asynchronous but remote
call (2) is synchronous.

A pragma Asynchronous may apply to a RACW as well. In this case, the invocation
of any method with in parameters is always performed asynchronously. Remote method
invocation (3) is asynchronous but remote method invocation (4) is synchronous.

with AsynchronousRCI, AsynchronousRT;

use AsynchronousRCI, AsynchronousRT;

procedure AsynchronousMain is
RAS : AsynchronousRAS;

RACW : AsynchronousRACW := Create;

begin
-- Asynchronous Dynamically Bound Remote Call (1)

RAS := AsynchronousRCI.Asynchronous’Access;

RAS (0); -- Abbrev for RAS.all (0)

-- Synchronous Dynamically Bound Remote Call (2)

RAS := AsynchronousRCI.Synchronous’Access;

RAS (0);

-- Asynchronous Dynamically Bound Remote Call (3)

Asynchronous (RACW.all);
-- Synchronous Dynamically Bound Remote Call (4)

Synchronous (RACW.all);
end AsynchronousMain;

This feature supports the conventional message passing paradigm. The user must be
aware that this paradigm, and asynchronous remote calls in particular, has several draw-
backs:

• It violates the normal semantics of calls; the caller proceeds without awaiting the return.
The semantics are more similar to a “remote goto” than a remote call

• It prevents easy development and debugging in a non-distributed context

• It can introduce race conditions

To illustrate the latter, let us take the following example:

package Node2 is
pragma Remote_Call_Interface;

procedure Send (X : Integer);

pragma Asynchronous (Send);

end Node2;

package body Node2 is
V : Integer := 0;

procedure Send (X : Integer) is
begin

V := X;

end Send;

end Node2;

Chapter 8: Ada Distributed Systems Annex (DSA) 67

package Node1 is
pragma Remote_Call_Interface;

procedure Send (X : Integer);

pragma Asynchronous (Send);

end Node1;

with Node2;

package body Node1 is
procedure Send (X : Integer) is
begin

Node2.Send (X);

end Send;

end Node1;

with Node1, Node2;

procedure NonDeterministic is
begin

Node1.Send (1);

Node2.Send (2);

end NonDeterministic;

Let us say that Main is configured on Partition 0, Node1 on Partition 1 and Node2 on
Partition 2. If Node1.Send and Node2.Send procedures were synchronous or if no latency
was introduced during network communication, we would have the following RPC order:
Main remotely calls Node1.Send which remotely calls Node2.Send which sets V to 1. Then,
Main remotely calls Node2.Send and sets V to 2.

Now, let us assume that both Send procedures are asynchronous and that the connection
between Partition 1 and Partition 2 is very slow. The following scenario can very well
occur. Main remotely calls Node1.Send and is unblocked. Immediately after this call, Main
remotely calls Node2.Send and sets V to 2. Once this is done, the remote call to Node1.Send
completes on Partition 1 and it remotely calls Node2.Send which sets V to 1.

8.1.7.5 Pragma All Calls Remote

A pragma All Calls Remote in a RCI unit forces remote procedure calls to be routed
through the communication subsystem even for a local call. This eases the debugging
of an application in a non-distributed situation that is very close to the distributed one, be-
cause the communication subsystem (including marshalling and unmarshalling procedures)
can be exercised on a single node.

In some circumstances, a non-distributed application can behave differently from an ap-
plication distributed on only one partition. This can happen when both All Calls Remote
and Asynchronous features are used at the same time (see 〈undefined〉 [Pragma Asyn-
chronous], page 〈undefined〉 for an example). Another circumstance occurs when the mar-
shalling operations raise an exception. In the following example, when unit ACRRCI is a
All Calls Remote package, the program raises Program Error. When unit ACRRCI is no
longer a All Calls Remote package, then the program completes silently.

68 PolyORB User’s Guide

with Ada.Streams; use Ada.Streams;

package ACRRT is
pragma Remote_Types;

type T is private;
private

-- implementation removed

end ACRRT;

package body ACRRT is
procedure Read

(S : access Root_Stream_Type’Class;

X : out T) is
begin

raise Program_Error;

end Read;

procedure Write

(S : access Root_Stream_Type’Class;

X : in T) is
begin

raise Program_Error;

end Write;

end ACRRT;

with ACRRT; use ACRRT;

package ACRRCI is
pragma Remote_Call_Interface;

pragma All_Calls_Remote;

procedure P (X : T);

end ACRRCI;

package body ACRRCI is
procedure P (X : T) is
begin

null;
end P;

end ACRRCI;

with ACRRCI, ACRRT;

procedure ACRMain is
X : ACRRT.T;

begin
ACRRCI.P (X);

end ACRMain;

8.1.7.6 Generic Categorized Units

generic
package GenericRCI is

pragma Remote_Call_Interface;

Chapter 8: Ada Distributed Systems Annex (DSA) 69

procedure P;

end GenericRCI;

with GenericRCI;

package RCIInstantiation is new GenericRCI;

pragma Remote_Call_Interface (RCIInstantiation);

with GenericRCI;

package NormalInstantiation is new GenericRCI;

Generic units may be categorized. Instances do not automatically inherit the categoriza-
tion of their generic units, but they can be categorized explicitly. If they are not, instances
are normal compilation units. Like any other categorized unit, a categorized instance must
be at the library level, and the restrictions of categorized units apply on instantiation (in
particular on generic formal parameters).

8.1.7.7 Categorization Unit Dependencies

Each categorization pragma has very specific visibility rules. As a general rule, RCI > RT
> SP > Pure, where the comparison indicates allowed semantic dependencies. This means
that a Remote Types package can make visible in its specification only Remote Types,
Shared Passive and Pure units.

8.2 Partition Communication Subsystem

8.2.1 Marshalling and Unmarshalling Operations

The Partition Communication Subsystem (PCS) is the runtime library for distributed fea-
tures. It marshals and unmarshals client and server requests into a data stream suitable for
network transmission.

Parameter streams are normally read and written using four attributes:

• Write: write an element into a stream, valid only for constrained types

• Read: read a constrained element from a stream

• Output: same as Write, but write discriminants or array bounds as well if needed

• Input: same as Read, but read discriminants or bounds from the stream (the Input
attribute denotes a function)

An Ada compiler provides default ’Read and ’Write operations. But it is up to the
implementation of the PCS to provide default ’Read and ’Write to ensure proper operation
between heterogeneous architectures (see 〈undefined〉 [Heterogeneous System], page 〈unde-
fined〉).

The user can override these operations, except for predefined types. Overriding with a
custom version provides the user with a way to debug its application (even outside of the
Distributed Systems Annex). On the other hand, remaining with the default implementa-
tion allows the user to take advantage of optimized and portable representations provided
by the PCS.

70 PolyORB User’s Guide

with Ada.Streams; use Ada.Streams;

package New_Integers is
pragma Pure;

type New_Integer is new Integer;

procedure Read

(S : access Root_Stream_Type’Class;

V : out New_Integer);

procedure Write

(S : access Root_Stream_Type’Class;

V : in New_Integer);

for New_Integer’Read use Read;

for New_Integer’Write use Write;

end New_Integers;

package body New_Integers is
procedure Read

(S : access Root_Stream_Type’Class;

V : out New_Integer)

is
B : String := String’Input (S);

begin
V := New_Integer’Value (B);

end Read;

procedure Write

(S : access Root_Stream_Type’Class;

V : in New_Integer)

is
begin

String’Output (S, New_Integer’Image (V));

end Write;

end New_Integers;

The language forces the user to provide Read and Write operations for non-remote ac-
cess types. Transmitting an access value by dumping its content into a stream makes no
sense when the value is going to be transmitted to another partition (with a different mem-
ory space). To transmit non-remote access types see 〈undefined〉 [Transmitting Dynamic
Structure], page 〈undefined〉.

8.2.2 Incorrect Remote Dispatching

When a remote subprogram takes a class wide argument, there is a risk of using an object
of a derived type that will not be clean enough to be transmitted. For example, given a
type called Root Type, if a remote procedure takes a Root Type’Class as an argument,
the user can call it with an instance of Derived Type that is Root Type enriched with a
field of a task type. This will lead to a non-communicable type to be transmitted between
partitions.

To prevent this, paragraph E.4(18) of the Ada Reference Manual explains that any actual
type used as parameter for a remote call whose formal type is a class wide type must be
declared in the visible part of a Pure or Remote Types package. This property also holds

Chapter 8: Ada Distributed Systems Annex (DSA) 71

for remote functions returning class wide types. To summarize, the actual type used should
have been eligible for being declared where the root type has been declared. If a ‘bad’ object
is given to a remote subprogram, Program Error will be raised at the point of the call.

8.2.3 Partition Ids

U’Partition ID identifies the partition where the unit U has been elaborated. For this
purpose, the PCS provides an integer type Partition ID to uniquely designate a partition.
Note that a Partition ID is represented as a universal integer, and has no meaning outside
of the PCS. The RM requires that two partitions of a distributed program have different
Partition ID’s at a given time. A Partition ID may or may not be assigned statically (at
compile or link time). A Partition ID may or may not be related to the physical location
of the partition.

Partition ID’s can be used to check whether a RCI package is configured locally.

with RCI;

with Ada.Text_IO;

procedure Check_PID is
begin

if RCI’Partition_ID = Check_PID’Partition_ID then
Ada.Text_IO.Put_Line ("package RCI is configured locally");

else
Ada.Text_IO.Put_Line ("package RCI is configured remotely");

end if;
end Check_PID;

8.2.4 Concurrent Remote Calls

It is not defined by the PCS specification whether one or more threads of control should
be available to process incoming messages and to wait for their completion. But the PCS
implementation is required to be reentrant, thereby allowing concurrent calls on it to service
concurrent remote subprogram calls into the server partition. This means that at the im-
plementation level the PCS manages a pool of helper tasks. This (apart from performance)
is invisible to the user.

8.2.5 Consistency and Elaboration

A library unit is consistent if the same version of its declaration is used in all units that
reference it. This requirement applies as well to a unit that is referenced in several partitions
of a distributed program. If a shared passive or RCI library unit U is included in some
partition P, It is a bounded error to elaborate another partition P1 of a distributed program
that that depends on a different version of U. As a result of this error, Program Error can
be raised in one or both partitions during elaboration.

U’Version yields a string that identifies the version of the unit declaration and any unit
declaration on which it depends. U’Version Body yields a string that identifies the version
of the unit body. These attributes are used by the PCS to verify the consistency of an
application.

After elaborating the library units, but prior to invoking the main subprogram, the PCS
checks the RCI unit versions, and then accept any incoming RPC. To guarantee that it is

72 PolyORB User’s Guide

safe to call receiving stubs, any incoming RPC is kept pending until the partition completes
its elaboration.

8.2.6 Abortion and Termination

If a construct containing a remote call is aborted, the remote subprogram call is cancelled.
Whether the execution of the remote subprogram is immediately aborted as a result of the
cancellation is implementation defined.

An active partition terminates when its environment task terminates. In other terms, a
partition cannot terminate before the Ada program itself terminates. The standard termi-
nation mechanism applies, but can be extended with extra rules (see 〈undefined〉 [Partition
Attribute Termination], page 〈undefined〉 for examples).

8.3 Most Features in One Example

The example shown on the following figure highlights most of the features of DSA. The
system is based on a set of factories and workers and a storage. Each entity is a partition
itself. A factory hires a worker from a pool of workers (hire - 1) and assigns a job (query -
2) to him. The worker performs the job and saves the result (reply - 3) in a storage common
to all the factories. The worker notifies the factory of the end of his job (notify - 4).

When a worker has completed his job, the result must be saved in a common storage. To
do this, we define a protected area in SP package Storage (see following code). An entryless
protected object ensures atomic access to this area.

package Storage is
pragma Shared_Passive;

protected Queue is
procedure Insert (Q, R : Integer);

procedure Remove

(Q : in Integer;

R : out Integer);

private
-- implementation removed

end Storage;

Chapter 8: Ada Distributed Systems Annex (DSA) 73

Common is a Remote Types package that defines most of the remote services of the
above system (see following code). First, we define a way for the workers to signal the
completion of his job. This callback mechanism is implemented using RAS Notify.

with Storage; use Storage;

package Common is
pragma Remote_Types;

type Notify is
access procedure (Q : Integer);

pragma Asynchronous (Notify);

type Worker is
abstract tagged limited private;

procedure Assign

(W : access Worker;

Q : in Integer;

N : in Notify) is abstract;

type Any_Worker is
access all Worker’Class;

pragma Asynchronous (Any_Worker);

private
-- implementation removed

end Common;

We define an abstract tagged type Worker which is intended to be the root type of the
whole distributed objects hierarchy. Assign allows a factory to specify a job to a worker
and a way for the worker to signal its employer the completion of this job. Any Worker is a
remote access to class wide type (RACW). In other words, it is a reference to a distributed
object of any derived type from Worker class. Note that the two remote access types
(Any Worker and Notify) are declared as asynchronous. Therefore, any override of Assign
will be executed asynchronously. To be asynchronous, an object of type Notify has to be a
reference to an asynchronous procedure.

NewWorker is derived from type Worker and Assign is overridden.

with Common, Storage; use Common, Storage;

package NewWorkers is
pragma Remote_Types;

type NewWorker is new Worker with private;

procedure Assign

(W : access NewWorker;

Q : Integer;

N : Notify);

private
-- implementation removed

end NewWorkers;

The following code shows how to derive a second generation of workers NewNewWorker
from the first generation NewWorker. As mentioned above, this RT package can be du-

74 PolyORB User’s Guide

plicated on several partitions to produce several types of workers and also several remote
workers.

with Common, Storage, NewWorkers; use Common, Storage, NewWorkers;

package NewNewWorkers is
pragma Remote_Types;

type NewNewWorker is new NewWorker with private;

procedure Assign

(W : access NewNewWorker;

Q : Integer;

N : Notify);

private
-- implementation removed

end NewNewWorkers;

In the following code, we define a unique place where workers wait for jobs. Work-
erCity is a Remote Call Interface package with services to hire and free workers. Unlike
Remote Types packages, Remote Call Interface packages cannot be duplicated, and are
assigned to one specific partition.

with Common; use Common;

package WorkerCity is
pragma Remote_Call_Interface;

procedure Insert (W : in Any_Worker);

procedure Remove (W : out Any_Worker);

end WorkerCity;

In order to use even more DSA features, Factory is defined as a generic RCI package (see
sample above). Any instantiation defines a new factory (see sample above). To be RCI,
this instantiation has to be categorized once again.

with Storage; use Storage;

generic
package Factory is

pragma Remote_Call_Interface;

procedure Notify (Q : Integer);

pragma Asynchronous (Notify);

end Factory;

with Factory;

package NewFactory is new Factory;

pragma Remote_Call_Interface (NewFactory);

8.4 A small example of a DSA application

In this section we will write a very simple client-server application using PolyORB DSA. The
server will provide a Remote Call Interface composed of a single Echo_String function
that will take a String and return it to the caller.

Chapter 8: Ada Distributed Systems Annex (DSA) 75

Here is the code for the server:

‘server.ads’:

--

-- --

-- POLYORB COMPONENTS --

-- --

-- S E R V E R --

-- --

-- S p e c --

-- --

-- Copyright (C) 2011-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

package Server is
pragma Remote_Call_Interface;

function Echo_String (S : String) return String;

end Server;

‘server.adb’:

--

-- --

-- POLYORB COMPONENTS --

-- --

-- S E R V E R --

-- --

-- B o d y --

-- --

-- Copyright (C) 2011-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

76 PolyORB User’s Guide

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

package body Server is

function Echo_String (S : String) return String is
begin

return S;

end Echo_String;

end Server;

And here is the code for the client:

‘client.adb’:

--

-- --

-- POLYORB COMPONENTS --

-- --

-- C L I E N T --

-- --

-- B o d y --

-- --

-- Copyright (C) 2011-2012, Free Software Foundation, Inc. --

-- --

-- This is free software; you can redistribute it and/or modify it under --

-- terms of the GNU General Public License as published by the Free Soft- --

-- ware Foundation; either version 3, or (at your option) any later ver- --

-- sion. This software is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. --

-- --

-- You should have received a copy of the GNU General Public License and --

-- a copy of the GCC Runtime Library Exception along with this program; --

-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --

-- <http://www.gnu.org/licenses/>. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@adacore.com) --

-- --

--

with Ada.Exceptions;

with Ada.Text_IO; use Ada.Text_IO;

with Server;

procedure Client is
begin

Put_Line ("The client has started!");

Put ("Thus spake my server upon me:");

Chapter 8: Ada Distributed Systems Annex (DSA) 77

Put_Line (Server.Echo_String ("Hi!"));

exception
when E : others =>

Put_Line ("Got " & Ada.Exceptions.Exception_Information (E));

end Client;

For more details about the Distributed Systems Annex, see the Ada Reference Manual
[ISO06].

8.5 Building a DSA application with PolyORB

This section describes how to build a complete distributed Ada application using the Poly-
ORB implementation of the DSA.

8.5.1 Introduction to PolyORB/DSA

A distributed Ada application comprises a number of partitions which can be executed
concurrently on the same machine or, and this is the interesting part, can be distributed on
a network of machines. The way in which partitions communicate is described in Annex E
of the Ada Reference Manual.

A partition is a set of compilation units that are linked together to produce an executable
binary. A distributed program comprises two or more communicating partitions.

The Distributed Systems Annex (DSA) does not describe how a distributed application
should be configured. It is up to the user to define what are the partitions in his program
and on which machines they should be executed.

The tool po_gnatdist and its configuration language allows the user to partition his
program and to specify the machines on which the individual partitions are to execute.

po_gnatdist reads a configuration file (whose syntax is described in section 〈unde-
fined〉 [The Configuration Language], page 〈undefined〉) and builds several executables, one
for each partition. It also takes care of launching the different partitions (default) with
parameters that can be specific to each partition.

8.5.2 How to Configure a Distributed Application

• Write a non-distributed Ada application, to get familiar with the PolyORB environ-
ment. Use the categorization pragmas to specify the packages that can be called re-
motely.

• When this non-distributed application is working, write a configuration file that maps
the user categorized packages onto specific partitions. This concerns particularly remote
call interface and remote types packages. Specify the main procedure of the distributed
application (see 〈undefined〉 [Partition Attribute Main], page 〈undefined〉).

• Type ‘po gnatdist <configuration-file>’.

• Start the distributed application by invoking the start-up shell script or default Ada
program (depending on the Starter option, see 〈undefined〉 [Pragma Starter], page 〈un-
defined〉).

8.5.3 Gnatdist Command Line Options

78 PolyORB User’s Guide

po_gnatdist [switches] configuration-file [list-of-partitions]

The switches of po_gnatdist are, for the time being, exactly the same as those of
gnatmake, with the addition of --PCS, which allows the user to override the default selection
of distribution runtime library (PCS). By default po_gnatdist outputs a configuration
report and the actions performed. The switch -n allows po_gnatdist to skip the first stage
of recompilation of the non-distributed application.

The names of all configuration files must have the suffix .cfg. There may be several
configuration files for the same distributed application, as the user may want to use different
distributed configurations depending on load and other characteristics of the computing
environment.

If a list of partitions is provided on the command line of the po gnatdist command, only
these partitions will be built. In the following configuration example, the user can type :

po_gnatdist <configuration> <partition_2> <partition_3>

8.5.4 The Configuration Language

The configuration language is Ada-like. As the capabilities of PolyORB will evolve, so
will this configuration language. Most of the attributes and pragmas can be overridden at
run-time by command line arguments or environment variables.

8.5.4.1 Language Keywords

All the Ada keywords are reserved keywords of the configuration language. po_gnatdist

generates full Ada code in order to build the different executables. To avoid naming conflicts
between Ada and the configuration language, all the Ada keywords have been reserved even
if they are not used in the configuration language.

In addition, the following keywords are defined:

• configuration to encapsulate a configuration

• partition that is a predefined type to declare partitions

8.5.4.2 Pragmas and Representation Clauses

It is possible to modify the default behavior of the configuration via a pragma definition.

PRAGMA ::=

pragma PRAGMA_NAME [(PRAGMA_ARGUMENTS)];

It is also possible to modify the default behavior of all the partitions via an attribute
definition clause applied to the predefined type Partition.

REPRESENTATION_CLAUSE ::=

for Partition’ATTRIBUTE_NAME use ATTRIBUTE_ARGUMENTS;

It is also possible to modify the default behavior of a given partition via an attribute
definition clause applied to the partition itself.

Chapter 8: Ada Distributed Systems Annex (DSA) 79

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’ATTRIBUTE_NAME use ATTRIBUTE_ARGUMENTS;

When an attribute definition clause is applied to a given object of a predefined type, this
overrides any attribute definition of the predefined type. In the next sections, attributes
apply to a given object rather than to the predefined type.

8.5.4.3 Configuration Declaration

The distribution of one or several Ada programs is described by a single configuration unit.
This configuration unit has a specification part and an optional body part. A configuration
unit is declared as an Ada procedure would be. The keyword configuration is reserved for
this purpose.

CONFIGURATION_UNIT ::=

configuration IDENTIFIER is
DECLARATIVE_PART

[begin
SEQUENCE_OF_STATEMENTS]

end [IDENTIFIER];

8.5.4.4 Partition Declaration

In the declarative part, the user declares his partitions and can change their default behavior.
po_gnatdist provides a predefined type Partition. The user can declare a list of partitions
and can also initialize these partitions with an initial list of Ada units.

DECLARATIVE_PART ::= {DECLARATIVE_ITEM}

DECLARATIVE_ITEM ::=

PARTITION_DECLARATION

| REPRESENTATION_CLAUSE

| SUBPROGRAM_DECLARATION

| PRAGMA

SUBPROGRAM_DECLARATION ::=

MAIN_PROCEDURE_DECLARATION

| PROCEDURE_DECLARATION

| FUNCTION_DECLARATION

PARTITION_DECLARATION ::=

DEFINING_IDENTIFIER_LIST : Partition

[:= ENUMERATION_OF_ADA_UNITS];

DEFINING_IDENTIFIER_LIST ::=

DEFINING_IDENTIFIER {, DEFINING_IDENTIFIER}

STATEMENT ::=

IDENTIFIER := ENUMERATION_OF_ADA_UNITS;

SEQUENCE_OF_STATEMENTS ::=

STATEMENT {STATEMENT}

80 PolyORB User’s Guide

Once declared, a partition is an empty list of Ada units. The operator ":=" adds the
Ada units list on the right side to the current list of Ada units that are already mapped to
the partition. This is a non-destructive operation. Whether a unit is a relevant Ada unit
or not is checked later on by the back-end of po_gnatdist. These assignments can occur
in the declarative part as well as in the body part.

ENUMERATION_OF_ADA_UNITS ::= ({ADA_UNIT {, ADA_UNIT}});

8.5.4.5 Location Declaration

There are several kinds of location in the configuration language. We shall present them in
the next subsections, but here is a short overview of these locations:

• Boot Location defines the network locations to use to communicate with the the boot
server during the boot phase

• Self Location defines the network locations to use by others to communicate with the
current partition

• Data Location defines the data storage location used by the current partition to map
its shared passive units

A location is composed of a support name and a specific data for this support. For
instance, a network location is composed of a protocol name like tcp and a protocol data
like <machine>:<port>. A storage location is composed of a storage support name like dfs
(for Distributed File System) and a storage support data like a directory /dfs/glade.

LOCATION ::= ([Support_Name =>] STRING_LITERAL,

[Support_Data =>] STRING_LITERAL)

LOCATION_LIST ::= (LOCATION [,LOCATION)])

Note that a location may have an undefined or incomplete support data. In this case,
the support is free to compute a support data. For instance, ("tcp", "") specifies that the
protocol is used but that the protocol data <machine>:<port> is to be determined by the
protocol itself.

A location or a list of locations can be can be concatenated into a single string to be used
as a command line option or an environment variable (see 〈undefined〉 [Partition Runtime
Parameters], page 〈undefined〉).

If a partition wants to communicate with another partition once the location list of the
latter is known, the caller will use the first location of the callee whose protocol is locally
available. For instance, if a callee exports three locations ("N1", "D1"), ("N2", "D2") and
("N3", "D3"), a caller with protocols N2 and N3 locally available will try to communicate
with the callee using the protocol of name N2 and of specific data D2.

8.5.4.6 Partition Attribute Main

Basically, the distributed system annex (DSA) helps the user in building a distributed
application from a non-distributed application (Of course, this is not the only possible
model offered by DSA). The user can design, implement and test his application in a non-
distributed environment, and then should be able to switch from the non-distributed case

Chapter 8: Ada Distributed Systems Annex (DSA) 81

to a distributed case. As mentioned before, this two-phase design approach has several
advantages.

In a non-distributed case, the user executes only one main executable possibly with a
name corresponding to the main unit name of his application. With po_gnatdist, in a
distributed case, a main executable with a name corresponding to the main unit name is
responsible for starting the entire distributed application. Therefore, the user can start his
application the same way he used to do in the non-distributed case.

For this reason, the configuration language provides a way to declare the main procedure
of the non-distributed application.

MAIN_PROCEDURE_IDENTIFIER ::=

ADA_UNIT

MAIN_PROCEDURE_DECLARATION ::=

procedure MAIN_PROCEDURE_IDENTIFIER is in PARTITION_IDENTIFIER;

In this case, the partition in which the main procedure has been mapped is called the
main partition. It includes in its code a call to this main procedure. The main partition
has an additional specific role, because the boot server is located on it (see 〈undefined〉
[PolyORB PCS Internals], page 〈undefined〉).

The main procedures for the other partitions have a null body. However, the user can
also modify this behavior by providing an alternate main procedure. To do this, an alternate
main subprogram has to be declared and assigned to the partition Main attribute.

PROCEDURE_DECLARATION ::=

procedure PROCEDURE_IDENTIFIER;

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Main use PROCEDURE_IDENTIFIER;

8.5.4.7 Pragma Starter

As a default, the main executable is a full Ada starter procedure. That means that it
launches all the other partitions from an Ada program. The pragma Starter allows the user
to ask for one starter or another. When the partition host is not statically defined (see
〈undefined〉 [Partition Attribute Host], page 〈undefined〉), the starter subprogram will ask
for it interactively when it is executed.

CONVENTION_LITERAL ::= Ada |

Shell |

None

PRAGMA ::=

pragma Starter ([Convention =>] CONVENTION_LITERAL);

• The default method consists in launching partitions from the main partition Ada sub-
program using a remote shell (see below).

• The user may ask for a Shell script that starts the different partitions one at a time on
the appropriate remote machines, using a remote shell. As the Ada starter, the Shell

82 PolyORB User’s Guide

script starter ask for partition hosts interactively when a partition host is not already
defined. Having a textual shell script allows the user to edit it and to modify it easily.

• The user may ask for a None starter. In this case, it is up to the user to launch the
different partitions.

8.5.4.8 Pragma Remote Shell

When pragma Starter is Ada or Shell, the main partition launches the other partitions. The
remote shell used as a default is determined during PolyORB configuration and installa-
tion. It is either rsh, remsh or the argument passed to –with-rshcmd=[ARG]. The pragma
Remote Shell allows the user to override the default.

PRAGMA ::=

pragma Remote_Shell

([Command =>] STRING_LITERAL,

[Options =>] STRING_LITERAL);

The Command parameter indicates the name of the remote shell command name and the
Options parameter corresponds to the additional flags to pass to the remote shell command.

8.5.4.9 Pragma Name Server

NAME_SERVER_LITERAL ::= Embedded |

Standalone |

None

PRAGMA ::=

pragma Name_Server ([Name_Server_Kind =>] NAME_SERVER_LITERAL);

By default, partitions in a PolyORB/DSA application rely on an external, stand-alone
name server launched by the user, and whose location is retrieved from runtime configura-
tion.

A pragma Name Server with parameter Embedded can be used to request the PCS to
instead set up a name server within the main partition. If the Ada starter is used, the
location of the name server is passed automatically to slave partitions.

A pragma Name Server with parameter None specifies that no name server is present
in the application. In this case the location of each partition must be specified in the
po_gnatdist configuration file, or in PolyORB run-time configuration.

8.5.4.10 Pragma Boot Location

When a partition starts executing, one of the first steps consists in a connection to the boot
server. This pragma provides one or more locations in order to get a connection with the
boot server.

PRAGMA ::=

PRAGMA_WITH_NAME_AND_DATA

| PRAGMA_WITH_LOCATION

| PRAGMA_WITH_LOCATION_LIST

PRAGMA_WITH_NAME_AND_DATA ::=

Chapter 8: Ada Distributed Systems Annex (DSA) 83

pragma Boot_Location

([Protocol_Name =>] STRING_LITERAL,

[Protocol_Data =>] STRING_LITERAL);

PRAGMA_WITH_LOCATION ::=

pragma Boot_Location ([Location =>] LOCATION);

PRAGMA_WITH_LOCATION_LIST ::=

pragma Boot_Location ([Locations =>] LOCATION_LIST);

This boot server location can be concatenated into a single string to be used as a com-
mand line option or an environment variable (see 〈undefined〉 [Partition Runtime Parame-
ters], page 〈undefined〉).

Note: pragma Boot Server is now obsolete. It is recommended to use pragma
Boot Location. This wording is more consistent with the rest of the configuration
language (see Self Location 〈undefined〉 [Partition Option self location], page 〈undefined〉
and Data Location 〈undefined〉 [Partition Option data location], page 〈undefined〉).

8.5.4.11 Partition Attribute Self Location

Except for the boot partition on which the boot server is located, a partition is reachable
through a dynamically computed location (for instance, the partition looks for a free port
when the protocol is tcp). The user may want such a partition to be reachable from a
given fixed location defined in configuration. This is achieved by setting the Self Location
attribute for the partition. In particular a location must be defined for the main partition,
and each partition on which an RCI is assigned, if no name server is used.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Self_Location use LOCATION;

| for PARTITION_IDENTIFIER’Self_Location use LOCATION_LIST;

If the attribute definition clause applies to the predefined type Partition, the locations
have to be incomplete. Otherwise, all the partitions would be reachable through the same
locations, which is definitively not recommended.

When an attribute self location definition clause applies to a given partition, the pro-
tocol units needed for this partition are linked in the executable. By default, when the
self location attribute is not redefined, the default protocol used by the partition and loaded
in its executable is the tcp protocol.

8.5.4.12 Partition Attribute Passive

By default, a partition is an active partition. This attribute allows to define a passive
partition. In this case, po_gnatdist checks that only shared passive units are mapped on
the partition. As this partition cannot register itself, its location is hard-coded in all the
partitions that depend on its shared passive units.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Passive use BOOLEAN_LITERAL;

84 PolyORB User’s Guide

8.5.4.13 Partition Attribute Data Location

Shared passive units can be mapped on passive or active partitions. In both cases, it is
possible to choose the data storage support and to configure it with the specific data of a
location.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Data_Location use LOCATION;

| for PARTITION_IDENTIFIER’Data_Location use LOCATION_LIST;

When an attribute data location definition clause applies to a given partition, the data
storage support units needed for this partition are linked in the executable. By default,
when the data location attribute is not redefined, the default storage support used by the
partition and loaded in its executable is the dfs support. dfs, Distributed File System, is a
storage support available as soon as files can be shared between partitions.

It is not possible to map the different shared passive units of a given partition on different
data storage locations. PolyORB requires all the shared passive units of a given partition
to be mapped on the same storage support. When the attribute data location applied to
a partition is a list of locations, all the storage support units needed for this partition are
linked in the executable. By default, only the first one is activated. The user can choose to
change the activated support by another one specified in the location list. This can be done
using the partition option data location (see 〈undefined〉 [Partition Option data location],
page 〈undefined〉).

As passive partitions cannot be activated, it is not possible to provide a location list as
a data location attribute. It is not possible to change dynamically its location either.

8.5.4.14 Partition Attribute Allow Light PCS

On some circumstances, po_gnatdist can detect that a partition does not need the full
PCS functionalities. This occurs in particular when the partition does use any task, any
RCI unit or any RACW object. Therefore, the partition does not receive any message that
is not a reply to a previous request. In this case, the PCS does not drag in the tasking
library and a light PCS is linked in the partition executable. This specific configuration is
automatically determined by po_gnatdist with the ALI file information.

This optimization can be inappropriate especially when the user wants to use the "Dis-
tributed Shared Memory" storage support which runs Li and Hudak’s algorithm. In this
case, messages are exchanged without being replies to previously sent requests and the nor-
mal PCS should be linked instead of the light one. Note also that po_gnatdist cannot know
for sure that the DSM storage support assigned at configuration time is used at run-time.
The user can configure this optimization with the following attribute.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Allow_Light_PCS use BOOLEAN_LITERAL;

8.5.4.15 Pragma Priority

It might be necessary for real-time applications to get control over the priority at which a
remote procedure call is executed. By default, the PCS sends the priority of the client to

Chapter 8: Ada Distributed Systems Annex (DSA) 85

the server which sets the priority of an anonymous task to this value. The pragma Priority
allows to decide which priority policy should apply in the distributed application.

PRIORITY_POLICY_LITERAL ::= Server_Declared

| Client_Propagated

PRAGMA ::=

pragma Priority ([Policy =>] PRIORITY_POLICY_LITERAL);

• The default policy Client Propagated consists in propagating the client priority to the
server.

• The policy Server Declared consists in executing the remote procedure call at a priority
specific to the partition. This priority can be set using the partition attribute Priority.

8.5.4.16 Partition Attribute Priority

This attribute allows to set the priority at which level a remote procedure call is executed
on a server when the priority policy is Server Declared. By default, the default priority of
the anonymous task is the default task priority.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Priority use INTEGER_LITERAL;

8.5.4.17 Partition Attribute Host

Logical nodes (or partitions) can be mapped onto physical nodes. The host-name can be
either a static or dynamic value. In case of a static value, the expression is a string literal.
In case of a dynamic value, the representation clause argument is a function that accepts
a string as parameter and that returns a string value. When the function is called, the
partition name is passed as parameter and the host-name is returned.

FUNCTION_DECLARATION ::=

function FUNCTION_IDENTIFIER

(PARAMETER_IDENTIFIER : [in] String)

return String;

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Host use STRING_LITERAL;

| for PARTITION_IDENTIFIER’Host use FUNCTION_IDENTIFIER;

The signature of the function must be the following : it takes a string parameter which
corresponds to a partition name. It returns a string parameter which corresponds to the
host-name. The function that returns the host-name can be an Ada function (default) or a
shell script. A pragma Import is used to import a function defined in Ada or in Shell (see
〈undefined〉 [Pragma Import], page 〈undefined〉).

This function is called on the main partition by the PCS to launch a given partition on a
given logical node. In case of load balancing, the function can return the most appropriate
among a set of hosts.

86 PolyORB User’s Guide

8.5.4.18 Pragma Import

Two kinds of subprograms are allowed in the configuration language. A main procedure is
used as a partition Main attribute and a function is used as a partition Host attribute.

PROCEDURE_DECLARATION ::=

procedure PROCEDURE_IDENTIFIER;

FUNCTION_DECLARATION ::=

function FUNCTION_IDENTIFIER

(PARAMETER_IDENTIFIER : [in] String)

return String;

The function can be an Ada function (default) or a shell script. To import a shell script,
the pragma Import must be used:

PRAGMA ::=

pragma Import

([Entity =>] FUNCTION_IDENTIFIER,

[Convention =>] CONVENTION_LITERAL,

[External_Name =>] STRING_LITERAL);

pragma Import (Best_Node, Shell, "best-node");

In this case, the PCS invokes the shell script with the partition name as a command line
argument. The shell script is supposed to return the partition host-name (see 〈undefined〉
[Partition Attribute Host], page 〈undefined〉).

8.5.4.19 Partition Attribute Directory

Directory allows the user to specify in which directory the partition executable is stored.
This can be useful in heterogeneous systems when the user wants to store executables for
the same target in a given directory. Specifying the directory is also useful if the partition
executable is not directly visible from the user environment. For instance, when a remote
command like rsh is invoked, the executable directory has to be present in the user path.
If the Directory attribute has been specified, the executable full name is used.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Directory use STRING_LITERAL;

8.5.4.20 Partition Attribute Command Line

The user may want to pass arguments on the command line of a partition. However, when
a partition is launched automatically by the main partition, the partition command line
includes only PolyORB arguments. To add arguments on the command line, the user can
take advantage of the following attribute.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Command_Line use STRING_LITERAL;

Chapter 8: Ada Distributed Systems Annex (DSA) 87

8.5.4.21 Partition Attribute Environment Variables

The attribute Environment Variables allows the user to specify a list of environment vari-
ables that should be passed from the main partition to slave partitions when using a gen-
erated (shell or Ada) launcher.

This attribute can be applied to all partitions by defining it for the predefined type
Partition, or to a specific partition. Note that in the latter case, the list does not replace
the default one but instead complements it (i.e. variables specified for Partition are passed
in addition to the partition specific ones).

Use of this features requires that remote nodes provide the POSIX env(1) command.

STRING_LITERAL_LIST ::=

STRING_LITERAL

| STRING_LITERAL, STRING_LITERAL_LIST

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Environment_Variables use (STRING_LITERAL_LIST);

8.5.4.22 Partition Attribute Termination

The Ada Reference Manual does not provide any specific rule to handle global termination
of a distributed application (see 〈undefined〉 [Abortion and Termination], page 〈undefined〉).

In PolyORB/DSA, by default, a set of partitions terminates when each partition can
terminate and when no message remains to be delivered. A distributed algorithm that
checks for this global condition is activated periodically by the main boot server.

TERMINATION_LITERAL ::= Global_Termination |

Local_Termination |

Deferred_Termination

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Termination use TERMINATION_LITERAL;

• When a partition is configured with the global termination policy, it terminates as
soon as the main boot server sends a signal to do so. The main boot server checks
periodically whether the application can terminate. When all partitions are ready to
terminate, the main boot server sends to each partition a termination request. The
global termination policy is the default policy.

• The deferred termination policy is very similar to the global termination. The only
difference is that when a partition with a deferred termination policy receives a termi-
nation request, it just ignores it. This policy allows a partition to run forever without
preventing a set of partitions from terminating.

• When a partition is configured with the local termination policy, it terminates as soon as
the classical Ada termination is detected by the partition. It means that this partition
does not wait for the termination request of the main boot server.

8.5.4.23 Partition Attribute Reconnection

When no RCI package is configured on a partition, such a partition can be launched several
times without any problem. When one or more RCI packages are configured on a partition,

88 PolyORB User’s Guide

such a partition cannot be launched more than once. If this partition were to be launched
repeatedly, it would not be possible to decide which partition instance should execute a
remote procedure call.

When a partition crashes or is stopped, one may want to restart this partition and
possibly restore its state - with Shared Passive packages, for instance. In such a situation,
the partition is already known to other partitions and possibly marked as a dead partition.
Several policies can be selected:

RECONNECTION_LITERAL ::= Reject_On_Restart |

Fail_Until_Restart |

Block_Until_Restart

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Reconnection use RECONNECTION_LITERAL;

• When this partition is configured with the Reject On Restart reconnection policy, the
dead partition is kept dead and any attempt to restart it fails. Any remote call to
a subprogram located on this partition results in a Communication Error exception.
The Reject On Restart policy is the default policy.

• When this partition is configured with the Fail Until Restart reconnection policy, the
dead partition can be restarted. Any remote call to a subprogram located on this
partition results in an exception Communication Error as long as this partition has
not been restarted. As soon as the partition is restarted, remote calls to this partition
are executed normally.

• When this partition is configured with the Block Until Restart reconnection policy, the
dead partition partition can be restarted. Any remote call to a subprogram located on
this partition is suspended until the partition is restarted. As soon as the partition is
restarted, remote calls to this partition are executed normally. The suspended remote
procedure calls to this partition are resumed.

8.5.4.24 Pragma Version

A library unit is consistent if the same version of its declaration is used throughout (see
〈undefined〉 [Consistency and Elaboration], page 〈undefined〉). It can be useful to deactivate
these checks, especially when the user wants to be able to update a server without updating
a client.

PRAGMA ::=

pragma Version ([Check =>] BOOLEAN_LITERAL);

8.5.4.25 Partition Attribute Task Pool

When multiple remote subprogram calls occur on the same partition, they are handled by
several anonymous tasks. These tasks can be allocated dynamically or re-used from a pool
of (preallocated) tasks. When a remote subprogram call is completed, the anonymous task
can be deallocated or queued in a pool in order to be re-used for further remote subprogram
calls. The number of tasks in the anonymous tasks pool can be configured by means of three
independent parameters.

Chapter 8: Ada Distributed Systems Annex (DSA) 89

• The task pool minimum size indicates the number of anonymous tasks preallocated and
always available in the PCS. Preallocating anonymous tasks can be useful in real-time
systems to prevent task dynamic allocation.

• The task pool high size is a ceiling. When a remote subprogram call is completed, its
anonymous task is deallocated if the number of tasks already in the pool is greater
than the ceiling. If not, then the task is queued in the pool.

• The task pool maximum size indicates the maximum number of anonymous tasks in
the PCS. In other words, it provides a way to limit the number of remote calls in the
PCS. When a RPC request is received, if the number of active remote calls is greater
than the task pool maximum size, then the request is kept pending until an anonymous
task completes its own remote call and becomes available.

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’Task_Pool use TASK_POOL_SIZE_ARRAY;

TASK_POOL_SIZE_ARRAY ::=

(NATURAL_LITERAL, -- Task Pool Minimum Size

NATURAL_LITERAL, -- Task Pool High Size

NATURAL_LITERAL); -- Task Pool Maximum Size

In order to have only one active remote call at a time, the task pool configuration is
declared as follows:

for Partition’Task_Pool use (0, 0, 1);

8.5.4.26 Partition Attribute ORB Tasking Policy

By default, the Thread Pool ORB tasking policy is used for all partitions. This attribute
allows selection of an alternate policy among those provided by PolyORB (see 〈undefined〉
[PolyORB ORB Tasking policies], page 〈undefined〉) for each partition.

ORB_TASKING_POLICY_LITERAL ::= Thread_Pool |

Thread_Per_Session |

Thread_Per_Request

REPRESENTATION_CLAUSE ::=

for PARTITION_IDENTIFIER’ORB_Tasking_Policy use ORB_TASKING_POLICY_LITERAL;

Note: 〈undefined〉 [Partition Attribute Task Pool], page 〈undefined〉 has no effect when
another policy than Thread Pool is activated.

8.5.4.27 A Complete Example

Almost every keyword and construct defined in the configuration language has been used
in the following sample configuration file.

configuration MyConfig is

Partition_1 : Partition := ();

procedure Master_Procedure is in Partition_1;

Partition_2, Partition_3 : Partition;

90 PolyORB User’s Guide

for Partition_2’Host use "foo.bar.com";

function Best_Node (Partition_Name : String) return String;

pragma Import (Shell, Best_Node, "best-node");

for Partition_3’Host use Best_Node;

Partition_4 : Partition := (RCI_B5);

for Partition_1’Directory use "/usr/you/test/bin";

for Partition’Directory use "bin";

procedure Another_Main;

for Partition_3’Main use Another_Main;

for Partition_3’Reconnection use Block_Until_Restart;

for Partition_4’Command_Line use "-v";

for Partition_4’Termination use Local_Termination;

pragma Starter (Convention => Ada);

pragma Boot_Server

(Protocol_Name => "tcp",

Protocol_Data => "‘hostname‘:‘unused-port‘");

pragma Version (False);

begin
Partition_2 := (RCI_B2, RCI_B4, Normal);

Partition_3 := (RCI_B3);

end MyConfig;

1. Line 01 Typically, after having created the following configuration file the user types:

po_gnatdist myconfig.cfg

If the user wants to build only some partitions then he will list the partitions to build
on the po_gnatdist command line as follows:

po_gnatdist myconfig.cfg partition_2 partition_3

The name of the file prefix must be the same as the name of the configuration unit,
in this example myconfig.cfg. The file suffix must be cfg. For a given distributed
application the user can have as many different configuration files as desired.

2. Line 04 Partition 1 contains no RCI package. However, it will contain the main pro-
cedure of the distributed application, called Master Procedure in this example. If the
line procedure Master Procedure is in Partition 1; was missing, Partition 1 would be
completely empty. This is forbidden, because a partition has to contain at least one
library unit.

po_gnatdist produces an executable with the name of Master Procedure which will
start the various partitions on their host machines in the background. The main par-
tition is launched in foreground. Note that by killing this main procedure the whole
distributed application is terminated.

Chapter 8: Ada Distributed Systems Annex (DSA) 91

3. Line 08 Specify the host on which to run partition 2.

4. Line 12 Use the value returned by a program to figure out at execution time the name
of the host on which partition 3 should execute. For instance, execute the shell script
best-node which takes the partition name as parameter and returns a string giving
the name of the machine on which partition 3 should be launched.

5. Line 14 Partition 4 contains one RCI package RCI B5 No host is specified for this
partition. The startup script will ask for it interactively when it is executed.

6. Line 16 Specify the directory in which the executable of partition partition 1 will be
stored.

7. Line 17 Specify the directory in which all the partition executables will be stored (except
partition 1, see 〈undefined〉 [Pragmas and Representation Clauses], page 〈undefined〉).
Default is the current directory.

8. Line 20 Specify the partition main subprogram to use in a given partition.

9. Line 22 Specify a reconnection policy in case of a crash of Partition 3. Any attempt to
reconnect to Partition 3 when this partition is dead will be blocked until Partition 3
restarts. By default, any restart is rejected (Reject On Restart). Another policy is
to raise Communication Error on any reconnection attempt until Partition 3 has been
restarted.

10. Line 23 Specify additional arguments to pass on the command line when a given par-
tition is launched.

11. Line 24 Specify a termination mechanism for partition 4. The default is to compute
a global distributed termination. When Local Termination is specified a partition
terminates as soon as local termination is detected (standard Ada termination).

12. Line 26 Specify the kind of startup method the user wants. There are 3 possibilities:
Shell, Ada and None. Specifying Shell builds a shell script. All the partitions will
be launched from a shell script. If Ada is chosen, then the main Ada procedure itself
is used to launch the various partitions. If method None is chosen, then no launch
method is used and the user must start each partition manually.

If no starter is given, then an Ada starter will be used.

In this example, Partition 2, Partitions 3 and Partition 4 will be started from Parti-
tion 1 (ie from the Ada procedure Master Procedure).

13. Line 30 Specify the use of a particular boot server.

14. Line 32 It is a bounded error to elaborate a partition of a distributed program that
contains a compilation unit that depends on a different version of the declaration of
an RCI library unit than the one included in the partition to which the RCI library
unit was assigned. When the pragma Version is set to False, no consistency check is
performed.

15. Line 34 The configuration body is optional. The user may have fully described his
configuration in the declaration part.

16. Line 35 Partition 2 contains two RCI packages RCI B2 and RCI B4 and a normal
package. A normal package is not categorized.

17. Line 36 Partition 3 contains one RCI package RCI B3

92 PolyORB User’s Guide

8.5.5 Partition Runtime Parameters

You can adjust some parameters of your DSA applications using the PolyORB configuration
file, ‘polyorb.conf’. The parameters relevant to the Ada Distributed Systems Annex are
specified in the [dsa] section.

See 〈undefined〉 [Run-time configuration], page 〈undefined〉 for complete documentation
of PolyORB’s runtime configuration facilities.

name_service = [IOR/corbaloc]

You can set this parameter instead of the environment variable POLYORB_DSA_
NAME_SERVICE. Though if you use a Starter, ensure that this parameter is set
for all the partitions, as this is not done automatically as for the POLYORB_DSA_
NAME_SERVICE environment variable.

max_failed_requests = [integer]

Each partition will attempt a given number of requests to the name server
before failing. This allows some time for every partition to register in the name
server.

delay_between_failed_requests = [duration in milliseconds]

As above, only this specifies the delay between requests.

termination_initiator = [true/false]

Is this partition a termination initiator.

termination_policy =

[global_termination/deferred_termination/local_termination]

The termination policy for this partition.

tm_time_between_waves = [duration in milliseconds]

The delay between termination waves.

tm_time_before_start = [duration in milliseconds]

The delay before the termination manager starts sending waves.

detach = [true/false]

If true, the partition will be detached.

rsh_options = [string]

Options passed to the rsh command when using the module polyorb.dsa p-
remote launch

rsh_command = [string]

Which command should the module polyorb.dsa p-remote launch use to spawn
remote programs.

8.5.6 Gnatdist Internals

Here is what goes on in po_gnatdist when building a distributed application:

• Each compilation unit in the program is compiled into an object module (as for non
distributed applications). This is achieved by calling gnatmake on the sources of the
various partitions.

Chapter 8: Ada Distributed Systems Annex (DSA) 93

• Stubs and skeletons are compiled into object modules (these are pieces of code that
allow a partition running on machine A to communicate with a partition running on
machine B). Several timestamp checks are performed to avoid useless code recompila-
tion and stub generation.

• po_gnatdist performs a number of consistency checks. For instance it checks that all
packages marked as remote call interface (RCI) and shared passive (SP) are mapped
onto partitions. It also checks that a RCI or SP package is mapped onto only one
partition.

• Finally, the executables for each partition in the program are created. The code to
launch partitions is embedded in the main partition except if another option has been
specified (see 〈undefined〉 [Pragma Starter], page 〈undefined〉). In this case, a shell
script (or nothing) is generated to start the partitions on the appropriate machines.
This is specially useful when one wants to write client / server applications where the
number of instances of the partition is unknown.

All Gnatdist intermediate files (object files, etc) are stored under a common directory
named "dsa". The user may remove this whole directory and its content when he does not
intend to rebuild his distributed applications.

8.5.7 PolyORB PCS Internals

This section provides notes on the PolyORB implementation of the DSA PCS. Some of
these features are not configurable by the user.

8.5.7.1 Application Startup

A name server normally needs to be started prior to starting any application partition. Once
the name server is started, its location must be passed to all partitions as the name_service
runtime parameter in the [dsa] section of the configuration. When using an Ada starter,
it is sufficient to pass the name server location to the starter, and it will be propagated
automatically to all partitions. When using an embedded name server, the name server is
part of the main partition, and does not need to be passed explicitly.

Upon elaboration, each partition registers its RCI packages with the name server. Once
this is done, remote calls to RCI subprograms can proceed. Partitions cache the replies
from the name server so that during the course of normal execution, inter-partition calls
only involve the caller and callee partitions (not the name server).

When the name server kind is set to None, no name server is started, and no attempt
is made to register RCI units. Their locations must then be set in the po_gnatdist

configuration file using Self Location attributes for all partitions, or overridden in
run-time configuration by setting the <partition>’location parameter in the [dsa]

section. A location pair (<protocol-name>, <protocol-data>) is encoded as a URI:
<protocol-name>://<protocol-data>.

For example, to specify that a partition server_part is to be reachable using TCP on
host somehost, port 5555, either use the following setting in the gnatdist configuration
file:

for server_part’Self_Location use ("tcp", "somehost:5555");

or the following settings in PolyORB runtime configuration:

94 PolyORB User’s Guide

[dsa]

server_part’location=tcp://somehost:5555

RCI units then act as “clearinghouses” for other partitions to exchange RACWs and set
up dynamic communication paths.

8.5.7.2 Heterogeneous System

The GNAT environment provides default stream attributes, except for non-remote access
types (see 〈undefined〉 [Transmitting Dynamic Structure], page 〈undefined〉 and 〈undefined〉
[Marshalling and Unmarshalling Operations], page 〈undefined〉). The implementation of
the default attributes of predefined types can be found in System.Stream Attributes (s-
stratt.adb).

The PolyORB PCS provides alternative data representations by default to ensure porta-
bility of the data stream across partitions executing on heterogeneous architectures. Users
may override these representation aspects by configuring the protocol personality of their
choice.

8.5.7.3 Allocating Partition Ids

The Partition ID is allocated dynamically, at run-time. Each partition connects to a Par-
tition ID Server which is located on the boot server and asks for a free Partition ID. The
advantage of this approach is that it supports easily client / server solution (client partitions
may be duplicated, they will obtain different Partition Ids). There is no need to recompile
or relink all the partitions when a new partition is added to the system. The Partition ID
is not tied in any way to a specific protocol or to a specific location.

8.5.7.4 Executing Concurrent Remote Calls

When multiple remote subprogram calls occur on the same partition, they are handled by
several anonymous tasks. The number of tasks in the anonymous tasks pool can be config-
ured by three figures (see 〈undefined〉 [Partition Attribute Task Pool], page 〈undefined〉).
Therefore, the user may have to synchronize global data in the Remote Call Interface or
Remote Types unit to preserve concurrent access on data. If the user want to suppress the
multiple requests features, he can force the configuration of the anonymous tasks pool to
(0 | 1, 0 | 1, 1). That means that there will be at most one anonymous task running at a
time.

8.5.7.5 Priority Inheritance

It is compiler-dependent whether the caller priority is preserved during a remote procedure
call. In fact, it can be unsafe to rely on priorities, because two partitions may have different
priority ranges and policies. Nevertheless, PolyORB preserves the caller priority. This
priority is marshaled and unmarshaled during the remote procedure call and the priority of
the anonymous task on the server is set to the caller priority.

This default policy can be modified by using pragma Priority 〈undefined〉 [Pragma Pri-
ority], page 〈undefined〉 and partition attribute Priority 〈undefined〉 [Partition Attribute
Priority], page 〈undefined〉.

Chapter 8: Ada Distributed Systems Annex (DSA) 95

8.5.7.6 Remote Call Abortion

When a remote procedure call is aborted, PolyORB will abort the calling task on the caller
side. It will also try to abort the remote anonymous task performing the remote call, unless
runtime parameter abortable_rpcs in section [tasking] is set False on the server.

8.6 Running a DSA application

By default po_gnatdist will use the Ada starter. So if you have not specified pragma

Starter (None); in the po_gnatdist configuration file, you should have a starter in your
build directory, named after the main procedure defined in the configuration file. In this
case you just have to run this program.

If you don’t want to use the Starter and have specified pragma Starter (None); in your
configuration file, then you should have, in your Partition’Directory, one binary for each of
your partitions. You’ll have to start each of these programs manually.

In both cases you must specify a name server for your application. You can use for
example the one included in PolyORB: ‘po_cos_naming’. When running this name server
it will output its IOR URI named POLYORB_CORBA_NAME_SERVICE.

Just ensure that you set the global environment variable POLYORB_DSA_NAME_SERVICE to
an IOR URI referencing the running name server. When using the ‘po_cos_naming’ name
server just set POLYORB_DSA_NAME_SERVICE environment variable to the first value output
for POLYORB_DSA_NAME_SERVICE before launching each DSA partition.

Here is a small trace output that demonstrates the setup

polyorb/examples/dsa/echo% ../../../tools/po_cos_naming/po_cos_naming&

polyorb/examples/dsa/echo% POLYORB_CORBA_NAME_SERVICE=’’....’’

polyorb/examples/dsa/echo% export POLYORB_DSA_NAME_SERVICE=’’...’’

polyorb/examples/dsa/echo% ./client

The client has started!

Thus spake my server upon me:Hi!

Chapter 9: MOMA 97

9 MOMA

9.1 What you should know before Reading this section

This section assumes that the reader is familiar with the JMS specifications described in
[SUN99]. MOMA is a thick adaptation of the JMS specification to the Ada programming
language, preserving most of the JMS concepts.

9.2 Installing MOMA application personality

Ensure PolyORB has been configured and then compiled with the MOMA application
personality. See 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 for
more details on how to check installed personalities.

To build the MOMA application personality, see 〈undefined〉 [Installation], page 〈unde-
fined〉.

9.3 Package hierarchy

Packages installed in ‘$INSTALL_DIR/include/polyorb/moma’ hold the MOMA API.
MOMA is built around two distinct sets of packages:

1. ‘MOMA.*’ hold the public MOMA library, all the constructs the user may use.

2. ‘POLYORB.MOMA_P.*’ hold the private MOMA library, these packages shall not be used
when building your application.

Chapter 10: GIOP 99

10 GIOP

10.1 Installing GIOP protocol personality

Ensure PolyORB has been configured and then compiled with the GIOP protocol person-
ality. See 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 for more
details on how to check installed personalities.

To enable configuration of the GIOP protocol personality, see 〈undefined〉 [Installation],
page 〈undefined〉.

10.2 GIOP Instances

GIOP is a generic protocol that can be instantiated for multiple transport stacks. PolyORB
provides three different instances.

10.2.1 IIOP

Internet Inter-ORB Protocol (IIOP) is the default protocol defined by the CORBA specifi-
cations. It is a TCP/IP, IPv4, based protocol that supports the full semantics of CORBA
requests.

10.2.2 SSLIOP

The SSLIOP protocol provides transport layer security for transmitted requests. Its provides
encryption of GIOP requests.

To build the SSLIOP, it is required to activate SSL-related features when building Poly-
ORB. See ‘--with-openssl’ in 〈undefined〉 [Installation], page 〈undefined〉 for more details.

Enabling security is completely transparent to a preexisting application, it is also possible
to phase in secure communications by allowing incoming requests which are unsecured.

10.2.3 DIOP

Datagram Inter-ORB Protocol (DIOP) is a specialization of GIOP for the UDP/IP protocol
stack. It supports only asynchronous (oneway) requests.

This protocol is specific to PolyORB. DIOP 1.0 is a mapping of GIOP on top of UDP/IP.
DIOP 1.0 uses GIOP 1.2 message format.

10.2.4 MIOP

Unreliable Multicast Inter-ORB Protocol (MIOP) [OMG02b] is a specialization of GIOP
for IP/multicast protocol stack. It supports only asynchronous (oneway) requests.

10.3 Configuring the GIOP personality

The GIOP personality is configured using a configuration file. See 〈undefined〉 [Using a
configuration file], page 〈undefined〉 for more details.

Here is a summary of available parameters for each instance of GIOP.

100 PolyORB User’s Guide

10.3.1 Common configuration parameters

This section details configuration parameters common to all GIOP instances.

###

GIOP parameters

#

[giop]

###

Native code sets

#

Available char data code sets:

16#00010001# ISO 8859-1:1987; Latin Alphabet No. 1

16#05010001# X/Open UTF-8; UCS Transformation Format 8 (UTF-8)

#

Available wchar data code sets:

16#00010100# ISO/IEC 10646-1:1993; UCS-2, Level 1

16#00010109# ISO/IEC 10646-1:1993;

UTF-16, UCS Transformation Format 16-bit form

#

#giop.native_char_code_set=16#00010001#

#giop.native_wchar_code_set=16#00010100#

#

The following parameters force the inclusion of fallback code sets

as supported conversion code sets. This is required to enable

interoperability with ORBs whose code sets negotiation support is

broken. See PolyORB’s Users Guide for additional information.

#

#giop.add_char_fallback_code_set=false

#giop.add_wchar_fallback_code_set=false

10.3.2 IIOP Configuration Parameters

###

IIOP parameters

#

[iiop]

###

IIOP Global Settings

Preference level for IIOP

#polyorb.binding_data.iiop.preference=0

IIOP’s default address

#polyorb.protocols.iiop.default_addr=127.0.0.1

IIOP’s default port

#polyorb.protocols.iiop.default_port=2809

IIOP’s alternate addresses

#polyorb.protocols.iiop.alternate_listen_addresses=127.0.0.1:2810 127.0.0.1:2820

Default GIOP/IIOP Version

#polyorb.protocols.iiop.giop.default_version.major=1

#polyorb.protocols.iiop.giop.default_version.minor=2

Chapter 10: GIOP 101

###

IIOP 1.2 specific parameters

Set to True to enable IIOP 1.2

#polyorb.protocols.iiop.giop.1.2.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.2.locate_then_request=true

Maximum message size before fragmenting request

#polyorb.protocols.iiop.giop.1.2.max_message_size=1000

###

IIOP 1.1 specific parameters

Set to True to enable IIOP 1.1

#polyorb.protocols.iiop.giop.1.1.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.1.locate_then_request=true

Maximum message size before fragmenting request

#polyorb.protocols.iiop.giop.1.1.max_message_size=1000

###

IIOP 1.0 specific parameters

Set to True to enable IIOP 1.0

#polyorb.protocols.iiop.giop.1.0.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.0.locate_then_request=true

default_addr specifies a listening endpoint address, and alternate_listen_addresses

specifies a whitespace-separated list of additional listening endpoint addresses. The value of
default_addr, and each element of alternate_listen_addresses, have a similar format:
<bind-addr>[<pub-addr>]:<port-hint>

bind-addr is the address on which to listen to, as passed to the bind(2) system call. The
default value is 0.0.0.0 (i.e., listen for incoming connections on all addresses of the local
host). If an IP address is specified, it will be used instead. If a host name is specified, it
will be resolved, and connections will be listened for on each returned IP address.

pub-addr is the address to be published in constructed object references. In particular,
this is what appears in IORs produced by the Object_To_String CORBA function. If not
specified, this defaults to the same as bind-addr, except if bind-addr is 0.0.0.0 (the default
value), in which case the default pub-addr is the first non-loopback IP address found to be
associated with the local host name.

<port-hint> may be a specific port number, or a range of ports separated by an hyphen.
If specified, the listening port will be assigned in the indicated range. If not, a random port
will be selected by the operating system.

Any of the three components can be omitted. The following are examples of valid
listening address specifications:

0.0.0.0

102 PolyORB User’s Guide

Bind on 0.0.0.0, publish first IP address of local host

1.2.3.4

Bind on 1.2.3.4, publish "1.2.3.4"

1.2.3.4[server.example.com]

Bind on 1.2.3.4, publish as "server.example.com", no specified port

server.example.com

Bind on all IP addresses associated with "server.example.com", publish

"server.example.com"

[server.example.com]

Bind on 0.0.0.0, publish "server.example.com"

If PolyORB is compiled with GNATCOLL support, macro substitution may be used
in listening address specifications. For example, the following setting directs PolyORB to
listen on port 1234 on all local addresses, and publish the local host name:

[iiop]

polyorb.protocols.iiop.default_addr=[$hostname]:1234

<bind-addr> is unspecified, so defaults to 0.0.0.0

<pub-addr> is the local hostname, from built-in macro $hostname

<port-hint> is specified explicitly as 1234

10.3.3 SSLIOP Configuration Parameters

10.3.3.1 Ciphers name

PolyORB’s SSLIOP uses the OpenSSL library to support all ciphers recommended by
CORBA 3.0.3. The OpenSSL library uses specific names for ciphers. The table below
contains CORBA-recommended cipher names and their OpenSSL equivalents:

CORBA recommended ciphers OpenSSL equivalent
TLS RSA WITH RC4 128 MD5 RC4-MD5
SSL RSA WITH RC4 128 MD5 RC4-MD5
TLS DHE DSS WITH DES CBC SHA EDH-DSS-CBC-SHA
SSL DHE DSS WITH DES CBC SHA EDH-DSS-CBC-SHA
TLS RSA EXPORT WITH RC4 40 MD5 EXP-RC4-MD5
SSL RSA EXPORT WITH RC4 40 MD5 EXP-RC4-MD5
TLS DHE DSS EXPORT WITH DES40 CBC SHA EXP-EDH-DSS-DES-CBC-SHA
SSL DHE DSS EXPORT WITH DES40 CBC SHA EXP-EDH-DSS-DES-CBC-SHA

10.3.3.2 SSLIOP Parameters
###

SSLIOP parameters

#

[ssliop]

###

SSLIOP Global Settings

SSLIOP’s default port

#polyorb.protocols.ssliop.default_port=2810

If no SSLIOP default address is provide, PolyORB reuses IIOP’s

Chapter 10: GIOP 103

address

Private Key file name

#polyorb.protocols.ssliop.privatekeyfile=privkey.pem

Certificate file name

#polyorb.protocols.ssliop.certificatefile=cert.pem

Trusted CA certificates file

#polyorb.protocols.ssliop.cafile=cacert.pem

Trusted CA certificates path

#polyorb.protocols.ssliop.capath=demoCA/certs

Disable unprotected invocations

#polyorb.protocols.ssliop.disable_unprotected_invocations=true

###

Peer certificate verification mode

Verify peer certificate

#polyorb.protocols.ssliop.verify=false

Fail if client did not return certificate. (server side option)

#polyorb.protocols.ssliop.verify_fail_if_no_peer_cert=false

Request client certificate only once. (server side option)

#polyorb.protocols.ssliop.verify_client_once=false

10.3.4 DIOP Configuration Parameters
###

DIOP Global Settings

Preference level for DIOP

#polyorb.binding_data.diop.preference=0

DIOP’s default address

#polyorb.protocols.diop.default_addr=127.0.0.1

DIOP’s default port

#polyorb.protocols.diop.default_port=12345

Default GIOP/DIOP Version

#polyorb.protocols.diop.giop.default_version.major=1

#polyorb.protocols.diop.giop.default_version.minor=2

###

DIOP 1.2 specific parameters

Set to True to enable DIOP 1.2

#polyorb.protocols.diop.giop.1.2.enable=true

Maximum message size

#polyorb.protocols.diop.giop.1.2.max_message_size=1000

###

DIOP 1.1 specific parameters

104 PolyORB User’s Guide

Set to True to enable DIOP 1.1

#polyorb.protocols.diop.giop.1.1.enable=true

Maximum message size

#polyorb.protocols.diop.giop.1.1.max_message_size=1000

###

DIOP 1.0 specific parameters

Set to True to enable DIOP 1.0

#polyorb.protocols.diop.giop.1.0.enable=true

10.3.5 MIOP Configuration Parameters
###

MIOP parameters

#

[miop]

###

MIOP Global Settings

Preference level for MIOP

#polyorb.binding_data.uipmc.preference=0

Maximum message size

#polyorb.miop.max_message_size=6000

Time To Leave parameter

#polyorb.miop.ttl=15

Multicast address to use

These two parameters must be set explicitly, no default value is provided.

If either parameter is unset, the MIOP access point is disabled.

#polyorb.miop.multicast_addr=<group-ip-address>

#polyorb.miop.multicast_port=<port-number>

Set to True to enable MIOP

#polyorb.protocols.miop.giop.1.2.enable=false

Maximum message size

#polyorb.protocols.miop.giop.1.2.max_message_size=1000

10.4 Code sets

This sections details the various steps required to add support for new character code sets
to PolyORB’s GIOP personality. Please refer to the CORBA specifications ([OMG04]),
par. 13.10 for more details on this topic.

10.4.1 Supported code sets

PolyORB supports the following list of code sets:

1. Available char data code sets:

1. 16#00010001# ISO 8859-1:1987; Latin Alphabet No. 1

2. 16#05010001# X/Open UTF-8; UCS Transformation Format 8 (UTF-8)

Chapter 10: GIOP 105

2. Available wchar data code sets:

1. 16#00010100# ISO/IEC 10646-1:1993; UCS-2, Level 1

2. 16#00010109# ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format 16-
bit form

10.4.2 Incompatibility in code set support

Some ORBs report incompatiblity in code sets because fallback converters are not explicitly
present in the reference. To work around this issue, you may use the following parameters:

[giop]

giop.add_char_fallback_code_set=true

giop.add_wchar_fallback_code_set=true

10.4.3 Adding support for new code sets

PolyORB allows users to extend the set of supported native character code sets. Adding
support for new character code set consists of the following steps:

1. Developing sets of Converters - special objects that do marshalling/unmarshalling op-
erations of character data. At least two Converters are required: for direct marshalling
character data in native code set and for marshalling/unmarshalling character data in
fallback character code set (UTF-8 for char data and UTF-16 for wchar data). Addi-
tional Converters may be developed for marshalling character data in conversion code
set.

2. Developing converter factory subprogram for each Converter.

3. Registering native code set, its native and fallback converters and optional conversion
char sets and its converters.

10.4.4 Character data Converter

Character data converters do direct marshalling/unmarshalling of character data (char or
wchar - depending on Converter) into/from PolyORB’s buffer. This allows to minimize
the speed penalty on character data marshalling.

Character data Converters for char data have the following API (from
‘PolyORB.GIOP_P.Code_Sets.Converters’ package:

type Converter is abstract tagged private;

procedure Marshall

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : Types.Char;

Error : in out Errors.Error_Container)

is abstract;

procedure Marshall

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : Types.String;

Error : in out Errors.Error_Container)

is abstract;

procedure Unmarshall

(C : Converter;

106 PolyORB User’s Guide

Buffer : access Buffers.Buffer_Type;

Data : out Types.Char;

Error : in out Errors.Error_Container)

is abstract;

procedure Unmarshall

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : out Types.String;

Error : in out Errors.Error_Container)

is abstract;

The Marshall subprograms do marshalling of one character or string of characters into
the buffer. The Unmarshall subprograms do unmarshalling of one character or string of
characters from the buffer.

Note: Depending on the item size of the data (char/wchar) and GIOP version, mar-
shalling/unmarshalling algorithms may vary. In some situations marshalling of string is
not equivalent to marshalling its length and marshalling one by one each character. Please
refere to GIOP specifications for more details.

If marshalling/unmarshalling fails, subprograms must set the Error parameter to the
corresponding error, usually Data_Conversion_E.

Note: We recommend to always use the Data Conversion E error code with Minor status
1.

All Converters (native, fallback and conversion) have similar APIs. Wchar data con-
verters differ only in parameter type.

10.4.5 Converters factories

To create new converters, PolyORB uses special factory subprograms with the following
profile:

function Factory return Converter_Access;

or
function Factory return Wide_Converter_Access;

This function must allocate a new Converter and initialize its state.

10.4.6 Registering new code sets

Registering new native character data code sets begins from registering new native character
data code sets and its native and fallback Converters. This is done using Register_

Native_Code_Set:
procedure Register_Native_Code_Set

(Code_Set : Code_Set_Id;

Native : Converter_Factory;

Fallback : Converter_Factory);

or
procedure Register_Native_Code_Set

(Code_Set : Code_Set_Id;

Native : Wide_Converter_Factory;

Fallback : Wide_Converter_Factory);

If you have additional conversion code sets Converters you may register it by calling
Register Conversion Code Set subprogram:

Chapter 10: GIOP 107

procedure Register_Conversion_Code_Set

(Native : Code_Set_Id;

Conversion : Code_Set_Id;

Factory : Converter_Factory);

or
procedure Register_Conversion_Code_Set

(Native : Code_Set_Id;

Conversion : Code_Set_Id;

Factory : Wide_Converter_Factory);

Note: because of incompatibility in the support of code sets negotiation in some ORB’s
it is recommend to recognize two boolean PolyORB’s parameters:

[giop]

giop.add_char_fallback_code_set=false

giop.add_wchar_fallback_code_set=false

and also register a fallback Converter as conversion Converter if the corresponding pa-
rameter is set to True.

Finally, define your preferred native character data code sets by parameters (only integer
code sets codes now supported):

[giop]

giop.native_char_code_set=16#00010001#

giop.native_wchar_code_set=16#00010100#

Chapter 11: SOAP 109

11 SOAP

11.1 Installing SOAP protocol personality

Ensure PolyORB has been configured and then compiled with the SOAP protocol person-
ality. See 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉 for more
details on how to check installed personalities.

To enable configuration of the SOAP application personality, see 〈undefined〉 [Installa-
tion], page 〈undefined〉.

11.2 Configuring the SOAP personality

The SOAP personality is configured using a configuration file. See 〈undefined〉 [Using a
configuration file], page 〈undefined〉 for more details.

Here is a summary of available parameters for each instance of SOAP.
###

SOAP parameters

#

[soap]

###

SOAP Global Settings

Preference level for SOAP

#polyorb.binding_data.soap.preference=0

SOAP’s default address

#polyorb.protocols.soap.default_addr=127.0.0.1

SOAP’s default port

#polyorb.protocols.soap.default_port=8080

Chapter 12: Tools 111

12 Tools

12.1 po_catref

po_catref is a utility for viewing the components of a stringified reference (CORBA IOR,
corbaloc or URI). The reference’s components include references to access an object through
multiple protocols (e.g. CORBA IIOP, SOAP) and configuration parameters associated
with a reference (e.g. GIOP Service Contexts).

Usage:

po_catref <stringified reference>

Note: po_catref can only process protocols PolyORB has been configured with.

12.2 po_dumpir

po_dumpir is a utility for viewing the content of an instance of the CORBA Interface
Repository.

Usage:

po_dumpir <stringified reference>

Note: po_dumpir will be compiled and installed only if the CORBA personality and the
‘ir’ service is compiled. Please see 〈undefined〉 [Building an application with PolyORB],
page 〈undefined〉 for more details on how to set up PolyORB.

12.3 po_names

po_names is a stand-alone name server. It has an interface similar to CORBA COS Naming,
without dragging in any dependencies on CORBA mechanisms. This name server is to be
used when the CORBA application personality is not required, e.g. with the DSA or MOMA
application personalities.

Appendix A: Performance considerations 113

Appendix A Performance considerations

This section discusses performance when using PolyORB. Many elements can be configured,
See 〈undefined〉 [Building an application with PolyORB], page 〈undefined〉. By carefully
selecting them, you can increase the throughput of your application.

We review some parameters that can impact performance.

• Build options:

• For production use, you should not build PolyORB with debug activated.

• Tasking policies:

• You should carefully select the tasking policy to reduce dynamic ressource allo-
cation (tasks, entry points, etc.). See 〈undefined〉 [Tasking model in PolyORB],
page 〈undefined〉.

• Transport parameters:

• Setting tcp.nodelay to false will disable Nagle buffering.

• GIOP parameters:

• Setting polyorb.protocols.iiop.giop.1.X.locate_then_request, where X is
the GIOP version in use, to false will disable Locate_Message, reducing the num-
ber of requests exchanged,

• Increasing polyorb.protocols.iiop.giop.1.X.max_message_size, where X is
the GIOP version in use, will reduce GIOP fragmentation, reducing middleware
processing.

Appendix B: Conformance to standards 115

Appendix B Conformance to standards

B.1 CORBA standards conformance

The OMG defines a CORBA-compliant ORB as an implementation of the CORBA speci-
fications that supports CORBA Core and one mapping of CORBA’s IDL.

Here is a summary of PolyORB’s conformance issues with the latest CORBA specifica-
tions (revision 3.0, formal/02-06-01).

B.1.1 CORBA IDL-to-Ada mapping

PolyORB supports the IDL-to-Ada specification [OMG01], with the following limitations
in both the CORBA API and the IDL-to-Ada compiler idlac:

• no support for abstract interfaces, object-by-value, context data;

• no support for CORBA Components;

• implemented API may present some divergences with current mapping.

Note: generated code is constrained by the limitations of the Ada compiler used. Please
refer to its documentation for more information.

Conforming to documentation requirements from section 4.11 of the IDL-to-Ada spec-
ification [OMG01], note that PolyORB’s implementation of CORBA is tasking-safe. The
use of the CORBA personality on typical GNAT runtimes is task-blocking, unless specified
in platform notes.

B.1.2 CORBA Core

This set encompasses chapters 1-11. Chapters 3 to 11 are normative.

• Chapter 3 describes OMG IDL syntax and semantics. See 〈undefined〉 [CORBA IDL-
to-Ada mapping], page 〈undefined〉 for a description of non-implemented features;

• Chapter 4 describes the ORB Interface.

PolyORB partially supports this chapter.

• Chapter 5 describes Value Type Semantics.

PolyORB does not support this chapter.

• Chapter 6 describes Abstract Interface Semantics.

PolyORB does not support this chapter.

• Chapter 7 describes Dynamic Invocation Interface (DII)

PolyORB supports only the following methods: Create_Request, Invoke and Delete.

• Chapter 8 describes Dynamic Skeleton Interface (DSI)

PolyORB partially supports this chapter: this interface is fully implemented except for
context data.

• Chapter 9 describes Dynamic Management of Any Values

PolyORB partially supports this chapter: this interface is fully implemented except for
object references and value types.

116 PolyORB User’s Guide

• Chapter 10 describes The Interface Repository

PolyORB supports this chapter, except for the ExtValueDef interface, and all CORBA
CCM related interfaces.

• Chapter 11 describes The Portable Object Adapter

PolyORB supports this chapter with the following limitations:

• the USE_SERVANT_MANAGER policy is partially supported: the ServantLocator ob-
ject is not implemented;

• support for SINGLE_THREAD policy is incomplete, reentrant calls may not work;

• Wait_For_Completion and Etherealize_Objects are not taken into account in
PortableServer.POAManager;

• the PortableServer.POAManagerFactory API is not implemented.

B.1.3 CORBA Interoperability

This set encompasses chapters 12-16.

• See 〈undefined〉 [CORBA-GIOP standards conformance], page 〈undefined〉 for more
information on this point.

B.1.4 CORBA Interworking

This set encompasses chapters 17-21.

• Chapters 17 to 20 describe interoperability with Microsoft’s COM/DCOM.

PolyORB provides no support for these chapters.

• Chapter 21 describes PortableInterceptor.

PolyORB provides partial support for this chapter.

B.1.5 CORBA Quality Of Service

This set encompasses chapters 22-24.

• Chapter 22 describes CORBA Messaging

• Chapter 23 describes Fault Tolerant CORBA

• Chapter 24 describes Secure Interoperability.

PolyORB provides no support for these chapters.

B.1.6 CORBA COS Services

COS Services are specifications of high level services that are optional extensions to the
CORBA specification. They provide helper packages to build distributed applications.
PolyORB implements the following COS Services:

• COS Event and TypedEvent;

• COS Naming;

• COS Notification;

• COS Time;

Appendix B: Conformance to standards 117

B.1.7 CORBA Specialized services

PolyORB supports the following specialized services:

• Unreliable Multicast (MIOP), proposed 1.0 specification [OMG02b].

• RT-CORBA extensions, see 〈undefined〉 [RT-CORBA], page 〈undefined〉 for more in-
formation on this point.

• CORBA security extensions, see [OMG] for more information on this point.

B.2 RT-CORBA standards conformance

RT-CORBA specifications rely on the CORBA application personality; the same issues and
implementation notes apply.

In addition, here is a list of issues with the implementation of RT-CORBA static
[OMG02a] and dynamic scheduling [OMG03] specifications.

• RT-CORBA static and dynamic scheduling (Chapter 2)

Chapter 2 is common to these two specifications. It describes key mechanisms of RT-
CORBA that are common to both specifications.

PolyORB partially implements this chapter from section 2.1 up to section 2.10. Poly-
ORB does not provide support for all connection-related policies.

See implementation notes in the different package specifications for more details.

• RT-CORBA static scheduling (Chapter 3)

PolyORB supports this chapter.

• RT-CORBA dynamic scheduling (Chapter 3)

PolyORB does not support this chapter.

B.3 CSIv2 standards conformance

PolyORB supports IIOP/SSL.

B.4 CORBA/GIOP standards conformance

GIOP supports part of the CORBA Interoperability specification, from chapters 12 to 16
of CORBA specifications.

Chapter 12 defines general concepts about ORB interoperability. It defines an
interoperbility-compliant ORB as an ORB that supports:

• API that supports the construction of request-level inter-ORB bridges, Dynamic In-
vocation Interface, Dynamic Skeleton Interface and the object identity operations de-
scribed in the Interface Repository. See 〈undefined〉 [CORBA standards conformance],
page 〈undefined〉 for more details.

• IIOP protocol as defined in chapter 15.

Support for other components is optional.

• Chapter 13 describes the ORB Interoperability Architecture.

PolyORB fully supports this chapter.

• Chapter 14 describes how to build Inter-ORB Bridges.

PolyORB fully supports this chapter.

118 PolyORB User’s Guide

• Chapter 15 describes the General Inter-ORB Protocol (GIOP).

PolyORB supports GIOP version 1.0 to 1.2, the CDR representation scheme. Support
for IOR and corbaloc addressing mechanisms is supported in the CORBA personality,
see 〈undefined〉 [CORBA], page 〈undefined〉 for more details.

PolyORB does not support the optional IIOP IOR Profile Components, Bi-directional
GIOP. PolyORB also does not support fragmentation in GIOP 1.1.

• Chapter 16 describes the DCE ESIOP protocol.

PolyORB does not support this optional chapter.

B.5 SOAP standards conformance

The documentation of the SOAP standards conformance of PolyORB will appear in a future
revision of PolyORB.

Appendix C: References 119

Appendix C References

Appendix D: GNU Free Documentation License 121

Appendix D GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

122 PolyORB User’s Guide

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modification.
Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

Appendix D: GNU Free Documentation License 123

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the

124 PolyORB User’s Guide

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties – for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

Appendix D: GNU Free Documentation License 125

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sections
entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all
sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute

126 PolyORB User’s Guide

the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 127

Index

(Index is nonexistent)

